mirror of
https://github.com/Fluffy-Bean/website.git
synced 2025-01-28 08:58:25 +00:00
Fix errors during compile time
This commit is contained in:
parent
58a4bb6b5c
commit
caa5cf6751
|
@ -94,7 +94,7 @@ Here's a sentence with a footnote. [^1]
|
||||||
|
|
||||||
### Heading ID
|
### Heading ID
|
||||||
|
|
||||||
### My Great Heading {#custom-id}
|
### My Great Heading \{#custom-id}
|
||||||
|
|
||||||
### Definition List
|
### Definition List
|
||||||
|
|
||||||
|
|
|
@ -10,16 +10,16 @@ tags:
|
||||||
|
|
||||||
Some simple mathematical expressions:
|
Some simple mathematical expressions:
|
||||||
|
|
||||||
$$ \sqrt{3x-1}+(1+x)^2 $$
|
$$ \sqrt\{3x-1}+(1+x)^2 $$
|
||||||
|
|
||||||
$$\frac{ax^2+bx+c}{(a+b)^2}=0$$
|
$$\frac\{ax^2+bx+c}\{(a+b)^2}=0$$
|
||||||
|
|
||||||
$$f(x) = \pm A \sin\left(\frac{2\pi}{4} + \theta\right)$$
|
$$f(x) = \pm A \sin\left(\frac\{2\pi}\{4} + \theta\right)$$
|
||||||
|
|
||||||
More complicated examples (from [KateX home page](https://katex.org)):
|
More complicated examples (from [KateX home page](https://katex.org)):
|
||||||
|
|
||||||
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
|
$$\displaystyle \frac\{1}\{\Bigl(\sqrt\{\phi \sqrt\{5}}-\phi\Bigr) e^\{\frac25 \pi}} = 1+\frac\{e^\{-2\pi}} \{1+\frac\{e^\{-4\pi}} \{1+\frac\{e^\{-6\pi}} \{1+\frac\{e^\{-8\pi}} \{1+\cdots} } } }$$
|
||||||
|
|
||||||
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
|
$$\displaystyle \left( \sum_\{k=1}^n a_k b_k \right)^2 \leq \left( \sum_\{k=1}^n a_k^2 \right) \left( \sum_\{k=1}^n b_k^2 \right)$$
|
||||||
|
|
||||||
$$\displaystyle {1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots }= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$
|
$$\displaystyle \{1 + \frac\{q^2}\{(1-q)}+\frac\{q^6}\{(1-q)(1-q^2)}+\cdots }= \prod_\{j=0}^\{\infty}\frac\{1}\{(1-q^\{5j+2})(1-q^\{5j+3})}, \quad\quad \text\{for }\lvert q\rvert\<1. $$
|
||||||
|
|
Loading…
Reference in a new issue