From caa5cf6751f97e2c5cb2c489b3192f3817737288 Mon Sep 17 00:00:00 2001 From: Fluffy-Bean Date: Wed, 29 May 2024 15:07:49 +0100 Subject: [PATCH] Fix errors during compile time --- src/content/posts/markdown-example.mdx | 2 +- src/content/posts/math-examples.mdx | 12 ++++++------ 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/src/content/posts/markdown-example.mdx b/src/content/posts/markdown-example.mdx index edb8d4a..fe6b3c3 100644 --- a/src/content/posts/markdown-example.mdx +++ b/src/content/posts/markdown-example.mdx @@ -94,7 +94,7 @@ Here's a sentence with a footnote. [^1] ### Heading ID -### My Great Heading {#custom-id} +### My Great Heading \{#custom-id} ### Definition List diff --git a/src/content/posts/math-examples.mdx b/src/content/posts/math-examples.mdx index 2310573..15d7512 100644 --- a/src/content/posts/math-examples.mdx +++ b/src/content/posts/math-examples.mdx @@ -10,16 +10,16 @@ tags: Some simple mathematical expressions: -$$ \sqrt{3x-1}+(1+x)^2 $$ +$$ \sqrt\{3x-1}+(1+x)^2 $$ -$$\frac{ax^2+bx+c}{(a+b)^2}=0$$ +$$\frac\{ax^2+bx+c}\{(a+b)^2}=0$$ -$$f(x) = \pm A \sin\left(\frac{2\pi}{4} + \theta\right)$$ +$$f(x) = \pm A \sin\left(\frac\{2\pi}\{4} + \theta\right)$$ More complicated examples (from [KateX home page](https://katex.org)): -$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$ +$$\displaystyle \frac\{1}\{\Bigl(\sqrt\{\phi \sqrt\{5}}-\phi\Bigr) e^\{\frac25 \pi}} = 1+\frac\{e^\{-2\pi}} \{1+\frac\{e^\{-4\pi}} \{1+\frac\{e^\{-6\pi}} \{1+\frac\{e^\{-8\pi}} \{1+\cdots} } } }$$ -$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$ +$$\displaystyle \left( \sum_\{k=1}^n a_k b_k \right)^2 \leq \left( \sum_\{k=1}^n a_k^2 \right) \left( \sum_\{k=1}^n b_k^2 \right)$$ -$$\displaystyle {1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots }= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$ +$$\displaystyle \{1 + \frac\{q^2}\{(1-q)}+\frac\{q^6}\{(1-q)(1-q^2)}+\cdots }= \prod_\{j=0}^\{\infty}\frac\{1}\{(1-q^\{5j+2})(1-q^\{5j+3})}, \quad\quad \text\{for }\lvert q\rvert\<1. $$