monado/src/xrt/auxiliary/math/m_quatexpmap.cpp

180 lines
5.4 KiB
C++
Raw Normal View History

2019-03-18 05:52:32 +00:00
// Copyright 2019, Collabora, Ltd.
// Copyright 2016, Sensics, Inc.
// SPDX-License-Identifier: Apache-2.0
/*!
* @file
* @brief Base implementations for math library.
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
* @ingroup aux_math
2019-03-18 05:52:32 +00:00
*
* Based in part on inc/osvr/Util/EigenQuatExponentialMap.h in OSVR-Core
*/
#include "math/m_api.h"
#include "math/m_eigen_interop.hpp"
2019-03-18 05:52:32 +00:00
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <assert.h>
// anonymous namespace for internal types
namespace {
template <typename Scalar> struct FourthRootMachineEps;
template <> struct FourthRootMachineEps<double>
{
/// machine epsilon is 1e-53, so fourth root is roughly 1e-13
static double
get()
{
return 1.e-13;
}
};
template <> struct FourthRootMachineEps<float>
{
/// machine epsilon is 1e-24, so fourth root is 1e-6
static float
get()
{
return 1.e-6f;
}
};
/// Computes the "historical" (un-normalized) sinc(Theta)
/// (sine(theta)/theta for theta != 0, defined as the limit value of 0
/// at theta = 0)
template <typename Scalar>
inline Scalar
sinc(Scalar theta)
{
/// fourth root of machine epsilon is recommended cutoff for taylor
/// series expansion vs. direct computation per
/// Grassia, F. S. (1998). Practical Parameterization of Rotations
/// Using the Exponential Map. Journal of Graphics Tools, 3(3),
/// 29-48. http://doi.org/10.1080/10867651.1998.10487493
Scalar ret;
if (theta < FourthRootMachineEps<Scalar>::get()) {
// taylor series expansion.
ret = Scalar(1.f) - theta * theta / Scalar(6.f);
return ret;
}
// direct computation.
ret = std::sin(theta) / theta;
return ret;
}
/// fully-templated free function for quaternion expontiation
template <typename Derived>
inline Eigen::Quaternion<typename Derived::Scalar>
quat_exp(Eigen::MatrixBase<Derived> const &vec)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3);
using Scalar = typename Derived::Scalar;
/// Implementation inspired by
/// Grassia, F. S. (1998). Practical Parameterization of Rotations
/// Using the Exponential Map. Journal of Graphics Tools, 3(3),
/// 2948. http://doi.org/10.1080/10867651.1998.10487493
///
/// However, that work introduced a factor of 1/2 which I could not
/// derive from the definition of quaternion exponentiation and
/// whose absence thus distinguishes this implementation. Without
/// that factor of 1/2, the exp and ln functions successfully
/// round-trip and match other implementations.
Scalar theta = vec.norm();
Scalar vecscale = sinc(theta);
Eigen::Quaternion<Scalar> ret;
ret.vec() = vecscale * vec;
ret.w() = std::cos(theta);
return ret.normalized();
}
/// Taylor series expansion of theta over sin(theta), aka cosecant, for
/// use near 0 when you want continuity and validity at 0.
template <typename Scalar>
inline Scalar
cscTaylorExpansion(Scalar theta)
{
return Scalar(1) +
// theta ^ 2 / 6
(theta * theta) / Scalar(6) +
// 7 theta^4 / 360
(Scalar(7) * theta * theta * theta * theta) / Scalar(360) +
// 31 theta^6/15120
2021-01-14 14:13:48 +00:00
(Scalar(31) * theta * theta * theta * theta * theta * theta) / Scalar(15120);
2019-03-18 05:52:32 +00:00
}
/// fully-templated free function for quaternion log map.
///
/// Assumes a unit quaternion.
template <typename Scalar>
inline Eigen::Matrix<Scalar, 3, 1>
quat_ln(Eigen::Quaternion<Scalar> const &quat)
{
// ln q = ( (phi)/(norm of vec) vec, ln(norm of quat))
// When we assume a unit quaternion, ln(norm of quat) = 0
// so then we just scale the vector part by phi/sin(phi) to get the
// result (i.e., ln(qv, qw) = (phi/sin(phi)) * qv )
Scalar vecnorm = quat.vec().norm();
// "best for numerical stability" vs asin or acos
Scalar phi = std::atan2(vecnorm, quat.w());
// Here is where we compute the coefficient to scale the vector part
// by, which is nominally phi / std::sin(phi).
// When the angle approaches zero, we compute the coefficient
// differently, since it gets a bit like sinc in that we want it
// continuous but 0 is undefined.
2021-01-14 14:13:48 +00:00
Scalar phiOverSin = vecnorm < 1e-4 ? cscTaylorExpansion<Scalar>(phi) : (phi / std::sin(phi));
2019-03-18 05:52:32 +00:00
return quat.vec() * phiOverSin;
}
} // namespace
using namespace xrt::auxiliary::math;
2019-07-21 12:40:00 +00:00
extern "C" void
2019-03-18 05:52:32 +00:00
math_quat_integrate_velocity(const struct xrt_quat *quat,
const struct xrt_vec3 *ang_vel,
const float dt,
struct xrt_quat *result)
{
assert(quat != NULL);
assert(ang_vel != NULL);
assert(result != NULL);
assert(dt != 0);
2019-03-18 05:52:32 +00:00
Eigen::Quaternionf q = map_quat(*quat);
2021-01-14 14:13:48 +00:00
Eigen::Quaternionf incremental_rotation = quat_exp(map_vec3(*ang_vel) * dt * 0.5f).normalized();
2019-03-18 05:52:32 +00:00
map_quat(*result) = q * incremental_rotation;
}
2019-07-21 12:40:00 +00:00
extern "C" void
math_quat_finite_difference(const struct xrt_quat *quat0,
const struct xrt_quat *quat1,
const float dt,
struct xrt_vec3 *out_ang_vel)
{
assert(quat0 != NULL);
assert(quat1 != NULL);
assert(out_ang_vel != NULL);
assert(dt != 0);
2021-01-14 14:13:48 +00:00
Eigen::Quaternionf inc_quat = map_quat(*quat1) * map_quat(*quat0).conjugate();
map_vec3(*out_ang_vel) = 2.f * quat_ln(inc_quat) / dt;
}
extern "C" void
math_quat_exp(const struct xrt_vec3 *axis_angle, struct xrt_quat *out_quat)
{
map_quat(*out_quat) = quat_exp(map_vec3(*axis_angle));
}
extern "C" void
math_quat_ln(const struct xrt_quat *quat, struct xrt_vec3 *out_axis_angle)
{
Eigen::Quaternionf eigen_quat = map_quat(*quat);
map_vec3(*out_axis_angle) = quat_ln(eigen_quat);
}