mirror of
https://gitlab.freedesktop.org/monado/monado.git
synced 2025-01-01 04:36:07 +00:00
scripts: Add script to upload Monado calibration to DepthAI device
This commit is contained in:
parent
f6ef1d8f28
commit
1f83ad609c
191
scripts/upload_calibration_to_depthai.py
Executable file
191
scripts/upload_calibration_to_depthai.py
Executable file
|
@ -0,0 +1,191 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022, Collabora, Ltd.
|
||||||
|
# SPDX-License-Identifier: BSL-1.0
|
||||||
|
# Authors: Moses Turner <moses@collabora.com>
|
||||||
|
"""Simple script to upload Monado camera calibrations to DepthAI devices."""
|
||||||
|
|
||||||
|
# Todo, make this work with calibrations from Basalt
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Callable, ClassVar, Dict, Iterator, List, Optional, Tuple
|
||||||
|
import cv2
|
||||||
|
import cv2.fisheye
|
||||||
|
import depthai as dai
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Train keypoints network')
|
||||||
|
|
||||||
|
parser.add_argument("calibration_file")
|
||||||
|
|
||||||
|
parser.add_argument('--super-cow',
|
||||||
|
help="I know what I'm doing, run the script with no prompt",
|
||||||
|
dest='super_cow', action='store_true'
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument('--baseline',
|
||||||
|
help="Specified camera baseline (by CAD, or whatever), in centimeters",
|
||||||
|
type=float
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.set_defaults(super_cow=False)
|
||||||
|
parser.set_defaults(baseline=8)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# print(args.super_cow, args.calibration_file)
|
||||||
|
|
||||||
|
|
||||||
|
if (not args.super_cow):
|
||||||
|
print("Warning! This script will erase the current calibration on your DepthAI device and replace it with something new, and there is no going back!")
|
||||||
|
print("Also, there is no way to specify which device to upload to, so make sure you've only plugged one in!")
|
||||||
|
print("If you don't know what you're doing, please exit this script!")
|
||||||
|
print("Otherwise, type \"I know what I am doing\"")
|
||||||
|
|
||||||
|
text = input()
|
||||||
|
|
||||||
|
if (text != "I know what I am doing"):
|
||||||
|
print("Prompt failed!")
|
||||||
|
exit()
|
||||||
|
|
||||||
|
print(args.baseline)
|
||||||
|
|
||||||
|
# Create pipeline
|
||||||
|
pipeline = dai.Pipeline()
|
||||||
|
|
||||||
|
# Define sources and outputs
|
||||||
|
monoLeft = pipeline.create(dai.node.MonoCamera)
|
||||||
|
monoRight = pipeline.create(dai.node.MonoCamera)
|
||||||
|
xoutLeft = pipeline.create(dai.node.XLinkOut)
|
||||||
|
xoutRight = pipeline.create(dai.node.XLinkOut)
|
||||||
|
|
||||||
|
xoutLeft.setStreamName('left')
|
||||||
|
xoutRight.setStreamName('right')
|
||||||
|
|
||||||
|
# Properties
|
||||||
|
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
|
||||||
|
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
|
||||||
|
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
|
||||||
|
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
|
||||||
|
|
||||||
|
# Linking
|
||||||
|
monoRight.out.link(xoutRight.input)
|
||||||
|
monoLeft.out.link(xoutLeft.input)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class camera:
|
||||||
|
camera_matrix: List[List[float]]
|
||||||
|
distortion: List[float]
|
||||||
|
# rotation_matrix: List[List[float]]
|
||||||
|
|
||||||
|
|
||||||
|
with open(args.calibration_file) as f:
|
||||||
|
calibration_json = json.load(f)
|
||||||
|
|
||||||
|
fisheye = calibration_json["cameras"][0]["model"] == "fisheye_equidistant4"
|
||||||
|
|
||||||
|
print("Fisheye:", fisheye)
|
||||||
|
|
||||||
|
if fisheye:
|
||||||
|
camera_model = dai.CameraModel.Fisheye
|
||||||
|
else:
|
||||||
|
camera_model = dai.CameraModel.Perspective
|
||||||
|
|
||||||
|
# Connect to device and start pipeline
|
||||||
|
with dai.Device(pipeline) as device:
|
||||||
|
|
||||||
|
# Output queues will be used to get the grayscale frames from the outputs defined above
|
||||||
|
qLeft = device.getOutputQueue(name="left", maxSize=4, blocking=False)
|
||||||
|
qRight = device.getOutputQueue(name="right", maxSize=4, blocking=False)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# Instead of get (blocking), we use tryGet (nonblocking) which will return the available data or None otherwise
|
||||||
|
inLeft = qLeft.tryGet()
|
||||||
|
inRight = qRight.tryGet()
|
||||||
|
|
||||||
|
if inLeft is not None:
|
||||||
|
cv2.imshow("left", inLeft.getCvFrame())
|
||||||
|
|
||||||
|
if inRight is not None:
|
||||||
|
cv2.imshow("right", inRight.getCvFrame())
|
||||||
|
|
||||||
|
if cv2.waitKey(1) == ord('q'):
|
||||||
|
break
|
||||||
|
break
|
||||||
|
|
||||||
|
# [[0,0,0],[0,0,0],[0,0,0]]
|
||||||
|
cameras = [camera([[0, 0, 0], [0, 0, 0], [0, 0, 0]], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
|
||||||
|
camera([[0, 0, 0], [0, 0, 0], [0, 0, 0]], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]
|
||||||
|
|
||||||
|
for ele, camera_struct in zip(calibration_json["cameras"], cameras):
|
||||||
|
Lint = ele["intrinsics"]
|
||||||
|
camera_struct.camera_matrix = [
|
||||||
|
[Lint["fx"], 0, Lint["cx"]],
|
||||||
|
[0, Lint["fy"], Lint["cy"]],
|
||||||
|
[0, 0, 1]
|
||||||
|
]
|
||||||
|
Ldist = ele["distortion"]
|
||||||
|
if fisheye:
|
||||||
|
camera_struct.distortion[0] = Ldist["k1"]
|
||||||
|
camera_struct.distortion[1] = Ldist["k2"]
|
||||||
|
camera_struct.distortion[2] = Ldist["k3"]
|
||||||
|
camera_struct.distortion[3] = Ldist["k4"]
|
||||||
|
else:
|
||||||
|
camera_struct.distortion[0] = Ldist["k1"]
|
||||||
|
camera_struct.distortion[1] = Ldist["k2"]
|
||||||
|
camera_struct.distortion[2] = Ldist["p1"]
|
||||||
|
camera_struct.distortion[3] = Ldist["p2"]
|
||||||
|
camera_struct.distortion[4] = Ldist["k3"]
|
||||||
|
|
||||||
|
R = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=np.float32)
|
||||||
|
acc_idx = 0
|
||||||
|
for row in range(3):
|
||||||
|
for col in range(3):
|
||||||
|
R[row][col] = calibration_json["opencv_stereo_calibrate"]["rotation"][acc_idx]
|
||||||
|
acc_idx += 1
|
||||||
|
|
||||||
|
T = np.array(calibration_json["opencv_stereo_calibrate"]["translation"])
|
||||||
|
T *= 100 # Centimeters
|
||||||
|
|
||||||
|
if False:
|
||||||
|
print(R, T)
|
||||||
|
print(np.array(cameras[0].camera_matrix),
|
||||||
|
np.array(cameras[0].distortion),
|
||||||
|
np.array(cameras[1].camera_matrix),
|
||||||
|
np.array(cameras[1].distortion))
|
||||||
|
|
||||||
|
print(cameras[0].distortion[:4])
|
||||||
|
|
||||||
|
R1, R2, P1, P2, Q = cv2.fisheye.stereoRectify(
|
||||||
|
np.array(cameras[0].camera_matrix),
|
||||||
|
np.array(cameras[0].distortion[:4]),
|
||||||
|
np.array(cameras[1].camera_matrix),
|
||||||
|
np.array(cameras[1].distortion[:4]),
|
||||||
|
(1280, 800), # imagesize
|
||||||
|
R,
|
||||||
|
T,
|
||||||
|
0
|
||||||
|
)
|
||||||
|
|
||||||
|
calh = dai.CalibrationHandler()
|
||||||
|
|
||||||
|
calh.setCameraExtrinsics(dai.CameraBoardSocket.LEFT, dai.CameraBoardSocket.RIGHT,
|
||||||
|
R, translation=T, specTranslation=[args.baseline, 0, 0])
|
||||||
|
|
||||||
|
calh.setCameraIntrinsics(dai.CameraBoardSocket.LEFT, cameras[0].camera_matrix, 1280, 800)
|
||||||
|
calh.setCameraIntrinsics(dai.CameraBoardSocket.RIGHT, cameras[1].camera_matrix, 1280, 800)
|
||||||
|
|
||||||
|
calh.setCameraType(dai.CameraBoardSocket.LEFT, camera_model)
|
||||||
|
calh.setCameraType(dai.CameraBoardSocket.RIGHT, camera_model)
|
||||||
|
|
||||||
|
calh.setDistortionCoefficients(dai.CameraBoardSocket.LEFT, cameras[0].distortion)
|
||||||
|
calh.setDistortionCoefficients(dai.CameraBoardSocket.RIGHT, cameras[1].distortion)
|
||||||
|
|
||||||
|
calh.setStereoLeft(dai.CameraBoardSocket.LEFT, R1)
|
||||||
|
calh.setStereoRight(dai.CameraBoardSocket.RIGHT, R2)
|
||||||
|
|
||||||
|
success = device.flashCalibration(calh)
|
||||||
|
|
||||||
|
print("success is:", success)
|
Loading…
Reference in a new issue