yuzu/src/core/loader/nso.cpp
Lioncash 0cbcd6ec9a kernel: Eliminate kernel global state
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.

This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.

This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.

The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
2018-08-28 22:31:51 -04:00

166 lines
5.9 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <vector>
#include <lz4.h>
#include "common/common_funcs.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "common/swap.h"
#include "core/core.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/loader/nso.h"
#include "core/memory.h"
namespace Loader {
struct NsoSegmentHeader {
u32_le offset;
u32_le location;
u32_le size;
union {
u32_le alignment;
u32_le bss_size;
};
};
static_assert(sizeof(NsoSegmentHeader) == 0x10, "NsoSegmentHeader has incorrect size.");
struct NsoHeader {
u32_le magic;
INSERT_PADDING_BYTES(0xc);
std::array<NsoSegmentHeader, 3> segments; // Text, RoData, Data (in that order)
u32_le bss_size;
INSERT_PADDING_BYTES(0x1c);
std::array<u32_le, 3> segments_compressed_size;
};
static_assert(sizeof(NsoHeader) == 0x6c, "NsoHeader has incorrect size.");
static_assert(std::is_trivially_copyable_v<NsoHeader>, "NsoHeader isn't trivially copyable.");
struct ModHeader {
u32_le magic;
u32_le dynamic_offset;
u32_le bss_start_offset;
u32_le bss_end_offset;
u32_le eh_frame_hdr_start_offset;
u32_le eh_frame_hdr_end_offset;
u32_le module_offset; // Offset to runtime-generated module object. typically equal to .bss base
};
static_assert(sizeof(ModHeader) == 0x1c, "ModHeader has incorrect size.");
AppLoader_NSO::AppLoader_NSO(FileSys::VirtualFile file) : AppLoader(std::move(file)) {}
FileType AppLoader_NSO::IdentifyType(const FileSys::VirtualFile& file) {
u32 magic = 0;
if (file->ReadObject(&magic) != sizeof(magic)) {
return FileType::Error;
}
if (Common::MakeMagic('N', 'S', 'O', '0') != magic) {
return FileType::Error;
}
return FileType::NSO;
}
static std::vector<u8> DecompressSegment(const std::vector<u8>& compressed_data,
const NsoSegmentHeader& header) {
std::vector<u8> uncompressed_data(header.size);
const int bytes_uncompressed =
LZ4_decompress_safe(reinterpret_cast<const char*>(compressed_data.data()),
reinterpret_cast<char*>(uncompressed_data.data()),
static_cast<int>(compressed_data.size()), header.size);
ASSERT_MSG(bytes_uncompressed == static_cast<int>(header.size) &&
bytes_uncompressed == static_cast<int>(uncompressed_data.size()),
"{} != {} != {}", bytes_uncompressed, header.size, uncompressed_data.size());
return uncompressed_data;
}
static constexpr u32 PageAlignSize(u32 size) {
return (size + Memory::PAGE_MASK) & ~Memory::PAGE_MASK;
}
VAddr AppLoader_NSO::LoadModule(FileSys::VirtualFile file, VAddr load_base) {
if (file == nullptr)
return {};
if (file->GetSize() < sizeof(NsoHeader))
return {};
NsoHeader nso_header{};
if (sizeof(NsoHeader) != file->ReadObject(&nso_header))
return {};
if (nso_header.magic != Common::MakeMagic('N', 'S', 'O', '0'))
return {};
// Build program image
auto& kernel = Core::System::GetInstance().Kernel();
Kernel::SharedPtr<Kernel::CodeSet> codeset = Kernel::CodeSet::Create(kernel, "");
std::vector<u8> program_image;
for (std::size_t i = 0; i < nso_header.segments.size(); ++i) {
const std::vector<u8> compressed_data =
file->ReadBytes(nso_header.segments_compressed_size[i], nso_header.segments[i].offset);
std::vector<u8> data = DecompressSegment(compressed_data, nso_header.segments[i]);
program_image.resize(nso_header.segments[i].location);
program_image.insert(program_image.end(), data.begin(), data.end());
codeset->segments[i].addr = nso_header.segments[i].location;
codeset->segments[i].offset = nso_header.segments[i].location;
codeset->segments[i].size = PageAlignSize(static_cast<u32>(data.size()));
}
// MOD header pointer is at .text offset + 4
u32 module_offset;
std::memcpy(&module_offset, program_image.data() + 4, sizeof(u32));
// Read MOD header
ModHeader mod_header{};
// Default .bss to size in segment header if MOD0 section doesn't exist
u32 bss_size{PageAlignSize(nso_header.segments[2].bss_size)};
std::memcpy(&mod_header, program_image.data() + module_offset, sizeof(ModHeader));
const bool has_mod_header{mod_header.magic == Common::MakeMagic('M', 'O', 'D', '0')};
if (has_mod_header) {
// Resize program image to include .bss section and page align each section
bss_size = PageAlignSize(mod_header.bss_end_offset - mod_header.bss_start_offset);
}
codeset->DataSegment().size += bss_size;
const u32 image_size{PageAlignSize(static_cast<u32>(program_image.size()) + bss_size)};
program_image.resize(image_size);
// Load codeset for current process
codeset->name = file->GetName();
codeset->memory = std::make_shared<std::vector<u8>>(std::move(program_image));
Core::CurrentProcess()->LoadModule(codeset, load_base);
// Register module with GDBStub
GDBStub::RegisterModule(codeset->name, load_base, load_base);
return load_base + image_size;
}
ResultStatus AppLoader_NSO::Load(Kernel::SharedPtr<Kernel::Process>& process) {
if (is_loaded) {
return ResultStatus::ErrorAlreadyLoaded;
}
// Load module
LoadModule(file, Memory::PROCESS_IMAGE_VADDR);
LOG_DEBUG(Loader, "loaded module {} @ 0x{:X}", file->GetName(), Memory::PROCESS_IMAGE_VADDR);
auto& kernel = Core::System::GetInstance().Kernel();
process->svc_access_mask.set();
process->resource_limit =
kernel.ResourceLimitForCategory(Kernel::ResourceLimitCategory::APPLICATION);
process->Run(Memory::PROCESS_IMAGE_VADDR, THREADPRIO_DEFAULT, Memory::DEFAULT_STACK_SIZE);
is_loaded = true;
return ResultStatus::Success;
}
} // namespace Loader