monado/src/xrt/auxiliary/tracking/t_calibration.cpp

1028 lines
27 KiB
C++
Raw Normal View History

// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Calibration code.
* @author Pete Black <pblack@collabora.com>
* @author Jakob Bornecrantz <jakob@collabora.com>
* @ingroup aux_tracking
*/
#include "util/u_sink.h"
#include "util/u_misc.h"
#include "util/u_debug.h"
#include "util/u_frame.h"
#include "util/u_format.h"
#include "tracking/t_tracking.h"
#include "tracking/t_calibration_opencv.hpp"
#include <opencv2/opencv.hpp>
#include <sys/stat.h>
DEBUG_GET_ONCE_BOOL_OPTION(hsv_filter, "T_DEBUG_HSV_FILTER", false)
DEBUG_GET_ONCE_BOOL_OPTION(hsv_picker, "T_DEBUG_HSV_PICKER", false)
DEBUG_GET_ONCE_BOOL_OPTION(hsv_viewer, "T_DEBUG_HSV_VIEWER", false)
// we will use a number of samples spread across the frame
// to ensure a good calibration. must be > 9
#define CALIBRATION_SAMPLES 15
// set up our calibration rectangles, we will collect 9 chessboard samples
// that 'fill' these rectangular regions to get good coverage
#define COVERAGE_X 0.8f
#define COVERAGE_Y 0.8f
static cv::Rect2f calibration_rect[] = {
cv::Rect2f(
(1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f,
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f,
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
0.3f,
0.3f),
};
/*
*
* Structs
*
*/
//! Model of the thing we are measuring to calibrate.
typedef std::vector<cv::Point3f> Model;
//! A measurement of the model as viewed on the camera.
typedef std::vector<cv::Point2f> Measurement;
//! For each @ref Measurement we take we also save the @ref Model.
typedef std::vector<Model> ArrayOfModels;
//! A array of @ref Measurement.
typedef std::vector<Measurement> ArrayOfMeasurements;
/*!
* Current state for each view, one view for mono cameras, two for stereo.
*/
struct ViewState
{
ArrayOfMeasurements measured = {};
bool last_valid = false;
Measurement last;
Measurement current = {};
cv::Rect brect = {};
cv::Rect pre_rect = {};
cv::Rect post_rect = {};
2019-11-19 23:38:27 +00:00
bool maps_valid = false;
cv::Mat map1 = {};
cv::Mat map2 = {};
};
/*!
* What type of pattern is being used.
*/
enum class Pattern
{
CHESSBOARD,
CIRCLES_GRID,
ASYMMETRIC_CIRCLES_GRID,
};
/*!
* Main class for doing calibration.
*/
class Calibration
{
public:
struct xrt_frame_sink base = {};
struct
{
cv::Mat rgb = {};
struct xrt_frame *frame = {};
struct xrt_frame_sink *sink = {};
} gui;
struct
{
Model model = {};
cv::Size dims = {8, 6};
Pattern pattern = Pattern::CHESSBOARD;
float spacing_meters = 0.05;
} board;
struct
{
ViewState view[2] = {};
ArrayOfModels board_models = {};
uint32_t calibration_count = {};
bool calibrated = false;
2019-11-18 19:13:12 +00:00
uint32_t waited_for = 0;
uint32_t collected_of_part = 0;
} state;
//! Should we use subpixel enhancing for checkerboard.
bool subpixel_enable = true;
//! What subpixel range for checkerboard enhancement.
int subpixel_size = 5;
2019-11-18 19:13:12 +00:00
//! Number of frames to wait for before collecting.
uint32_t num_wait_for = 20;
2019-11-18 19:13:12 +00:00
//! Total number of samples to collect.
uint32_t num_collect_total = 40;
2019-11-18 19:13:12 +00:00
//! Number of frames to capture before restarting.
uint32_t num_collect_restart = 1;
2019-11-20 19:10:05 +00:00
//! Is the camera fisheye.
2019-11-19 23:38:27 +00:00
bool use_fisheye = false;
2019-11-20 19:10:05 +00:00
//! Should we clear the frame.
bool clear_frame = false;
2019-11-20 19:10:05 +00:00
//! Dump all of the measurements to stdout.
2019-11-19 23:38:27 +00:00
bool dump_measurements = false;
//! Should we save images used for capture.
bool save_images;
cv::Mat grey = {};
char text[512] = {};
};
/*
*
* Small helpers.
*
*/
static void
refresh_gui_frame(class Calibration &c, int rows, int cols)
{
// Also dereferences the old frame.
u_frame_create_one_off(XRT_FORMAT_R8G8B8, cols, rows, &c.gui.frame);
c.gui.rgb = cv::Mat(rows, cols, CV_8UC3, c.gui.frame->data,
c.gui.frame->stride);
}
static void
send_rgb_frame(class Calibration &c)
{
c.gui.sink->push_frame(c.gui.sink, c.gui.frame);
refresh_gui_frame(c, c.gui.rgb.rows, c.gui.rgb.cols);
}
static void
ensure_buffers_are_allocated(class Calibration &c, int rows, int cols)
{
if (c.gui.rgb.cols == cols && c.gui.rgb.rows == rows) {
return;
}
c.grey = cv::Mat(rows, cols, CV_8UC1, cv::Scalar(0));
refresh_gui_frame(c, rows, cols);
}
static void
print_txt(cv::Mat &rgb, const char *text, double fontScale)
{
int fontFace = 0;
int thickness = 2;
cv::Size textSize =
cv::getTextSize(text, fontFace, fontScale, thickness, NULL);
cv::Point textOrg((rgb.cols - textSize.width) / 2, textSize.height * 2);
cv::putText(rgb, text, textOrg, fontFace, fontScale,
cv::Scalar(192, 192, 192), thickness);
}
static void
make_gui_str(class Calibration &c)
{
auto &rgb = c.gui.rgb;
int cols = 800;
int rows = 100;
ensure_buffers_are_allocated(c, rows, cols);
cv::rectangle(rgb, cv::Point2f(0, 0), cv::Point2f(cols, rows),
cv::Scalar(0, 0, 0), -1, 0);
print_txt(rgb, c.text, 1.0);
send_rgb_frame(c);
}
/*!
* Simple helper to draw a bounding rect.
*/
static void
2019-11-12 17:39:37 +00:00
draw_rect(cv::Mat &rgb, const cv::Rect &rect, const cv::Scalar &colour)
{
cv::rectangle(rgb, rect.tl(), rect.br(), colour);
}
static bool
do_view_chess(class Calibration &c,
struct ViewState &view,
cv::Mat &grey,
cv::Mat &rgb)
{
int flags = 0;
flags += cv::CALIB_CB_FAST_CHECK;
flags += cv::CALIB_CB_ADAPTIVE_THRESH;
flags += cv::CALIB_CB_NORMALIZE_IMAGE;
bool found = cv::findChessboardCorners(grey, // Image
c.board.dims, // patternSize
view.current, // corners
flags); // flags
// Compute our 'pre sample' coverage for this frame,
// for display and area threshold checking.
std::vector<cv::Point2f> coverage;
for (uint32_t i = 0; i < view.measured.size(); i++) {
cv::Rect brect = cv::boundingRect(view.measured[i]);
draw_rect(rgb, brect, cv::Scalar(0, 64, 32));
coverage.push_back(cv::Point2f(brect.tl()));
coverage.push_back(cv::Point2f(brect.br()));
}
// What area of the camera have we calibrated.
view.pre_rect = cv::boundingRect(coverage);
draw_rect(rgb, view.pre_rect, cv::Scalar(0, 255, 255));
if (found) {
view.brect = cv::boundingRect(view.current);
coverage.push_back(cv::Point2f(view.brect.tl()));
coverage.push_back(cv::Point2f(view.brect.br()));
// New area we cover.
view.post_rect = cv::boundingRect(coverage);
draw_rect(rgb, view.post_rect, cv::Scalar(0, 255, 0));
}
// Improve the corner positions.
if (found && c.subpixel_enable) {
2019-11-19 22:49:21 +00:00
int crit_flag = 0;
crit_flag |= cv::TermCriteria::EPS;
crit_flag |= cv::TermCriteria::COUNT;
cv::TermCriteria term_criteria = {crit_flag, 30, 0.1};
cv::Size size(c.subpixel_size, c.subpixel_size);
cv::Size zero(-1, -1);
2019-11-19 22:49:21 +00:00
cv::cornerSubPix(grey, view.current, size, zero, term_criteria);
}
// Draw the checker board, will also draw partial hits.
cv::drawChessboardCorners(rgb, c.board.dims, view.current, found);
return found;
}
static bool
do_view_circles(class Calibration &c,
struct ViewState &view,
cv::Mat &grey,
cv::Mat &rgb)
{
int flags = 0;
if (c.board.pattern == Pattern::ASYMMETRIC_CIRCLES_GRID) {
flags |= cv::CALIB_CB_ASYMMETRIC_GRID;
}
bool found = cv::findCirclesGrid(grey, // Image
c.board.dims, // patternSize
view.current, // corners
flags); // flags
// Compute our 'pre sample' coverage for this frame,
// for display and area threshold checking.
std::vector<cv::Point2f> coverage;
for (uint32_t i = 0; i < view.measured.size(); i++) {
cv::Rect brect = cv::boundingRect(view.measured[i]);
draw_rect(rgb, brect, cv::Scalar(0, 64, 32));
coverage.push_back(cv::Point2f(brect.tl()));
coverage.push_back(cv::Point2f(brect.br()));
}
// What area of the camera have we calibrated.
view.pre_rect = cv::boundingRect(coverage);
draw_rect(rgb, view.pre_rect, cv::Scalar(0, 255, 255));
if (found) {
view.brect = cv::boundingRect(view.current);
coverage.push_back(cv::Point2f(view.brect.tl()));
coverage.push_back(cv::Point2f(view.brect.br()));
// New area we cover.
view.post_rect = cv::boundingRect(coverage);
draw_rect(rgb, view.post_rect, cv::Scalar(0, 255, 0));
}
// Draw the circles we found, will also draw partial hits.
cv::drawChessboardCorners(rgb, c.board.dims, view.current, found);
return found;
}
static bool
do_view(class Calibration &c,
struct ViewState &view,
cv::Mat &grey,
cv::Mat &rgb)
{
switch (c.board.pattern) {
case Pattern::CHESSBOARD: return do_view_chess(c, view, grey, rgb);
case Pattern::CIRCLES_GRID: return do_view_circles(c, view, grey, rgb);
case Pattern::ASYMMETRIC_CIRCLES_GRID:
return do_view_circles(c, view, grey, rgb);
default: assert(false);
}
}
2019-11-19 23:38:27 +00:00
static void
remap_view(class Calibration &c, struct ViewState &view, cv::Mat &rgb)
{
if (!view.maps_valid) {
return;
}
cv::remap(rgb, // src
rgb, // dst
view.map1, // map1
view.map2, // map2
cv::INTER_LINEAR, // interpolation
cv::BORDER_CONSTANT, // borderMode
cv::Scalar()); // borderValue
}
static void
build_board_position(class Calibration &c)
{
int cols_num = c.board.dims.width;
int rows_num = c.board.dims.height;
float size_meters = c.board.spacing_meters;
switch (c.board.pattern) {
case Pattern::CHESSBOARD:
case Pattern::CIRCLES_GRID:
// Nothing to do.
break;
case Pattern::ASYMMETRIC_CIRCLES_GRID:
// From diagonal size to "square" size.
size_meters = sqrt((size_meters * size_meters) / 2.0);
break;
}
switch (c.board.pattern) {
case Pattern::CHESSBOARD:
case Pattern::CIRCLES_GRID:
for (int i = 0; i < rows_num; ++i) {
for (int j = 0; j < cols_num; ++j) {
cv::Point3f p = {
j * size_meters,
i * size_meters,
0.0f,
};
c.board.model.push_back(p);
}
}
break;
case Pattern::ASYMMETRIC_CIRCLES_GRID:
for (int i = 0; i < rows_num; ++i) {
for (int j = 0; j < cols_num; ++j) {
cv::Point3f p = {
(2 * j + i % 2) * size_meters,
i * size_meters,
0.0f,
};
c.board.model.push_back(p);
}
}
break;
}
}
/*!
* Returns true if any one of the measurement points have moved.
*/
static bool
has_measurement_moved(Measurement &last, Measurement &current)
{
if (last.size() != current.size()) {
return true;
}
for (size_t i = 0; i < last.size(); ++i) {
float x = last[i].x - current[i].x;
float y = last[i].y - current[i].y;
// Distance squard in pixels.
if ((x * x + y * y) >= 3.0) {
return true;
}
}
return false;
}
/*
*
* Stereo calibration
*
*/
#define P(...) snprintf(c.text, sizeof(c.text), __VA_ARGS__)
static void
process_stereo_samples(class Calibration &c, int cols, int rows)
{
c.state.calibrated = true;
cv::Size image_size(cols, rows);
cv::Size new_image_size(cols, rows);
2019-10-12 20:43:26 +00:00
CalibrationRawData raw = {};
assert(raw.isDataStorageValid());
raw.image_size_pixels.w = image_size.width;
raw.image_size_pixels.h = image_size.height;
raw.new_image_size_pixels.w = new_image_size.width;
raw.new_image_size_pixels.h = new_image_size.height;
// TODO: handle both fisheye and normal cameras -right
// now I only have the normal, for the PS4 camera
#if 0
float rp_error = cv::fisheye::stereoCalibrate(
internal->board_models, internal->l_measured,
internal->r_measured, l_intrinsics,
l_distortion_fisheye, r_intrinsics, r_distortion_fisheye,
image_size, camera_rotation, camera_translation,
cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC);
#endif
// non-fisheye version
2019-09-27 19:27:21 +00:00
float rp_error =
cv::stereoCalibrate(c.state.board_models, // objectPoints
2019-10-12 20:43:26 +00:00
c.state.view[0].measured, // inagePoints1
c.state.view[1].measured, // imagePoints2,
raw.l_intrinsics_mat, // cameraMatrix1
raw.l_distortion_mat, // distCoeffs1
raw.r_intrinsics_mat, // cameraMatrix2
raw.r_distortion_mat, // distCoeffs2
image_size, // imageSize
raw.camera_rotation_mat, // R
raw.camera_translation_mat, // T
raw.camera_essential_mat, // E
raw.camera_fundamental_mat, // F
0); // flags
assert(raw.camera_rotation_mat.size() == cv::Size(3, 3));
assert(raw.camera_translation_mat.size() == cv::Size(1, 3));
assert(raw.camera_essential_mat.size() == cv::Size(3, 3));
assert(raw.camera_fundamental_mat.size() == cv::Size(3, 3));
// We currently don't change the image size or remove invalid pixels.
2019-10-12 20:43:26 +00:00
cv::stereoRectify(raw.l_intrinsics_mat, // cameraMatrix1
cv::noArray(), // distCoeffs1
raw.r_intrinsics_mat, // cameraMatrix2
cv::noArray(), // distCoeffs2
image_size, // imageSize
raw.camera_rotation_mat, // R
raw.camera_translation_mat, // T
raw.l_rotation_mat, // R1
raw.r_rotation_mat, // R2
raw.l_projection_mat, // P1
raw.r_projection_mat, // P2
raw.disparity_to_depth_mat, // Q
cv::CALIB_ZERO_DISPARITY, // flags
-1, // alpha
new_image_size, // newImageSize
NULL, // validPixROI1
NULL); // validPixROI2
// Validate that nothing has been re-allocated.
assert(raw.isDataStorageValid());
P("CALIBRATION DONE RP ERROR %f", rp_error);
2019-10-12 20:43:26 +00:00
// clang-format off
std::cout << "calibration rp_error: " << rp_error << "\n";
2019-10-12 20:43:26 +00:00
std::cout << "camera_rotation:\n" << raw.camera_rotation_mat << "\n";
std::cout << "camera_translation:\n" << raw.camera_translation_mat << "\n";
std::cout << "camera_essential:\n" << raw.camera_essential_mat << "\n";
std::cout << "camera_fundamental:\n" << raw.camera_fundamental_mat << "\n";
// clang-format on
t_file_save_raw_data_hack(&raw);
}
static void
2019-11-19 23:38:27 +00:00
process_view_samples(class Calibration &c,
struct ViewState &view,
int cols,
int rows)
{
2019-11-19 23:38:27 +00:00
const cv::Size image_size = {cols, rows};
double rp_error = 0.f;
cv::Mat intrinsics_mat = {};
cv::Mat new_intrinsics_mat = {};
cv::Mat distortion_mat = {};
cv::Mat distortion_fisheye_mat = {};
if (c.dump_measurements) {
printf("...measured = (ArrayOfMeasurements){\n");
for (Measurement &m : view.measured) {
printf(" {\n");
for (cv::Point2f &p : m) {
printf(" {%+ff, %+ff},\n", p.x, p.y);
}
printf(" },\n");
}
printf("};\n");
}
2019-11-19 23:38:27 +00:00
if (c.use_fisheye) {
int crit_flag = 0;
crit_flag |= cv::TermCriteria::EPS;
crit_flag |= cv::TermCriteria::COUNT;
cv::TermCriteria term_criteria = {crit_flag, 100, DBL_EPSILON};
int flags = 0;
flags |= cv::fisheye::CALIB_FIX_SKEW;
flags |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
flags |= cv::fisheye::CALIB_FIX_PRINCIPAL_POINT;
rp_error = cv::fisheye::calibrate(
c.state.board_models, // objectPoints
view.measured, // imagePoints
image_size, // image_size
intrinsics_mat, // K (cameraMatrix 3x3)
distortion_fisheye_mat, // D (distCoeffs 4x1)
cv::noArray(), // rvecs
cv::noArray(), // tvecs
flags, // flags
term_criteria); // criteria
2019-11-19 23:38:27 +00:00
double balance = 0.0f;
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(
intrinsics_mat, // K
distortion_fisheye_mat, // D
image_size, // image_size
cv::Matx33d::eye(), // R
new_intrinsics_mat, // P
balance); // balance
} else {
rp_error = cv::calibrateCamera( //
c.state.board_models, // objectPoints
view.measured, // imagePoints
image_size, // imageSize
intrinsics_mat, // cameraMatrix
distortion_mat, // distCoeffs
cv::noArray(), // rvecs
cv::noArray()); // tvecs
2019-11-19 23:38:27 +00:00
}
P("Calibration done, RP-Error %f", rp_error);
// clang-format off
std::cout << "image_size: " << image_size << "\n";
std::cout << "rp_error: " << rp_error << "\n";
std::cout << "intrinsics_mat:\n" << intrinsics_mat << "\n";
if (c.use_fisheye) {
std::cout << "new_intrinsics_mat:\n" << new_intrinsics_mat << "\n";
std::cout << "distortion_fisheye_mat:\n" << distortion_fisheye_mat << "\n";
} else {
std::cout << "distortion_mat:\n" << distortion_mat << "\n";
}
// clang-format on
if (c.use_fisheye) {
cv::fisheye::initUndistortRectifyMap(
intrinsics_mat, // K
distortion_fisheye_mat, // D
cv::Matx33d::eye(), // R
new_intrinsics_mat, // P
image_size, // size
CV_32FC1, // m1type
view.map1, // map1
view.map2); // map2
// Set the maps as valid.
view.maps_valid = true;
} else {
cv::initUndistortRectifyMap( //
intrinsics_mat, // K
distortion_mat, // D
cv::noArray(), // R
intrinsics_mat, // P
image_size, // size
CV_32FC1, // m1type
view.map1, // map1
view.map2); // map2
// Set the maps as valid.
view.maps_valid = true;
}
2019-11-19 23:38:27 +00:00
c.state.calibrated = true;
}
/*!
* Logic for capturing a frame.
*/
static void
do_capture_logic(class Calibration &c,
struct ViewState &view,
bool found,
cv::Mat &grey,
cv::Mat &rgb)
2019-11-19 23:38:27 +00:00
{
int num = (int)c.state.board_models.size();
2019-11-18 19:13:12 +00:00
int of = c.num_collect_total;
P("(%i/%i) SHOW CHESSBOARD", num, of);
2019-11-19 23:38:27 +00:00
// We haven't found anything, reset to be beginning.
if (!found) {
c.state.waited_for = c.num_wait_for;
c.state.collected_of_part = 0;
view.last_valid = false;
2019-11-19 23:38:27 +00:00
return;
}
2019-11-18 19:13:12 +00:00
2019-11-19 23:38:27 +00:00
// We are still waiting for frames.
if (c.state.waited_for > 0) {
P("(%i/%i) WAITING %i FRAMES", num, of, c.state.waited_for);
c.state.waited_for--;
bool moved = false;
if (view.last_valid) {
moved = has_measurement_moved(view.last, view.current);
}
// Now save the current measurement to the last one.
view.last = view.current;
view.last_valid = true;
if (moved) {
P("(%i/%i) KEEP BOARD STILL!", num, of);
c.state.waited_for = c.num_wait_for;
c.state.collected_of_part = 0;
}
2019-11-19 23:38:27 +00:00
return;
}
2019-11-18 19:13:12 +00:00
2019-11-19 23:38:27 +00:00
// Have we collected all of the frames for one part?
if (c.state.collected_of_part >= c.num_collect_restart) {
c.state.waited_for = c.num_wait_for * 2;
c.state.collected_of_part = 0;
return;
}
if (c.save_images) {
char buf[512];
snprintf(buf, 512, "grey_%03i.png", (int)view.measured.size());
cv::imwrite(buf, grey);
snprintf(buf, 512, "debug_rgb_%03i.jpg",
(int)view.measured.size());
cv::imwrite(buf, rgb);
}
c.state.board_models.push_back(c.board.model);
2019-11-19 23:38:27 +00:00
view.measured.push_back(view.current);
c.state.collected_of_part++;
2019-11-18 19:13:12 +00:00
2019-11-19 23:38:27 +00:00
P("(%i/%i) COLLECTED #%i", num, of, c.state.collected_of_part);
}
/*!
* Make a mono frame.
*/
static void
make_calibration_frame_mono(class Calibration &c)
{
auto &rgb = c.gui.rgb;
auto &grey = c.grey;
bool found = do_view(c, c.state.view[0], grey, rgb);
// Advance the state of the calibration.
do_capture_logic(c, c.state.view[0], found, grey, rgb);
2019-11-18 19:13:12 +00:00
if (c.state.board_models.size() >= c.num_collect_total) {
2019-11-19 23:38:27 +00:00
process_view_samples(c, c.state.view[0], rgb.cols, rgb.rows);
}
// Draw text and finally send the frame off.
print_txt(rgb, c.text, 1.5);
send_rgb_frame(c);
}
/*!
* Make a stereo frame side by side.
*/
static void
make_calibration_frame_sbs(class Calibration &c)
{
auto &rgb = c.gui.rgb;
auto &grey = c.grey;
int cols = rgb.cols / 2;
int rows = rgb.rows;
// Split left and right eyes, don't make any copies.
cv::Mat l_grey(rows, cols, CV_8UC1, grey.data, grey.cols);
cv::Mat r_grey(rows, cols, CV_8UC1, grey.data + cols, grey.cols);
cv::Mat l_rgb(rows, cols, CV_8UC3, c.gui.frame->data,
c.gui.frame->stride);
cv::Mat r_rgb(rows, cols, CV_8UC3, c.gui.frame->data + 3 * cols,
c.gui.frame->stride);
bool found_left = do_view(c, c.state.view[0], l_grey, l_rgb);
bool found_right = do_view(c, c.state.view[1], r_grey, r_rgb);
// Draw our current calibration guide box.
cv::Point2f bound_tl = calibration_rect[c.state.calibration_count].tl();
bound_tl.x *= cols;
bound_tl.y *= rows;
cv::Point2f bound_br = calibration_rect[c.state.calibration_count].br();
bound_br.x *= cols;
bound_br.y *= rows;
// Draw the target rect last so it is the most visible.
cv::rectangle(c.gui.rgb, bound_tl, bound_br, cv::Scalar(255, 0, 0));
// If we have a valid sample (left and right).
if (found_left && found_right) {
cv::Rect brect = c.state.view[0].brect;
cv::Rect pre_rect = c.state.view[0].pre_rect;
cv::Rect post_rect = c.state.view[0].post_rect;
/*
* Determine if we should add this sample to our list. Either we
* are still taking the first 9 samples and the chessboard is in
* the box, or we have exceeded 9 samples and now want to 'push
* out the edges'.
*/
bool add_sample = false;
int coverage_threshold = cols * 0.3f * rows * 0.3f;
if (c.state.calibration_count < 9 &&
brect.tl().x >= bound_tl.x && brect.tl().y >= bound_tl.y &&
brect.br().x <= bound_br.x && brect.br().y <= bound_br.y) {
add_sample = true;
}
if (c.state.calibration_count >= 9 &&
brect.area() > coverage_threshold &&
post_rect.area() >
pre_rect.area() + coverage_threshold / 5) {
add_sample = true;
}
if (add_sample) {
c.state.board_models.push_back(c.board.model);
c.state.view[0].measured.push_back(
c.state.view[0].current);
c.state.view[1].measured.push_back(
c.state.view[1].current);
c.state.calibration_count++;
printf("SAMPLE: %ld\n",
c.state.view[0].measured.size());
}
}
// Are we done or do we need to inform the user what they should do.
if (c.state.calibration_count >= CALIBRATION_SAMPLES) {
process_stereo_samples(c, cols, rows);
} else if (c.state.calibration_count < 9) {
P("POSITION CHESSBOARD IN BOX");
} else {
P("TRY TO 'PUSH OUT EDGES' WITH LARGE BOARD IMAGES");
}
// Draw text and finally send the frame off.
print_txt(rgb, c.text, 1.5);
send_rgb_frame(c);
}
/*
*
* Main functions.
*
*/
XRT_NO_INLINE static void
process_frame_yuv(class Calibration &c, struct xrt_frame *xf)
{
int w = (int)xf->width;
int h = (int)xf->height;
cv::Mat data(h, w, CV_8UC3, xf->data, xf->stride);
ensure_buffers_are_allocated(c, data.rows, data.cols);
c.gui.frame->source_sequence = xf->source_sequence;
cv::cvtColor(data, c.gui.rgb, cv::COLOR_YUV2RGB);
cv::cvtColor(c.gui.rgb, c.grey, cv::COLOR_RGB2GRAY);
}
XRT_NO_INLINE static void
process_frame_yuyv(class Calibration &c, struct xrt_frame *xf)
{
/*
* Cleverly extract the different channels.
* Cr/Cb are extracted at half width.
*/
int w = (int)xf->width;
int h = (int)xf->height;
cv::Mat data_full(h, w, CV_8UC2, xf->data, xf->stride);
ensure_buffers_are_allocated(c, data_full.rows, data_full.cols);
c.gui.frame->source_sequence = xf->source_sequence;
cv::cvtColor(data_full, c.gui.rgb, cv::COLOR_YUV2RGB_YUYV);
cv::cvtColor(data_full, c.grey, cv::COLOR_YUV2GRAY_YUYV);
}
/*
*
* Interface functions.
*
*/
extern "C" void
t_calibration_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf)
{
auto &c = *(class Calibration *)xsink;
// Fill both c.gui.rgb and c.grey with the data we got.
switch (xf->format) {
case XRT_FORMAT_YUV888: process_frame_yuv(c, xf); break;
case XRT_FORMAT_YUV422: process_frame_yuyv(c, xf); break;
default:
P("ERROR: Bad format '%s'", u_format_str(xf->format));
make_gui_str(c);
return;
}
// Don't do anything if we are done.
if (c.state.calibrated) {
2019-11-19 23:38:27 +00:00
//! @todo add support for stereo.
remap_view(c, c.state.view[0], c.gui.rgb);
print_txt(c.gui.rgb, c.text, 1.5);
send_rgb_frame(c);
return;
}
// Clear our gui frame.
if (c.clear_frame) {
cv::rectangle(c.gui.rgb, cv::Point2f(0, 0),
cv::Point2f(c.gui.rgb.cols, c.gui.rgb.rows),
cv::Scalar(0, 0, 0), -1, 0);
}
switch (xf->stereo_format) {
case XRT_STEREO_FORMAT_SBS: make_calibration_frame_sbs(c); break;
case XRT_STEREO_FORMAT_NONE: make_calibration_frame_mono(c); break;
default:
P("ERROR: Unknown stereo format! '%i'", xf->stereo_format);
make_gui_str(c);
return;
}
}
/*
*
* Exported functions.
*
*/
extern "C" int
t_calibration_stereo_create(struct xrt_frame_context *xfctx,
struct t_calibration_params *params,
struct xrt_frame_sink *gui,
struct xrt_frame_sink **out_sink)
{
auto &c = *(new Calibration());
// Basic setup.
c.gui.sink = gui;
c.base.push_frame = t_calibration_frame;
*out_sink = &c.base;
// Copy the parameters.
c.board.dims = {
params->checker_cols_num - 1,
params->checker_rows_num - 1,
};
c.board.spacing_meters = params->checker_size_meters;
c.subpixel_enable = params->subpixel_enable;
c.subpixel_size = params->subpixel_size;
2019-11-18 19:13:12 +00:00
c.num_wait_for = params->num_wait_for;
c.num_collect_total = params->num_collect_total;
c.num_collect_restart = params->num_collect_restart;
c.save_images = params->save_images;
c.use_fisheye = params->use_fisheye;
// Setup a initial message.
P("Waiting for camera");
make_gui_str(c);
int ret = 0;
if (debug_get_bool_option_hsv_filter()) {
2019-08-22 13:15:41 +00:00
ret = t_debug_hsv_filter_create(xfctx, *out_sink, out_sink);
}
if (debug_get_bool_option_hsv_picker()) {
2019-08-22 13:15:41 +00:00
ret = t_debug_hsv_picker_create(xfctx, *out_sink, out_sink);
}
if (debug_get_bool_option_hsv_viewer()) {
2019-08-22 13:15:41 +00:00
ret = t_debug_hsv_viewer_create(xfctx, *out_sink, out_sink);
}
// Ensure we only get yuv or yuyv frames.
2019-08-22 13:15:41 +00:00
u_sink_create_to_yuv_or_yuyv(xfctx, *out_sink, out_sink);
// Build the board model.
build_board_position(c);
#if 0
c.state.view[0].measured = (ArrayOfMeasurements){
};
c.state.view[1].measured = (ArrayOfMeasurements){
};
for (Measurement &m : c.state.view[0].measured) {
(void)m;
c.state.board_models.push_back(c.board.model);
}
#endif
return ret;
}