m/base: Remove old space relation functions

This commit is contained in:
Jakob Bornecrantz 2020-09-04 11:33:56 +01:00
parent 855b2005f3
commit 5a4d45bbaa
2 changed files with 1 additions and 341 deletions

View file

@ -375,84 +375,13 @@ math_pose_transform_point(const struct xrt_pose *transform,
const struct xrt_vec3 *point,
struct xrt_vec3 *out_point);
/*!
* Combine the poses of the target and base space with the relative pose of
* those spaces. In a way that OpenXR specifies in the function xrLocateSpace.
*
* Performs roughly outPose = spacePose * relativePose * baseSpacePose^-1
*
* OK if input and output are the same addresses.
*
* @relates xrt_pose
* @ingroup aux_math
*/
void
math_pose_openxr_locate(const struct xrt_pose *space_pose,
const struct xrt_pose *relative_pose,
const struct xrt_pose *base_space_pose,
struct xrt_pose *result);
/*
*
* Space relation functions
* Optics functions.
*
*/
/*!
* Reset a relation to zero velocity, located at origin, and all validity flags.
*
* @relates xrt_space_relation
* @ingroup aux_math
*/
void
math_relation_reset(struct xrt_space_relation *out);
/*!
* Apply a static pose on top of an existing relation.
*
* Updates all valid pose and derivative fields. Does not modify the validity
* mask. Treats both position and orientation of transform as valid.
*
* @relates xrt_space_relation
* @see xrt_pose
* @ingroup aux_math
*/
void
math_relation_apply_offset(const struct xrt_pose *offset,
struct xrt_space_relation *in_out_relation);
/*!
* Apply another step of space relation on top of an existing relation.
*
* Updates all valid pose and derivative fields, as well as the validity mask.
*
* @relates xrt_space_relation
* @ingroup aux_math
*/
void
math_relation_accumulate_relation(
const struct xrt_space_relation *additional_relation,
struct xrt_space_relation *in_out_relation);
/*!
* Combine the poses of the target and base space with the relative relation of
* those spaces. In a way that OpenXR specifies in the function xrLocateSpace.
*
* Performs roughly `out_relation->pose = space_pose * relative_relation->pose *
* base_space_pose^-1` for the poses, and appropriate rotation
*
* OK if input and output are the same addresses.
*
* @relates xrt_space_relation
* @see xrt_pose
* @ingroup aux_math
*/
void
math_relation_openxr_locate(const struct xrt_pose *space_pose,
const struct xrt_space_relation *relative_relation,
const struct xrt_pose *base_space_pose,
struct xrt_space_relation *result);
/*!
* Perform the computations from
* "Computing Half-Fields-Of-View from Simpler Display Models",

View file

@ -413,272 +413,3 @@ math_pose_transform_point(const struct xrt_pose *transform,
map_vec3(*out_point) = transform_point(*transform, *point);
}
extern "C" void
math_pose_openxr_locate(const struct xrt_pose *space_pose,
const struct xrt_pose *relative_pose,
const struct xrt_pose *base_space_pose,
struct xrt_pose *result)
{
assert(space_pose != NULL);
assert(relative_pose != NULL);
assert(base_space_pose != NULL);
assert(result != NULL);
// Compilers are slightly better optimizing
// if we copy the arguments in one go.
const auto bsp = *base_space_pose;
const auto rel = *relative_pose;
const auto spc = *space_pose;
struct xrt_pose pose;
// Apply the invert of the base space to identity.
math_pose_invert(&bsp, &pose);
// Apply the pure pose from the space relation.
math_pose_transform(&pose, &rel, &pose);
// Apply the space pose.
math_pose_transform(&pose, &spc, &pose);
*result = pose;
}
/*!
* Return the result of rotating a derivative vector by a matrix.
*
* This is a differential transform.
*/
static inline Eigen::Vector3f
rotate_deriv(Eigen::Matrix3f const &rotation,
const xrt_vec3 &derivativeVector,
Eigen::Matrix3f const &rotationInverse)
{
return ((rotation * map_vec3(derivativeVector)).transpose() *
rotationInverse)
.transpose();
}
#ifndef XRT_DOXYGEN
#define MAKE_REL_FLAG_CHECK(NAME, MASK) \
static inline bool NAME(xrt_space_relation_flags flags) \
{ \
return ((flags & (MASK)) != 0); \
}
MAKE_REL_FLAG_CHECK(has_some_pose_component,
XRT_SPACE_RELATION_POSITION_VALID_BIT |
XRT_SPACE_RELATION_ORIENTATION_VALID_BIT)
MAKE_REL_FLAG_CHECK(has_position, XRT_SPACE_RELATION_POSITION_VALID_BIT)
MAKE_REL_FLAG_CHECK(has_orientation, XRT_SPACE_RELATION_ORIENTATION_VALID_BIT)
MAKE_REL_FLAG_CHECK(has_lin_vel, XRT_SPACE_RELATION_LINEAR_VELOCITY_VALID_BIT)
MAKE_REL_FLAG_CHECK(has_ang_vel, XRT_SPACE_RELATION_ANGULAR_VELOCITY_VALID_BIT)
MAKE_REL_FLAG_CHECK(has_lin_acc,
XRT_SPACE_RELATION_LINEAR_ACCELERATION_VALID_BIT)
MAKE_REL_FLAG_CHECK(has_ang_acc,
XRT_SPACE_RELATION_ANGULAR_ACCELERATION_VALID_BIT)
MAKE_REL_FLAG_CHECK(has_some_derivative,
XRT_SPACE_RELATION_LINEAR_VELOCITY_VALID_BIT |
XRT_SPACE_RELATION_ANGULAR_VELOCITY_VALID_BIT |
XRT_SPACE_RELATION_LINEAR_ACCELERATION_VALID_BIT |
XRT_SPACE_RELATION_ANGULAR_ACCELERATION_VALID_BIT)
#undef MAKE_REL_FLAG_CHECK
#endif // !XRT_DOXYGEN
enum accumulate_pose_flags
{
OFFSET,
LEGACY,
};
/*!
* Apply a transform to a space relation.
*/
static inline void
transform_accumulate_pose(const xrt_pose &transform,
xrt_space_relation &relation,
enum accumulate_pose_flags accum_flags,
bool do_translation = true,
bool do_rotation = true)
{
assert(do_translation || do_rotation);
// Save the quat in case we are self-transforming.
Eigen::Quaternionf quat = orientation(transform);
auto flags = relation.relation_flags;
// so code looks similar
auto in_out_relation = &relation;
// transform (rotate and translate) the pose, if applicable.
if (has_some_pose_component(flags)) {
// Zero out transform parts we don't want to use,
// because math_pose_transform doesn't take flags.
xrt_pose transform_copy = transform;
if (!do_translation) {
position(transform_copy) = Eigen::Vector3f::Zero();
}
if (!do_rotation) {
orientation(transform_copy) =
Eigen::Quaternionf::Identity();
}
//! @todo This is just a big hack.
if (accum_flags == OFFSET) {
math_pose_transform(&transform, &in_out_relation->pose,
&in_out_relation->pose);
} else {
math_pose_transform(&in_out_relation->pose, &transform,
&in_out_relation->pose);
}
}
if (do_rotation && has_some_derivative(flags)) {
// prepare matrices required for rotating derivatives from the
// saved quat.
Eigen::Matrix3f rot = quat.toRotationMatrix();
Eigen::Matrix3f rotInverse = rot.inverse();
// Rotate derivatives, if applicable.
if (has_lin_vel(flags)) {
map_vec3(in_out_relation->linear_velocity) =
rotate_deriv(rot, in_out_relation->linear_velocity,
rotInverse);
}
if (has_ang_vel(flags)) {
map_vec3(in_out_relation->angular_velocity) =
rotate_deriv(rot, in_out_relation->angular_velocity,
rotInverse);
}
if (has_lin_acc(flags)) {
map_vec3(in_out_relation->linear_acceleration) =
rotate_deriv(rot,
in_out_relation->linear_acceleration,
rotInverse);
}
if (has_ang_acc(flags)) {
map_vec3(in_out_relation->angular_acceleration) =
rotate_deriv(rot,
in_out_relation->angular_acceleration,
rotInverse);
}
}
}
static const struct xrt_space_relation BLANK_RELATION = {
XRT_SPACE_RELATION_BITMASK_ALL,
{{0.0f, 0.0f, 0.0f, 1.0f}, {0.0f, 0.0f, 0.0f}},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
};
extern "C" void
math_relation_reset(struct xrt_space_relation *out)
{
*out = BLANK_RELATION;
}
extern "C" void
math_relation_apply_offset(const struct xrt_pose *offset,
struct xrt_space_relation *in_out_relation)
{
assert(offset != nullptr);
assert(in_out_relation != nullptr);
// No modifying the validity flags here.
transform_accumulate_pose(*offset, *in_out_relation, OFFSET);
}
void
accumulate_transform(const struct xrt_pose *transform,
struct xrt_space_relation *in_out_relation)
{
assert(transform != nullptr);
assert(in_out_relation != nullptr);
// No modifying the validity flags here.
transform_accumulate_pose(*transform, *in_out_relation, LEGACY);
}
extern "C" void
math_relation_accumulate_relation(
const struct xrt_space_relation *additional_relation,
struct xrt_space_relation *in_out_relation)
{
assert(additional_relation != NULL);
assert(in_out_relation != NULL);
// Update the flags.
xrt_space_relation_flags flags = (enum xrt_space_relation_flags)(
in_out_relation->relation_flags &
additional_relation->relation_flags);
in_out_relation->relation_flags = flags;
if (has_some_pose_component(flags)) {
// First, just do the pose part (including rotating
// derivatives, if applicable).
transform_accumulate_pose(
additional_relation->pose, *in_out_relation, LEGACY,
has_position(flags), has_orientation(flags));
}
// Then, accumulate the derivatives, if required.
if (has_lin_vel(flags)) {
map_vec3(in_out_relation->linear_velocity) +=
map_vec3(additional_relation->linear_velocity);
}
if (has_ang_vel(flags)) {
map_vec3(in_out_relation->angular_velocity) +=
map_vec3(additional_relation->angular_velocity);
}
if (has_lin_acc(flags)) {
map_vec3(in_out_relation->linear_acceleration) +=
map_vec3(additional_relation->linear_acceleration);
}
if (has_ang_acc(flags)) {
map_vec3(in_out_relation->angular_acceleration) +=
map_vec3(additional_relation->angular_acceleration);
}
}
extern "C" void
math_relation_openxr_locate(const struct xrt_pose *space_pose,
const struct xrt_space_relation *relative_relation,
const struct xrt_pose *base_space_pose,
struct xrt_space_relation *result)
{
assert(space_pose != NULL);
assert(relative_relation != NULL);
assert(base_space_pose != NULL);
assert(result != NULL);
// Compilers are slightly better optimizing
// if we copy the arguments in one go.
const auto bsp = *base_space_pose;
const auto spc = *space_pose;
struct xrt_space_relation accumulating_relation = BLANK_RELATION;
// Apply the invert of the base space to identity.
math_pose_invert(&bsp, &accumulating_relation.pose);
// Apply the pure relation between spaces.
math_relation_accumulate_relation(relative_relation,
&accumulating_relation);
// Apply the space pose.
accumulate_transform(&spc, &accumulating_relation);
*result = accumulating_relation;
}