monado/src/xrt/auxiliary/tracking/t_tracker_psmv.cpp

589 lines
14 KiB
C++
Raw Normal View History

2019-09-21 18:04:48 +00:00
// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief PS Move tracker code.
2019-09-26 11:33:57 +00:00
* @author Pete Black <pblack@collabora.com>
2019-09-21 18:04:48 +00:00
* @author Jakob Bornecrantz <jakob@collabora.com>
*/
#include "xrt/xrt_tracking.h"
#include "tracking/t_tracking.h"
2019-09-26 11:33:57 +00:00
#include "tracking/t_calibration_opencv.h"
2019-09-21 18:04:48 +00:00
#include "util/u_var.h"
2019-09-21 18:04:48 +00:00
#include "util/u_misc.h"
#include "util/u_debug.h"
#include "util/u_frame.h"
#include "util/u_format.h"
#include "math/m_api.h"
#include "os/os_threading.h"
#include <stdio.h>
#include <assert.h>
#include <pthread.h>
/*!
* Single camera.
*/
struct View
{
cv::Mat undistort_map_x;
cv::Mat undistort_map_y;
cv::Mat rectify_map_x;
cv::Mat rectify_map_y;
std::vector<cv::KeyPoint> keypoints;
cv::Mat frame_undist;
cv::Mat frame_rectified;
};
2019-09-21 18:04:48 +00:00
class TrackerPSMV
{
public:
struct xrt_tracked_psmv base = {};
struct xrt_frame_sink sink = {};
struct xrt_frame_node node = {};
//! Frame waiting to be processed.
struct xrt_frame *frame;
//! Thread and lock helper.
struct os_thread_helper oth;
struct
{
struct xrt_frame_sink *sink;
struct xrt_frame *frame;
cv::Mat rgb[2];
} debug;
2019-09-21 18:04:48 +00:00
//! Have we received a new IMU sample.
bool has_imu = false;
struct
{
struct xrt_vec3 pos = {};
struct xrt_quat rot = {};
} fusion;
2019-09-26 11:33:57 +00:00
View view[2];
2019-09-26 11:33:57 +00:00
bool calibrated;
cv::Mat disparity_to_depth;
2019-09-26 11:33:57 +00:00
cv::Ptr<cv::SimpleBlobDetector> sbd;
xrt_vec3 tracked_object_position;
2019-09-21 18:04:48 +00:00
};
static void
refresh_gui_frame(TrackerPSMV &t, struct xrt_frame *xf)
{
if (t.debug.sink == NULL) {
return;
}
// Also dereferences the old frame.
u_frame_create_one_off(XRT_FORMAT_R8G8B8, xf->width, xf->height,
&t.debug.frame);
t.debug.frame->source_sequence = xf->source_sequence;
int rows = xf->height;
int cols = xf->width / 2;
t.debug.rgb[0] = cv::Mat(rows, // rows
cols, // cols
CV_8UC3, // channels
t.debug.frame->data, // data
t.debug.frame->stride); // stride
t.debug.rgb[1] = cv::Mat(rows, // rows
cols, // cols
CV_8UC3, // channels
t.debug.frame->data + 3 * cols, // data
t.debug.frame->stride); // stride
}
static void
do_view(TrackerPSMV &t, View &view, cv::Mat &grey, cv::Mat &rgb)
{
// Undistort the whole image.
cv::remap(grey, // src
view.frame_undist, // dst
view.undistort_map_x, // map1
view.undistort_map_y, // map2
cv::INTER_LINEAR, // interpolation
cv::BORDER_CONSTANT, // borderMode
cv::Scalar(0, 0, 0)); // borderValue
// Rectify the whole image.
cv::remap(view.frame_undist, // src
view.frame_rectified, // dst
view.rectify_map_x, // map1
view.rectify_map_y, // map2
cv::INTER_LINEAR, // interpolation
cv::BORDER_CONSTANT, // borderMode
cv::Scalar(0, 0, 0)); // borderValue
cv::threshold(view.frame_rectified, // src
view.frame_rectified, // dst
32.0, // thresh
255.0, // maxval
0); // type
// tracker_measurement_t m = {};
// Do blob detection with our masks.
//! @todo Re-enable masks.
t.sbd->detect(view.frame_rectified, // image
view.keypoints, // keypoints
cv::noArray()); // mask
// Debug is wanted, draw the keypoints.
if (rgb.cols > 0) {
cv::drawKeypoints(
view.frame_rectified, // image
view.keypoints, // keypoints
rgb, // outImage
cv::Scalar(255, 0, 0), // color
cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); // flags
}
}
2019-09-21 18:04:48 +00:00
static void
procces(TrackerPSMV &t, struct xrt_frame *xf)
{
// Only IMU data
if (xf == NULL) {
return;
}
if (xf->format != XRT_FORMAT_L8) {
xrt_frame_reference(&xf, NULL);
return;
}
2019-09-26 11:33:57 +00:00
if (!t.calibrated) {
bool ok = calibration_get_stereo(
"PS4_EYE", // name
xf->width, // width
xf->height, // height
false, // use_fisheye
&t.view[0].undistort_map_x, // l_undistort_map_x
&t.view[0].undistort_map_y, // l_undistort_map_y
&t.view[0].rectify_map_x, // l_rectify_map_x
&t.view[0].rectify_map_y, // l_rectify_map_y
&t.view[1].undistort_map_x, // r_undistort_map_x
&t.view[1].undistort_map_y, // r_undistort_map_y
&t.view[1].rectify_map_x, // r_rectify_map_x
&t.view[1].rectify_map_y, // r_rectify_map_y
&t.disparity_to_depth); // disparity_to_depth
if (ok) {
2019-09-26 11:33:57 +00:00
printf("loaded calibration for camera!\n");
t.calibrated = true;
} else {
xrt_frame_reference(&xf, NULL);
return;
2019-09-26 11:33:57 +00:00
}
}
// Create the debug frame if needed.
refresh_gui_frame(t, xf);
2019-09-26 11:33:57 +00:00
t.view[0].keypoints.clear();
t.view[1].keypoints.clear();
2019-09-26 11:33:57 +00:00
int cols = xf->width / 2;
int rows = xf->height;
int stride = xf->stride;
2019-09-26 11:33:57 +00:00
cv::Mat l_grey(rows, cols, CV_8UC1, xf->data, stride);
cv::Mat r_grey(rows, cols, CV_8UC1, xf->data + cols, stride);
2019-09-26 11:33:57 +00:00
do_view(t, t.view[0], l_grey, t.debug.rgb[0]);
do_view(t, t.view[1], r_grey, t.debug.rgb[1]);
2019-09-26 11:33:57 +00:00
// do some basic matching to come up with likely disparity-pairs.
2019-09-26 11:33:57 +00:00
std::vector<cv::KeyPoint> l_blobs, r_blobs;
for (uint32_t i = 0; i < t.view[0].keypoints.size(); i++) {
cv::KeyPoint l_blob = t.view[0].keypoints[i];
2019-09-26 11:33:57 +00:00
int l_index = -1;
int r_index = -1;
for (uint32_t j = 0; j < t.view[1].keypoints.size(); j++) {
2019-09-26 11:33:57 +00:00
float lowest_dist = 128;
cv::KeyPoint r_blob = t.view[1].keypoints[j];
2019-09-26 11:33:57 +00:00
// find closest point on same-ish scanline
if ((l_blob.pt.y < r_blob.pt.y + 3) &&
(l_blob.pt.y > r_blob.pt.y - 3) &&
((r_blob.pt.x - l_blob.pt.x) < lowest_dist)) {
lowest_dist = r_blob.pt.x - l_blob.pt.x;
r_index = j;
l_index = i;
}
}
2019-09-26 11:33:57 +00:00
if (l_index > -1 && r_index > -1) {
l_blobs.push_back(t.view[0].keypoints.at(l_index));
r_blobs.push_back(t.view[1].keypoints.at(r_index));
2019-09-26 11:33:57 +00:00
}
}
// Convert our 2d point + disparities into 3d points.
2019-09-26 11:33:57 +00:00
std::vector<cv::Point3f> world_points;
if (l_blobs.size() > 0) {
for (uint32_t i = 0; i < l_blobs.size(); i++) {
float disp = r_blobs[i].pt.x - l_blobs[i].pt.x;
cv::Vec4d xydw(l_blobs[i].pt.x, l_blobs[i].pt.y, disp,
1.0f);
// Transform
cv::Vec4d h_world =
(cv::Matx44d)t.disparity_to_depth * xydw;
2019-09-26 11:33:57 +00:00
// Divide by scale to get 3D vector from homogeneous
// coordinate. invert x while we are here.
world_points.push_back(cv::Point3f(
-h_world[0] / h_world[3], h_world[1] / h_world[3],
h_world[2] / h_world[3]));
}
}
int tracked_index = -1;
float lowest_dist = 65535.0f;
cv::Point3f last_point(t.tracked_object_position.x,
t.tracked_object_position.y,
t.tracked_object_position.z);
for (uint32_t i = 0; i < world_points.size(); i++) {
float dist = cv_dist3d_point(world_points[i], last_point);
2019-09-26 11:33:57 +00:00
if (dist < lowest_dist) {
tracked_index = i;
lowest_dist = dist;
}
}
if (tracked_index != -1) {
cv::Point3f world_point = world_points[tracked_index];
/*
//apply our room setup transform
Eigen::Vector3f p = Eigen::Map<Eigen::Vector3f>(&world_point.x);
Eigen::Vector4f pt;
pt.x() = p.x();
pt.y() = p.y();
pt.z() = p.z();
pt.w() = 1.0f;
//this is a glm mat4 written out 'flat'
Eigen::Matrix4f mat =
Eigen::Map<Eigen::Matrix<float,4,4>>(internal->rs.origin_transform.v);
pt = mat * pt;
m.pose.position.x = pt.x();
m.pose.position.y = pt.y();
m.pose.position.z = pt.z();
*/
// update internal state
t.tracked_object_position.x = world_point.x;
t.tracked_object_position.y = world_point.y;
t.tracked_object_position.z = world_point.z;
}
if (t.debug.frame != NULL) {
t.debug.sink->push_frame(t.debug.sink, t.debug.frame);
t.debug.rgb[0] = cv::Mat();
t.debug.rgb[1] = cv::Mat();
}
2019-09-21 18:04:48 +00:00
xrt_frame_reference(&xf, NULL);
xrt_frame_reference(&t.debug.frame, NULL);
2019-09-21 18:04:48 +00:00
}
2019-09-26 11:33:57 +00:00
2019-09-21 18:04:48 +00:00
static void
run(TrackerPSMV &t)
{
struct xrt_frame *frame = NULL;
os_thread_helper_lock(&t.oth);
while (os_thread_helper_is_running_locked(&t.oth)) {
// No data
if (!t.has_imu || t.frame == NULL) {
os_thread_helper_wait_locked(&t.oth);
}
if (!os_thread_helper_is_running_locked(&t.oth)) {
break;
}
// Take a reference on the current frame, this keeps it alive
// if it is replaced during the consumer processing it, but
// we no longer need to hold onto the frame on the queue we
// just move the pointer.
frame = t.frame;
t.frame = NULL;
// Unlock the mutex when we do the work.
os_thread_helper_unlock(&t.oth);
procces(t, frame);
// Have to lock it again.
os_thread_helper_lock(&t.oth);
}
os_thread_helper_unlock(&t.oth);
}
static void
get_pose(TrackerPSMV &t,
struct time_state *timestate,
timepoint_ns when_ns,
struct xrt_space_relation *out_relation)
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
2019-09-26 11:33:57 +00:00
// out_relation->pose.position = t.fusion.pos;
out_relation->pose.position = t.tracked_object_position;
2019-09-21 18:04:48 +00:00
out_relation->pose.orientation = t.fusion.rot;
//! @todo assuming that orientation is actually currently tracked.
out_relation->relation_flags = (enum xrt_space_relation_flags)(
XRT_SPACE_RELATION_POSITION_VALID_BIT |
XRT_SPACE_RELATION_POSITION_TRACKED_BIT |
XRT_SPACE_RELATION_ORIENTATION_VALID_BIT |
XRT_SPACE_RELATION_ORIENTATION_TRACKED_BIT);
os_thread_helper_unlock(&t.oth);
}
static void
imu_data(TrackerPSMV &t,
time_duration_ns delta_ns,
struct xrt_tracking_sample *sample)
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
float dt = time_ns_to_s(delta_ns);
// Super simple fusion.
math_quat_integrate_velocity(&t.fusion.rot, &sample->gyro_rad_secs, dt,
&t.fusion.rot);
os_thread_helper_unlock(&t.oth);
}
static void
frame(TrackerPSMV &t, struct xrt_frame *xf)
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
xrt_frame_reference(&t.frame, xf);
// Wake up the thread.
os_thread_helper_signal_locked(&t.oth);
os_thread_helper_unlock(&t.oth);
}
static void
break_apart(TrackerPSMV &t)
{
os_thread_helper_stop(&t.oth);
}
/*
*
* C wrapper functions.
*
*/
extern "C" void
t_psmv_push_imu(struct xrt_tracked_psmv *xtmv,
time_duration_ns delta_ns,
struct xrt_tracking_sample *sample)
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
imu_data(t, delta_ns, sample);
}
extern "C" void
t_psmv_get_tracked_pose(struct xrt_tracked_psmv *xtmv,
struct time_state *timestate,
timepoint_ns when_ns,
struct xrt_space_relation *out_relation)
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
get_pose(t, timestate, when_ns, out_relation);
}
extern "C" void
t_psmv_fake_destroy(struct xrt_tracked_psmv *xtmv)
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
(void)t;
// Not the real destroy function
}
extern "C" void
t_psmv_sink_push_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf)
{
auto &t = *container_of(xsink, TrackerPSMV, sink);
frame(t, xf);
}
extern "C" void
t_psmv_node_break_apart(struct xrt_frame_node *node)
{
auto &t = *container_of(node, TrackerPSMV, node);
break_apart(t);
}
extern "C" void
t_psmv_node_destroy(struct xrt_frame_node *node)
{
auto t_ptr = container_of(node, TrackerPSMV, node);
os_thread_helper_destroy(&t_ptr->oth);
// Tidy variable setup.
u_var_remove_root(t_ptr);
2019-09-21 18:04:48 +00:00
delete t_ptr;
}
extern "C" void *
t_psmv_run(void *ptr)
{
auto &t = *(TrackerPSMV *)ptr;
run(t);
return NULL;
}
/*
*
* Exported functions.
*
*/
extern "C" int
t_psmv_start(struct xrt_tracked_psmv *xtmv)
{
auto &t = *container_of(xtmv, TrackerPSMV, base);
int ret;
ret = os_thread_helper_start(&t.oth, t_psmv_run, &t);
if (ret != 0) {
return ret;
}
return ret;
}
extern "C" int
t_psmv_create(struct xrt_frame_context *xfctx,
struct xrt_colour_rgb_f32 *rgb,
struct xrt_tracked_psmv **out_xtmv,
struct xrt_frame_sink **out_sink)
{
fprintf(stderr, "%s\n", __func__);
auto &t = *(new TrackerPSMV());
int ret;
t.base.get_tracked_pose = t_psmv_get_tracked_pose;
t.base.push_imu = t_psmv_push_imu;
t.base.destroy = t_psmv_fake_destroy;
t.base.colour = *rgb;
t.sink.push_frame = t_psmv_sink_push_frame;
t.node.break_apart = t_psmv_node_break_apart;
t.node.destroy = t_psmv_node_destroy;
t.fusion.rot.x = 0.0f;
t.fusion.rot.y = 0.0f;
t.fusion.rot.z = 0.0f;
t.fusion.rot.w = 1.0f;
ret = os_thread_helper_init(&t.oth);
if (ret != 0) {
delete (&t);
return ret;
}
static int hack = 0;
switch (hack++) {
case 0:
t.fusion.pos.x = -0.3f;
t.fusion.pos.y = 1.3f;
t.fusion.pos.z = -0.5f;
break;
case 1:
t.fusion.pos.x = 0.3f;
t.fusion.pos.y = 1.3f;
t.fusion.pos.z = -0.5f;
break;
default:
t.fusion.pos.x = 0.0f;
t.fusion.pos.y = 0.8f + hack * 0.1f;
t.fusion.pos.z = -0.5f;
break;
}
2019-09-26 11:33:57 +00:00
// clang-format off
cv::SimpleBlobDetector::Params blob_params;
blob_params.filterByArea = false;
blob_params.filterByConvexity = false;
blob_params.filterByInertia = false;
blob_params.filterByColor = true;
blob_params.blobColor = 255; // 0 or 255 - color comes from binarized image?
blob_params.minArea = 1;
blob_params.maxArea = 1000;
blob_params.maxThreshold = 51; // using a wide threshold span slows things down bigtime
blob_params.minThreshold = 50;
blob_params.thresholdStep = 1;
blob_params.minDistBetweenBlobs = 5;
blob_params.minRepeatability = 1; // need this to avoid error?
// clang-format on
t.sbd = cv::SimpleBlobDetector::create(blob_params);
2019-09-21 18:04:48 +00:00
xrt_frame_context_add(xfctx, &t.node);
// Everything is safe, now setup the variable tracking.
u_var_add_root(&t, "PSMV Tracker", true);
u_var_add_sink(&t, &t.debug.sink, "Debug");
2019-09-21 18:04:48 +00:00
*out_sink = &t.sink;
*out_xtmv = &t.base;
return 0;
}