monado/src/xrt/auxiliary/tracking/t_tracker_psmv.cpp

634 lines
17 KiB
C++
Raw Normal View History

// Copyright 2019-2020, Collabora, Ltd.
2019-09-21 18:04:48 +00:00
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief PS Move tracker code.
2019-09-26 11:33:57 +00:00
* @author Pete Black <pblack@collabora.com>
2019-09-21 18:04:48 +00:00
* @author Jakob Bornecrantz <jakob@collabora.com>
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
* @ingroup aux_tracking
2019-09-21 18:04:48 +00:00
*/
#include "xrt/xrt_tracking.h"
#include "tracking/t_tracking.h"
#include "tracking/t_calibration_opencv.hpp"
#include "tracking/t_tracker_psmv_fusion.hpp"
#include "tracking/t_helper_debug_sink.hpp"
2019-09-21 18:04:48 +00:00
#include "util/u_var.h"
2019-09-21 18:04:48 +00:00
#include "util/u_misc.h"
#include "util/u_debug.h"
#include "util/u_frame.h"
#include "util/u_format.h"
#include "math/m_api.h"
#include "os/os_threading.h"
#include <stdio.h>
#include <assert.h>
#include <pthread.h>
#include <type_traits>
2019-09-21 18:04:48 +00:00
using namespace xrt::auxiliary::tracking;
//! Namespace for PS Move tracking implementation
namespace xrt::auxiliary::tracking::psmv {
/*!
* Single camera.
2020-06-03 16:43:30 +00:00
*
* @see TrackerPSMV
*/
struct View
{
public:
cv::Mat undistort_rectify_map_x;
cv::Mat undistort_rectify_map_y;
cv::Matx33d intrinsics;
cv::Mat distortion; // size may vary
cv::Vec4d distortion_fisheye;
bool use_fisheye;
std::vector<cv::KeyPoint> keypoints;
cv::Mat frame_undist_rectified;
void
2021-01-14 14:13:48 +00:00
populate_from_calib(t_camera_calibration &calib, const RemapPair &rectification)
{
CameraCalibrationWrapper wrap(calib);
intrinsics = wrap.intrinsics_mat;
distortion = wrap.distortion_mat.clone();
distortion_fisheye = wrap.distortion_fisheye_mat;
use_fisheye = wrap.use_fisheye;
undistort_rectify_map_x = rectification.remap_x;
undistort_rectify_map_y = rectification.remap_y;
}
};
// Has to be standard layout because is embedded in TrackerPSMV.
static_assert(std::is_standard_layout<View>::value);
2020-06-03 16:43:30 +00:00
/*!
* The core object of the PS Move tracking setup.
*
* @implements xrt_tracked_psmv
* @implements xrt_frame_sink
* @implements xrt_frame_node
*/
struct TrackerPSMV
2019-09-21 18:04:48 +00:00
{
public:
2019-09-21 18:04:48 +00:00
struct xrt_tracked_psmv base = {};
struct xrt_frame_sink sink = {};
struct xrt_frame_node node = {};
//! Frame waiting to be processed.
struct xrt_frame *frame;
//! Thread and lock helper.
struct os_thread_helper oth;
bool tracked = false;
HelperDebugSink debug = {HelperDebugSink::AllAvailable};
2019-09-21 18:04:48 +00:00
//! Have we received a new IMU sample.
bool has_imu = false;
struct
{
struct xrt_vec3 pos = {};
struct xrt_quat rot = {};
} fusion;
2019-09-26 11:33:57 +00:00
View view[2];
2019-09-26 11:33:57 +00:00
bool calibrated;
cv::Mat disparity_to_depth;
cv::Vec3d r_cam_translation;
cv::Matx33d r_cam_rotation;
2019-09-26 11:33:57 +00:00
cv::Ptr<cv::SimpleBlobDetector> sbd;
std::shared_ptr<PSMVFusionInterface> filter;
2019-09-26 11:33:57 +00:00
xrt_vec3 tracked_object_position;
2019-09-21 18:04:48 +00:00
};
// Has to be standard layout because of first element casts we do.
static_assert(std::is_standard_layout<TrackerPSMV>::value);
2019-10-12 02:22:26 +00:00
/*!
* @brief Perform per-view (two in a stereo camera image) processing on an
* image, before tracking math is performed.
*
* Right now, this is mainly finding blobs/keypoints.
*/
static void
do_view(TrackerPSMV &t, View &view, cv::Mat &grey, cv::Mat &rgb)
{
// Undistort and rectify the whole image.
cv::remap(grey, // src
view.frame_undist_rectified, // dst
view.undistort_rectify_map_x, // map1
view.undistort_rectify_map_y, // map2
cv::INTER_NEAREST, // interpolation
cv::BORDER_CONSTANT, // borderMode
cv::Scalar(0, 0, 0)); // borderValue
cv::threshold(view.frame_undist_rectified, // src
view.frame_undist_rectified, // dst
32.0, // thresh
255.0, // maxval
0); // type
// tracker_measurement_t m = {};
// Do blob detection with our masks.
//! @todo Re-enable masks.
t.sbd->detect(view.frame_undist_rectified, // image
view.keypoints, // keypoints
cv::noArray()); // mask
// Debug is wanted, draw the keypoints.
if (rgb.cols > 0) {
2021-01-14 14:13:48 +00:00
cv::drawKeypoints(view.frame_undist_rectified, // image
view.keypoints, // keypoints
rgb, // outImage
cv::Scalar(255, 0, 0), // color
cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); // flags
}
}
2019-10-12 02:22:26 +00:00
/*!
* @brief Helper struct that keeps the value that produces the lowest "score" as
* computed by your functor.
*
* Having this as a struct with a method, instead of a single "algorithm"-style
* function, lets you keep your complicated filtering logic in your own
* loop, calling in when you have a new candidate for "best".
2019-10-12 02:22:26 +00:00
*
* @note Create by calling make_lowest_score_finder() with your
* function/lambda that takes an element and returns the score, to deduce the
* un-spellable typename of the lambda.
*
* @tparam ValueType The type of a single element value - whatever you want to
* assign a score to.
* @tparam FunctionType The type of your functor/lambda that turns a ValueType
* into a float "score". Usually deduced.
*/
template <typename ValueType, typename FunctionType> struct FindLowestScore
{
const FunctionType score_functor;
bool got_one{false};
ValueType best{};
2019-10-12 02:22:26 +00:00
float best_score{0};
void
handle_candidate(ValueType val)
{
2019-10-12 02:22:26 +00:00
float score = score_functor(val);
if (!got_one || score < best_score) {
best = val;
best_score = score;
got_one = true;
}
}
};
//! Factory function for FindLowestScore to deduce the functor type.
template <typename ValueType, typename FunctionType>
2019-10-12 02:22:26 +00:00
static FindLowestScore<ValueType, FunctionType>
make_lowest_score_finder(FunctionType scoreFunctor)
{
2019-10-12 02:22:26 +00:00
return FindLowestScore<ValueType, FunctionType>{scoreFunctor};
}
//! Convert our 2d point + disparities into 3d points.
static cv::Point3f
world_point_from_blobs(const cv::Point2f &left, const cv::Point2f &right, const cv::Matx44d &disparity_to_depth)
{
float disp = left.x - right.x;
cv::Vec4d xydw(left.x, left.y, disp, 1.0f);
// Transform
cv::Vec4d h_world = disparity_to_depth * xydw;
// Divide by scale to get 3D vector from homogeneous coordinate.
cv::Point3f world_point( //
h_world[0] / h_world[3], //
h_world[1] / h_world[3], //
h_world[2] / h_world[3]); //
/*
* OpenCV camera space is right handed, -Y up, +Z forwards but
* Monados camera space is right handed, +Y up, -Z forwards so we need
* to invert y and z.
*/
world_point.y = -world_point.y;
world_point.z = -world_point.z;
return world_point;
}
2019-10-12 02:22:26 +00:00
/*!
* @brief Perform tracking computations on a frame of video data.
*/
2019-09-21 18:04:48 +00:00
static void
2019-10-01 17:21:08 +00:00
process(TrackerPSMV &t, struct xrt_frame *xf)
2019-09-21 18:04:48 +00:00
{
2019-10-12 02:22:26 +00:00
// Only IMU data: nothing to do
2019-09-21 18:04:48 +00:00
if (xf == NULL) {
return;
}
2019-10-12 02:22:26 +00:00
// Wrong type of frame: unreference and return?
if (xf->format != XRT_FORMAT_L8) {
xrt_frame_reference(&xf, NULL);
return;
}
2019-09-26 11:33:57 +00:00
if (!t.calibrated) {
return;
2019-09-26 11:33:57 +00:00
}
// Create the debug frame if needed.
t.debug.refresh(xf);
2019-09-26 11:33:57 +00:00
t.view[0].keypoints.clear();
t.view[1].keypoints.clear();
2019-09-26 11:33:57 +00:00
int cols = xf->width / 2;
int rows = xf->height;
int stride = xf->stride;
2019-09-26 11:33:57 +00:00
cv::Mat l_grey(rows, cols, CV_8UC1, xf->data, stride);
cv::Mat r_grey(rows, cols, CV_8UC1, xf->data + cols, stride);
2019-09-26 11:33:57 +00:00
do_view(t, t.view[0], l_grey, t.debug.rgb[0]);
do_view(t, t.view[1], r_grey, t.debug.rgb[1]);
2019-09-26 11:33:57 +00:00
2021-01-14 14:13:48 +00:00
cv::Point3f last_point(t.tracked_object_position.x, t.tracked_object_position.y, t.tracked_object_position.z);
auto nearest_world = make_lowest_score_finder<cv::Point3f>([&](const cv::Point3f &world_point) {
2021-01-14 14:13:48 +00:00
//! @todo don't really need the square root to be done here.
return cv::norm(world_point - last_point);
});
// do some basic matching to come up with likely disparity-pairs.
2021-01-14 14:13:48 +00:00
const cv::Matx44d disparity_to_depth = static_cast<cv::Matx44d>(t.disparity_to_depth);
for (const cv::KeyPoint &l_keypoint : t.view[0].keypoints) {
cv::Point2f l_blob = l_keypoint.pt;
auto nearest_blob = make_lowest_score_finder<cv::Point2f>(
[&](const cv::Point2f &r_blob) { return l_blob.x - r_blob.x; });
for (const cv::KeyPoint &r_keypoint : t.view[1].keypoints) {
cv::Point2f r_blob = r_keypoint.pt;
2019-09-26 11:33:57 +00:00
// find closest point on same-ish scanline
2021-01-14 14:13:48 +00:00
if ((l_blob.y < r_blob.y + 3) && (l_blob.y > r_blob.y - 3)) {
nearest_blob.handle_candidate(r_blob);
2019-09-26 11:33:57 +00:00
}
}
//! @todo do we need to avoid claiming the same counterpart
//! several times?
if (nearest_blob.got_one) {
2021-01-14 14:13:48 +00:00
cv::Point3f pt = world_point_from_blobs(l_blob, nearest_blob.best, disparity_to_depth);
nearest_world.handle_candidate(pt);
2019-09-26 11:33:57 +00:00
}
}
if (nearest_world.got_one) {
cv::Point3f world_point = nearest_world.best;
2019-09-26 11:33:57 +00:00
// update internal state
2021-01-14 14:13:48 +00:00
memcpy(&t.tracked_object_position, &world_point.x, sizeof(t.tracked_object_position));
} else {
t.filter->clear_position_tracked_flag();
2019-09-26 11:33:57 +00:00
}
// We are done with the debug frame.
t.debug.submit();
// We are done with the frame.
2019-09-21 18:04:48 +00:00
xrt_frame_reference(&xf, NULL);
if (nearest_world.got_one) {
#if 0
//! @todo something less arbitrary for the lever arm?
//! This puts the origin approximately under the PS
//! button.
xrt_vec3 lever_arm{0.f, 0.09f, 0.f};
//! @todo this should depend on distance
// Weirdly, this is where *not* applying the
// disparity-to-distance/rectification/etc would
// simplify things, since the measurement variance is
// related to the image sensor. 1.e-4 means 1cm std dev.
// Not sure how to estimate the depth variance without
// some research.
xrt_vec3 variance{1.e-4f, 1.e-4f, 4.e-4f};
#endif
2021-01-14 14:13:48 +00:00
t.filter->process_3d_vision_data(0, &t.tracked_object_position, NULL, NULL,
//! @todo tune cutoff for residual arbitrarily "too large"
15);
} else {
t.filter->clear_position_tracked_flag();
}
2019-09-21 18:04:48 +00:00
}
2019-10-12 02:22:26 +00:00
/*!
* @brief Tracker processing thread function
*/
2019-09-21 18:04:48 +00:00
static void
run(TrackerPSMV &t)
{
struct xrt_frame *frame = NULL;
os_thread_helper_lock(&t.oth);
while (os_thread_helper_is_running_locked(&t.oth)) {
2019-09-21 18:04:48 +00:00
// No data
if (!t.has_imu || t.frame == NULL) {
os_thread_helper_wait_locked(&t.oth);
/*
* Loop back to the top to check if we should stop,
* also handles spurious wakeups by re-checking the
* condition in the if case. Essentially two loops.
*/
continue;
2019-09-21 18:04:48 +00:00
}
// Take a reference on the current frame, this keeps it alive
// if it is replaced during the consumer processing it, but
// we no longer need to hold onto the frame on the queue we
// just move the pointer.
frame = t.frame;
t.frame = NULL;
// Unlock the mutex when we do the work.
os_thread_helper_unlock(&t.oth);
2019-10-01 17:21:08 +00:00
process(t, frame);
2019-09-21 18:04:48 +00:00
// Have to lock it again.
os_thread_helper_lock(&t.oth);
}
os_thread_helper_unlock(&t.oth);
}
2019-10-12 02:22:26 +00:00
/*!
* @brief Retrieves a pose from the filter.
*/
2019-09-21 18:04:48 +00:00
static void
2021-01-14 14:13:48 +00:00
get_pose(TrackerPSMV &t, enum xrt_input_name name, timepoint_ns when_ns, struct xrt_space_relation *out_relation)
2019-09-21 18:04:48 +00:00
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
if (name == XRT_INPUT_PSMV_BALL_CENTER_POSE) {
out_relation->pose.position = t.tracked_object_position;
out_relation->pose.orientation.x = 0.0f;
out_relation->pose.orientation.y = 0.0f;
out_relation->pose.orientation.z = 0.0f;
out_relation->pose.orientation.w = 1.0f;
2021-01-14 14:13:48 +00:00
out_relation->relation_flags = (enum xrt_space_relation_flags)(XRT_SPACE_RELATION_POSITION_VALID_BIT |
XRT_SPACE_RELATION_POSITION_TRACKED_BIT);
os_thread_helper_unlock(&t.oth);
return;
}
t.filter->get_prediction(when_ns, out_relation);
2019-09-21 18:04:48 +00:00
os_thread_helper_unlock(&t.oth);
}
static void
2021-01-14 14:13:48 +00:00
imu_data(TrackerPSMV &t, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample)
2019-09-21 18:04:48 +00:00
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
t.filter->process_imu_data(timestamp_ns, sample, NULL);
2019-09-21 18:04:48 +00:00
os_thread_helper_unlock(&t.oth);
}
static void
frame(TrackerPSMV &t, struct xrt_frame *xf)
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
xrt_frame_reference(&t.frame, xf);
// Wake up the thread.
os_thread_helper_signal_locked(&t.oth);
os_thread_helper_unlock(&t.oth);
}
static void
break_apart(TrackerPSMV &t)
{
os_thread_helper_stop_and_wait(&t.oth);
2019-09-21 18:04:48 +00:00
}
} // namespace xrt::auxiliary::tracking::psmv
using xrt::auxiliary::tracking::psmv::TrackerPSMV;
2019-09-21 18:04:48 +00:00
/*
*
* C wrapper functions.
*
*/
extern "C" void
2021-01-14 14:13:48 +00:00
t_psmv_push_imu(struct xrt_tracked_psmv *xtmv, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample)
2019-09-21 18:04:48 +00:00
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
imu_data(t, timestamp_ns, sample);
2019-09-21 18:04:48 +00:00
}
extern "C" void
t_psmv_get_tracked_pose(struct xrt_tracked_psmv *xtmv,
enum xrt_input_name name,
2019-09-21 18:04:48 +00:00
timepoint_ns when_ns,
struct xrt_space_relation *out_relation)
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
get_pose(t, name, when_ns, out_relation);
2019-09-21 18:04:48 +00:00
}
extern "C" void
t_psmv_fake_destroy(struct xrt_tracked_psmv *xtmv)
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
(void)t;
// Not the real destroy function
}
extern "C" void
t_psmv_sink_push_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf)
{
auto &t = *container_of(xsink, TrackerPSMV, sink);
frame(t, xf);
}
extern "C" void
t_psmv_node_break_apart(struct xrt_frame_node *node)
{
auto &t = *container_of(node, TrackerPSMV, node);
break_apart(t);
}
extern "C" void
t_psmv_node_destroy(struct xrt_frame_node *node)
{
auto *t_ptr = container_of(node, TrackerPSMV, node);
2019-09-21 18:04:48 +00:00
os_thread_helper_destroy(&t_ptr->oth);
// Tidy variable setup.
u_var_remove_root(t_ptr);
2019-09-21 18:04:48 +00:00
delete t_ptr;
}
extern "C" void *
t_psmv_run(void *ptr)
{
auto &t = *(TrackerPSMV *)ptr;
run(t);
return NULL;
}
/*
*
* Exported functions.
*
*/
extern "C" int
t_psmv_start(struct xrt_tracked_psmv *xtmv)
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
2019-10-01 17:21:13 +00:00
return os_thread_helper_start(&t.oth, t_psmv_run, &t);
2019-09-21 18:04:48 +00:00
}
extern "C" int
t_psmv_create(struct xrt_frame_context *xfctx,
struct xrt_colour_rgb_f32 *rgb,
struct t_stereo_camera_calibration *data,
2019-09-21 18:04:48 +00:00
struct xrt_tracked_psmv **out_xtmv,
struct xrt_frame_sink **out_sink)
{
2020-12-18 12:08:29 +00:00
U_LOG_D("Creating PSMV tracker.");
2019-09-21 18:04:48 +00:00
auto &t = *(new TrackerPSMV());
int ret;
t.base.get_tracked_pose = t_psmv_get_tracked_pose;
t.base.push_imu = t_psmv_push_imu;
t.base.destroy = t_psmv_fake_destroy;
t.base.colour = *rgb;
t.sink.push_frame = t_psmv_sink_push_frame;
t.node.break_apart = t_psmv_node_break_apart;
t.node.destroy = t_psmv_node_destroy;
t.fusion.rot.x = 0.0f;
t.fusion.rot.y = 0.0f;
t.fusion.rot.z = 0.0f;
t.fusion.rot.w = 1.0f;
t.filter = PSMVFusionInterface::create();
2019-09-21 18:04:48 +00:00
ret = os_thread_helper_init(&t.oth);
if (ret != 0) {
delete (&t);
return ret;
}
static int hack = 0;
switch (hack++) {
case 0:
t.fusion.pos.x = -0.3f;
t.fusion.pos.y = 1.3f;
t.fusion.pos.z = -0.5f;
break;
case 1:
t.fusion.pos.x = 0.3f;
t.fusion.pos.y = 1.3f;
t.fusion.pos.z = -0.5f;
break;
default:
t.fusion.pos.x = 0.0f;
t.fusion.pos.y = 0.8f + hack * 0.1f;
t.fusion.pos.z = -0.5f;
break;
}
StereoRectificationMaps rectify(data);
t.view[0].populate_from_calib(data->view[0], rectify.view[0].rectify);
t.view[1].populate_from_calib(data->view[1], rectify.view[1].rectify);
t.disparity_to_depth = rectify.disparity_to_depth_mat;
StereoCameraCalibrationWrapper wrapped(data);
t.r_cam_rotation = wrapped.camera_rotation_mat;
t.r_cam_translation = wrapped.camera_translation_mat;
t.calibrated = true;
2019-09-26 11:33:57 +00:00
// clang-format off
cv::SimpleBlobDetector::Params blob_params;
blob_params.filterByArea = false;
2019-10-15 08:42:44 +00:00
blob_params.filterByConvexity = true;
blob_params.minConvexity = 0.8;
2019-09-26 11:33:57 +00:00
blob_params.filterByInertia = false;
blob_params.filterByColor = true;
blob_params.blobColor = 255; // 0 or 255 - color comes from binarized image?
blob_params.minArea = 1;
blob_params.maxArea = 1000;
blob_params.maxThreshold = 51; // using a wide threshold span slows things down bigtime
blob_params.minThreshold = 50;
blob_params.thresholdStep = 1;
blob_params.minDistBetweenBlobs = 5;
blob_params.minRepeatability = 1; // need this to avoid error?
// clang-format on
t.sbd = cv::SimpleBlobDetector::create(blob_params);
2019-09-21 18:04:48 +00:00
xrt_frame_context_add(xfctx, &t.node);
// Everything is safe, now setup the variable tracking.
u_var_add_root(&t, "PSMV Tracker", true);
u_var_add_vec3_f32(&t, &t.tracked_object_position, "last.ball.pos");
u_var_add_sink_debug(&t, &t.debug.usd, "Debug");
2019-09-21 18:04:48 +00:00
*out_sink = &t.sink;
*out_xtmv = &t.base;
return 0;
}