monado/src/xrt/auxiliary/util/u_device.c
2022-05-17 17:39:52 -05:00

467 lines
14 KiB
C

// Copyright 2019-2021, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Misc helpers for device drivers.
* @author Jakob Bornecrantz <jakob@collabora.com>
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
* @author Moses Turner <moses@collabora.com>
* @ingroup aux_util
*/
#include "util/u_logging.h"
#include "util/u_device.h"
#include "util/u_misc.h"
#include "math/m_mathinclude.h"
#include "math/m_api.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
/*
*
* Matricies.
*
*/
const struct xrt_matrix_2x2 u_device_rotation_right = {{
.vecs =
{
{0, 1},
{-1, 0},
},
}};
const struct xrt_matrix_2x2 u_device_rotation_left = {{
.vecs =
{
{0, -1},
{1, 0},
},
}};
const struct xrt_matrix_2x2 u_device_rotation_ident = {{
.vecs =
{
{1, 0},
{0, 1},
},
}};
const struct xrt_matrix_2x2 u_device_rotation_180 = {{
.vecs =
{
{-1, 0},
{0, -1},
},
}};
/*
*
* Print helpers.
*
*/
#define PRINT_STR(name, val) U_LOG_RAW("\t%s = %s", name, val)
#define PRINT_INT(name, val) U_LOG_RAW("\t%s = %u", name, val)
#define PRINT_MM(name, val) \
U_LOG_RAW("\t%s = %f (%i.%02imm)", name, val, (int32_t)(val * 1000.f), abs((int32_t)(val * 100000.f)) % 100)
#define PRINT_ANGLE(name, val) U_LOG_RAW("\t%s = %f (%i°)", name, val, (int32_t)(val * (180 / M_PI)))
#define PRINT_MAT2X2(name, rot) U_LOG_RAW("\t%s = {%f, %f} {%f, %f}", name, rot.v[0], rot.v[1], rot.v[2], rot.v[3])
/*!
* Dump the device config to stderr.
*/
void
u_device_dump_config(struct xrt_device *xdev, const char *prefix, const char *prod)
{
// clang-format off
U_LOG_RAW("%s - device_setup", prefix);
PRINT_STR( "prod", prod);
if (xdev->hmd != NULL) {
PRINT_INT( "screens[0].w_pixels ", xdev->hmd->screens[0].w_pixels);
PRINT_INT( "screens[0].h_pixels ", xdev->hmd->screens[0].h_pixels);
// PRINT_MM( "info.display.w_meters", info.display.w_meters);
// PRINT_MM( "info.display.h_meters", info.display.h_meters);
PRINT_INT( "views[0].viewport.x_pixels ", xdev->hmd->views[0].viewport.x_pixels);
PRINT_INT( "views[0].viewport.y_pixels ", xdev->hmd->views[0].viewport.y_pixels);
PRINT_INT( "views[0].viewport.w_pixels ", xdev->hmd->views[0].viewport.w_pixels);
PRINT_INT( "views[0].viewport.h_pixels ", xdev->hmd->views[0].viewport.h_pixels);
PRINT_INT( "views[0].display.w_pixels ", xdev->hmd->views[0].display.w_pixels);
PRINT_INT( "views[0].display.h_pixels ", xdev->hmd->views[0].display.h_pixels);
PRINT_MAT2X2("views[0].rot ", xdev->hmd->views[0].rot);
PRINT_ANGLE( "distortion.fov[0].angle_left ", xdev->hmd->distortion.fov[0].angle_left);
PRINT_ANGLE( "distortion.fov[0].angle_right", xdev->hmd->distortion.fov[0].angle_right);
PRINT_ANGLE( "distortion.fov[0].angle_up ", xdev->hmd->distortion.fov[0].angle_up);
PRINT_ANGLE( "distortion.fov[0].angle_down ", xdev->hmd->distortion.fov[0].angle_down);
// PRINT_ANGLE( "distortion.fov[0] ", xdev->hmd->distortion.fov[0]);
PRINT_INT( "views[1].viewport.x_pixels ", xdev->hmd->views[1].viewport.x_pixels);
PRINT_INT( "views[1].viewport.y_pixels ", xdev->hmd->views[1].viewport.y_pixels);
PRINT_INT( "views[1].viewport.w_pixels ", xdev->hmd->views[1].viewport.w_pixels);
PRINT_INT( "views[1].viewport.h_pixels ", xdev->hmd->views[1].viewport.h_pixels);
PRINT_INT( "views[1].display.w_pixels ", xdev->hmd->views[1].display.w_pixels);
PRINT_INT( "views[1].display.h_pixels ", xdev->hmd->views[1].display.h_pixels);
PRINT_MAT2X2("views[1].rot ", xdev->hmd->views[1].rot);
PRINT_ANGLE( "distortion.fov[1].angle_left ", xdev->hmd->distortion.fov[1].angle_left);
PRINT_ANGLE( "distortion.fov[1].angle_right", xdev->hmd->distortion.fov[1].angle_right);
PRINT_ANGLE( "distortion.fov[1].angle_up ", xdev->hmd->distortion.fov[1].angle_up);
PRINT_ANGLE( "distortion.fov[1].angle_down ", xdev->hmd->distortion.fov[1].angle_down);
// PRINT_ANGLE( "distortion.fov[1] ", xdev->hmd->distortion.fov[1]);
}
// clang-format on
}
/*
*
* Helper setup functions.
*
*/
bool
u_extents_2d_split_side_by_side(struct xrt_device *xdev, const struct u_extents_2d *extents)
{
uint32_t eye_w_pixels = extents->w_pixels / 2;
uint32_t eye_h_pixels = extents->h_pixels;
xdev->hmd->screens[0].w_pixels = extents->w_pixels;
xdev->hmd->screens[0].h_pixels = extents->h_pixels;
// Left
xdev->hmd->views[0].display.w_pixels = eye_w_pixels;
xdev->hmd->views[0].display.h_pixels = eye_h_pixels;
xdev->hmd->views[0].viewport.x_pixels = 0;
xdev->hmd->views[0].viewport.y_pixels = 0;
xdev->hmd->views[0].viewport.w_pixels = eye_w_pixels;
xdev->hmd->views[0].viewport.h_pixels = eye_h_pixels;
xdev->hmd->views[0].rot = u_device_rotation_ident;
// Right
xdev->hmd->views[1].display.w_pixels = eye_w_pixels;
xdev->hmd->views[1].display.h_pixels = eye_h_pixels;
xdev->hmd->views[1].viewport.x_pixels = eye_w_pixels;
xdev->hmd->views[1].viewport.y_pixels = 0;
xdev->hmd->views[1].viewport.w_pixels = eye_w_pixels;
xdev->hmd->views[1].viewport.h_pixels = eye_h_pixels;
xdev->hmd->views[1].rot = u_device_rotation_ident;
return true;
}
bool
u_device_setup_split_side_by_side(struct xrt_device *xdev, const struct u_device_simple_info *info)
{
uint32_t w_pixels = info->display.w_pixels / 2;
uint32_t h_pixels = info->display.h_pixels;
float w_meters = info->display.w_meters / 2;
float h_meters = info->display.h_meters;
float lens_center_x_meters[2] = {
w_meters - info->lens_horizontal_separation_meters / 2.0f,
info->lens_horizontal_separation_meters / 2.0f,
};
float lens_center_y_meters[2] = {
info->lens_vertical_position_meters,
info->lens_vertical_position_meters,
};
// Common
size_t idx = 0;
xdev->hmd->blend_modes[idx++] = XRT_BLEND_MODE_OPAQUE;
xdev->hmd->blend_mode_count = idx;
if (xdev->hmd->distortion.models == 0) {
xdev->hmd->distortion.models = XRT_DISTORTION_MODEL_NONE;
xdev->hmd->distortion.preferred = XRT_DISTORTION_MODEL_NONE;
}
xdev->hmd->screens[0].w_pixels = info->display.w_pixels;
xdev->hmd->screens[0].h_pixels = info->display.h_pixels;
// Left
xdev->hmd->views[0].display.w_pixels = w_pixels;
xdev->hmd->views[0].display.h_pixels = h_pixels;
xdev->hmd->views[0].viewport.x_pixels = 0;
xdev->hmd->views[0].viewport.y_pixels = 0;
xdev->hmd->views[0].viewport.w_pixels = w_pixels;
xdev->hmd->views[0].viewport.h_pixels = h_pixels;
xdev->hmd->views[0].rot = u_device_rotation_ident;
// Right
xdev->hmd->views[1].display.w_pixels = w_pixels;
xdev->hmd->views[1].display.h_pixels = h_pixels;
xdev->hmd->views[1].viewport.x_pixels = w_pixels;
xdev->hmd->views[1].viewport.y_pixels = 0;
xdev->hmd->views[1].viewport.w_pixels = w_pixels;
xdev->hmd->views[1].viewport.h_pixels = h_pixels;
xdev->hmd->views[1].rot = u_device_rotation_ident;
{
/* right eye */
if (!math_compute_fovs(w_meters, lens_center_x_meters[1], info->fov[1], h_meters,
lens_center_y_meters[1], 0, &xdev->hmd->distortion.fov[1])) {
return false;
}
}
{
/* left eye - mirroring right eye */
xdev->hmd->distortion.fov[0].angle_up = xdev->hmd->distortion.fov[1].angle_up;
xdev->hmd->distortion.fov[0].angle_down = xdev->hmd->distortion.fov[1].angle_down;
xdev->hmd->distortion.fov[0].angle_left = -xdev->hmd->distortion.fov[1].angle_right;
xdev->hmd->distortion.fov[0].angle_right = -xdev->hmd->distortion.fov[1].angle_left;
}
return true;
}
void *
u_device_allocate(enum u_device_alloc_flags flags, size_t size, size_t input_count, size_t output_count)
{
bool alloc_hmd = (flags & U_DEVICE_ALLOC_HMD) != 0;
bool alloc_tracking = (flags & U_DEVICE_ALLOC_TRACKING_NONE) != 0;
size_t total_size = size;
// Inputs
size_t offset_inputs = total_size;
total_size += input_count * sizeof(struct xrt_input);
// Outputs
size_t offset_outputs = total_size;
total_size += output_count * sizeof(struct xrt_output);
// HMD
size_t offset_hmd = total_size;
total_size += alloc_hmd ? sizeof(struct xrt_hmd_parts) : 0;
// Tracking
size_t offset_tracking = total_size;
total_size += alloc_tracking ? sizeof(struct xrt_tracking_origin) : 0;
// Do the allocation
char *ptr = U_TYPED_ARRAY_CALLOC(char, total_size);
struct xrt_device *xdev = (struct xrt_device *)ptr;
if (input_count > 0) {
xdev->input_count = input_count;
xdev->inputs = (struct xrt_input *)(ptr + offset_inputs);
// Set inputs to active initially, easier for drivers.
for (size_t i = 0; i < input_count; i++) {
xdev->inputs[i].active = true;
}
}
if (output_count > 0) {
xdev->output_count = output_count;
xdev->outputs = (struct xrt_output *)(ptr + offset_outputs);
}
if (alloc_hmd) {
xdev->hmd = (struct xrt_hmd_parts *)(ptr + offset_hmd);
}
if (alloc_tracking) {
xdev->tracking_origin = (struct xrt_tracking_origin *)(ptr + offset_tracking);
xdev->tracking_origin->type = XRT_TRACKING_TYPE_NONE;
xdev->tracking_origin->offset.orientation.w = 1.0f;
snprintf(xdev->tracking_origin->name, XRT_TRACKING_NAME_LEN, "%s", "No tracking");
}
return xdev;
}
void
u_device_free(struct xrt_device *xdev)
{
if (xdev->hmd != NULL) {
free(xdev->hmd->distortion.mesh.vertices);
xdev->hmd->distortion.mesh.vertices = NULL;
free(xdev->hmd->distortion.mesh.indices);
xdev->hmd->distortion.mesh.indices = NULL;
}
free(xdev);
}
/*
* move the assigned xdev from hand to other_hand if:
* - controller of type "any hand" is assigned to hand
* - other_hand is unassiged
*/
static void
try_move_assignment(struct xrt_device **xdevs, int *hand, int *other_hand)
{
if (*hand != XRT_DEVICE_ROLE_UNASSIGNED && xdevs[*hand]->device_type == XRT_DEVICE_TYPE_ANY_HAND_CONTROLLER &&
*other_hand == XRT_DEVICE_ROLE_UNASSIGNED) {
*other_hand = *hand;
*hand = XRT_DEVICE_ROLE_UNASSIGNED;
}
}
void
u_device_assign_xdev_roles(struct xrt_device **xdevs, size_t xdev_count, int *head, int *left, int *right)
{
*head = XRT_DEVICE_ROLE_UNASSIGNED;
*left = XRT_DEVICE_ROLE_UNASSIGNED;
*right = XRT_DEVICE_ROLE_UNASSIGNED;
assert(xdev_count < INT_MAX);
for (size_t i = 0; i < xdev_count; i++) {
if (xdevs[i] == NULL) {
continue;
}
switch (xdevs[i]->device_type) {
case XRT_DEVICE_TYPE_HMD:
if (*head == XRT_DEVICE_ROLE_UNASSIGNED) {
*head = (int)i;
}
break;
case XRT_DEVICE_TYPE_LEFT_HAND_CONTROLLER:
try_move_assignment(xdevs, left, right);
if (*left == XRT_DEVICE_ROLE_UNASSIGNED) {
*left = (int)i;
}
break;
case XRT_DEVICE_TYPE_RIGHT_HAND_CONTROLLER:
try_move_assignment(xdevs, right, left);
if (*right == XRT_DEVICE_ROLE_UNASSIGNED) {
*right = (int)i;
}
break;
case XRT_DEVICE_TYPE_ANY_HAND_CONTROLLER:
if (*left == XRT_DEVICE_ROLE_UNASSIGNED) {
*left = (int)i;
} else if (*right == XRT_DEVICE_ROLE_UNASSIGNED) {
*right = (int)i;
} else {
//! @todo: do something with unassigned devices?
}
break;
default: break;
}
}
// fill unassigned left/right with hand trackers if available
for (size_t i = 0; i < xdev_count; i++) {
if (xdevs[i] == NULL) {
continue;
}
if (xdevs[i]->device_type == XRT_DEVICE_TYPE_HAND_TRACKER) {
if (*left == XRT_DEVICE_ROLE_UNASSIGNED) {
*left = (int)i;
}
if (*right == XRT_DEVICE_ROLE_UNASSIGNED) {
*right = (int)i;
}
break;
}
}
}
static void
apply_offset(struct xrt_vec3 *position, struct xrt_vec3 *offset)
{
position->x += offset->x;
position->y += offset->y;
position->z += offset->z;
}
void
u_device_setup_tracking_origins(struct xrt_device *head,
struct xrt_device *left,
struct xrt_device *right,
struct xrt_vec3 *global_tracking_origin_offset)
{
if (head->tracking_origin->type == XRT_TRACKING_TYPE_NONE) {
// "nominal height" 1.6m
head->tracking_origin->offset.position.x = 0.0f;
head->tracking_origin->offset.position.y = 1.6f;
head->tracking_origin->offset.position.z = 0.0f;
}
if (left != NULL && left->tracking_origin->type == XRT_TRACKING_TYPE_NONE) {
left->tracking_origin->offset.position.x = -0.2f;
left->tracking_origin->offset.position.y = 1.3f;
left->tracking_origin->offset.position.z = -0.5f;
}
if (right != NULL && right->tracking_origin->type == XRT_TRACKING_TYPE_NONE) {
right->tracking_origin->offset.position.x = 0.2f;
right->tracking_origin->offset.position.y = 1.3f;
right->tracking_origin->offset.position.z = -0.5f;
}
struct xrt_tracking_origin *head_origin = head ? head->tracking_origin : NULL;
struct xrt_tracking_origin *left_origin = left ? left->tracking_origin : NULL;
struct xrt_tracking_origin *right_origin = right ? right->tracking_origin : NULL;
if (head_origin) {
apply_offset(&head_origin->offset.position, global_tracking_origin_offset);
}
if (left_origin && left_origin != head_origin) {
apply_offset(&left->tracking_origin->offset.position, global_tracking_origin_offset);
}
if (right_origin && right_origin != head_origin && right_origin != left_origin) {
apply_offset(&right->tracking_origin->offset.position, global_tracking_origin_offset);
}
}
void
u_device_get_view_pose(const struct xrt_vec3 *eye_relation, uint32_t view_index, struct xrt_pose *out_pose)
{
struct xrt_pose pose = XRT_POSE_IDENTITY;
bool adjust = view_index == 0;
pose.position.x = eye_relation->x / 2.0f;
pose.position.y = eye_relation->y / 2.0f;
pose.position.z = eye_relation->z / 2.0f;
// Adjust for left/right while also making sure there aren't any -0.f.
if (pose.position.x > 0.0f && adjust) {
pose.position.x = -pose.position.x;
}
if (pose.position.y > 0.0f && adjust) {
pose.position.y = -pose.position.y;
}
if (pose.position.z > 0.0f && adjust) {
pose.position.z = -pose.position.z;
}
*out_pose = pose;
}
void
u_device_get_view_poses(struct xrt_device *xdev,
const struct xrt_vec3 *default_eye_relation,
uint64_t at_timestamp_ns,
uint32_t view_count,
struct xrt_space_relation *out_head_relation,
struct xrt_fov *out_fovs,
struct xrt_pose *out_poses)
{
xrt_device_get_tracked_pose(xdev, XRT_INPUT_GENERIC_HEAD_POSE, at_timestamp_ns, out_head_relation);
for (uint32_t i = 0; i < view_count && i < ARRAY_SIZE(xdev->hmd->views); i++) {
out_fovs[i] = xdev->hmd->distortion.fov[i];
}
for (uint32_t i = 0; i < view_count; i++) {
u_device_get_view_pose(default_eye_relation, i, &out_poses[i]);
}
}