09f7c355c6
Kernel Rework: Memory updates and refactoring (Part 1)
685 lines
23 KiB
C++
685 lines
23 KiB
C++
// Copyright 2014 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <bitset>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <thread>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
#include "common/assert.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/microprofile.h"
|
|
#include "common/thread.h"
|
|
#include "common/thread_worker.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/arm/cpu_interrupt_handler.h"
|
|
#include "core/arm/exclusive_monitor.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/core_timing_util.h"
|
|
#include "core/cpu_manager.h"
|
|
#include "core/device_memory.h"
|
|
#include "core/hardware_properties.h"
|
|
#include "core/hle/kernel/client_port.h"
|
|
#include "core/hle/kernel/handle_table.h"
|
|
#include "core/hle/kernel/k_memory_layout.h"
|
|
#include "core/hle/kernel/k_memory_manager.h"
|
|
#include "core/hle/kernel/k_resource_limit.h"
|
|
#include "core/hle/kernel/k_scheduler.h"
|
|
#include "core/hle/kernel/k_shared_memory.h"
|
|
#include "core/hle/kernel/k_slab_heap.h"
|
|
#include "core/hle/kernel/k_thread.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/physical_core.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/service_thread.h"
|
|
#include "core/hle/kernel/svc_results.h"
|
|
#include "core/hle/kernel/time_manager.h"
|
|
#include "core/hle/lock.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/memory.h"
|
|
|
|
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
|
|
|
|
namespace Kernel {
|
|
|
|
struct KernelCore::Impl {
|
|
explicit Impl(Core::System& system, KernelCore& kernel)
|
|
: time_manager{system}, global_handle_table{kernel}, system{system} {}
|
|
|
|
void SetMulticore(bool is_multicore) {
|
|
this->is_multicore = is_multicore;
|
|
}
|
|
|
|
void Initialize(KernelCore& kernel) {
|
|
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
|
|
|
|
RegisterHostThread();
|
|
|
|
service_thread_manager =
|
|
std::make_unique<Common::ThreadWorker>(1, "yuzu:ServiceThreadManager");
|
|
is_phantom_mode_for_singlecore = false;
|
|
|
|
InitializePhysicalCores();
|
|
InitializeSystemResourceLimit(kernel, system);
|
|
InitializeMemoryLayout();
|
|
InitializePreemption(kernel);
|
|
InitializeSchedulers();
|
|
InitializeSuspendThreads();
|
|
}
|
|
|
|
void InitializeCores() {
|
|
for (auto& core : cores) {
|
|
core.Initialize(current_process->Is64BitProcess());
|
|
}
|
|
}
|
|
|
|
void Shutdown() {
|
|
process_list.clear();
|
|
|
|
// Ensures all service threads gracefully shutdown
|
|
service_thread_manager.reset();
|
|
service_threads.clear();
|
|
|
|
next_object_id = 0;
|
|
next_kernel_process_id = Process::InitialKIPIDMin;
|
|
next_user_process_id = Process::ProcessIDMin;
|
|
next_thread_id = 1;
|
|
|
|
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
|
if (suspend_threads[i]) {
|
|
suspend_threads[i].reset();
|
|
}
|
|
}
|
|
|
|
cores.clear();
|
|
|
|
current_process = nullptr;
|
|
|
|
global_handle_table.Clear();
|
|
|
|
preemption_event = nullptr;
|
|
|
|
named_ports.clear();
|
|
|
|
exclusive_monitor.reset();
|
|
|
|
hid_shared_mem = nullptr;
|
|
font_shared_mem = nullptr;
|
|
irs_shared_mem = nullptr;
|
|
time_shared_mem = nullptr;
|
|
|
|
system_resource_limit = nullptr;
|
|
|
|
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
|
|
next_host_thread_id = Core::Hardware::NUM_CPU_CORES;
|
|
}
|
|
|
|
void InitializePhysicalCores() {
|
|
exclusive_monitor =
|
|
Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES);
|
|
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
|
schedulers[i] = std::make_unique<Kernel::KScheduler>(system, i);
|
|
cores.emplace_back(i, system, *schedulers[i], interrupts);
|
|
}
|
|
}
|
|
|
|
void InitializeSchedulers() {
|
|
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
|
cores[i].Scheduler().Initialize();
|
|
}
|
|
}
|
|
|
|
// Creates the default system resource limit
|
|
void InitializeSystemResourceLimit(KernelCore& kernel, Core::System& system) {
|
|
system_resource_limit = std::make_shared<KResourceLimit>(kernel, system);
|
|
|
|
// If setting the default system values fails, then something seriously wrong has occurred.
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::PhysicalMemory, 0x100000000)
|
|
.IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::Threads, 800).IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::Events, 700).IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::TransferMemory, 200)
|
|
.IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::Sessions, 933).IsSuccess());
|
|
|
|
// Derived from recent software updates. The kernel reserves 27MB
|
|
constexpr u64 kernel_size{0x1b00000};
|
|
if (!system_resource_limit->Reserve(LimitableResource::PhysicalMemory, kernel_size)) {
|
|
UNREACHABLE();
|
|
}
|
|
// Reserve secure applet memory, introduced in firmware 5.0.0
|
|
constexpr u64 secure_applet_memory_size{0x400000};
|
|
ASSERT(system_resource_limit->Reserve(LimitableResource::PhysicalMemory,
|
|
secure_applet_memory_size));
|
|
}
|
|
|
|
void InitializePreemption(KernelCore& kernel) {
|
|
preemption_event = Core::Timing::CreateEvent(
|
|
"PreemptionCallback", [this, &kernel](std::uintptr_t, std::chrono::nanoseconds) {
|
|
{
|
|
KScopedSchedulerLock lock(kernel);
|
|
global_scheduler_context->PreemptThreads();
|
|
}
|
|
const auto time_interval = std::chrono::nanoseconds{
|
|
Core::Timing::msToCycles(std::chrono::milliseconds(10))};
|
|
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
|
});
|
|
|
|
const auto time_interval =
|
|
std::chrono::nanoseconds{Core::Timing::msToCycles(std::chrono::milliseconds(10))};
|
|
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
|
}
|
|
|
|
void InitializeSuspendThreads() {
|
|
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
|
std::string name = "Suspend Thread Id:" + std::to_string(i);
|
|
std::function<void(void*)> init_func = Core::CpuManager::GetSuspendThreadStartFunc();
|
|
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
|
|
auto thread_res = KThread::Create(system, ThreadType::HighPriority, std::move(name), 0,
|
|
0, 0, static_cast<u32>(i), 0, nullptr,
|
|
std::move(init_func), init_func_parameter);
|
|
|
|
suspend_threads[i] = std::move(thread_res).Unwrap();
|
|
}
|
|
}
|
|
|
|
void MakeCurrentProcess(Process* process) {
|
|
current_process = process;
|
|
if (process == nullptr) {
|
|
return;
|
|
}
|
|
|
|
const u32 core_id = GetCurrentHostThreadID();
|
|
if (core_id < Core::Hardware::NUM_CPU_CORES) {
|
|
system.Memory().SetCurrentPageTable(*process, core_id);
|
|
}
|
|
}
|
|
|
|
/// Creates a new host thread ID, should only be called by GetHostThreadId
|
|
u32 AllocateHostThreadId(std::optional<std::size_t> core_id) {
|
|
if (core_id) {
|
|
// The first for slots are reserved for CPU core threads
|
|
ASSERT(*core_id < Core::Hardware::NUM_CPU_CORES);
|
|
return static_cast<u32>(*core_id);
|
|
} else {
|
|
return next_host_thread_id++;
|
|
}
|
|
}
|
|
|
|
/// Gets the host thread ID for the caller, allocating a new one if this is the first time
|
|
u32 GetHostThreadId(std::optional<std::size_t> core_id = std::nullopt) {
|
|
const thread_local auto host_thread_id{AllocateHostThreadId(core_id)};
|
|
return host_thread_id;
|
|
}
|
|
|
|
// Gets the dummy KThread for the caller, allocating a new one if this is the first time
|
|
KThread* GetHostDummyThread() {
|
|
const thread_local auto thread =
|
|
KThread::Create(
|
|
system, ThreadType::Main, fmt::format("DummyThread:{}", GetHostThreadId()), 0,
|
|
KThread::DefaultThreadPriority, 0, static_cast<u32>(3), 0, nullptr,
|
|
[]([[maybe_unused]] void* arg) { UNREACHABLE(); }, nullptr)
|
|
.Unwrap();
|
|
return thread.get();
|
|
}
|
|
|
|
/// Registers a CPU core thread by allocating a host thread ID for it
|
|
void RegisterCoreThread(std::size_t core_id) {
|
|
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
|
const auto this_id = GetHostThreadId(core_id);
|
|
if (!is_multicore) {
|
|
single_core_thread_id = this_id;
|
|
}
|
|
}
|
|
|
|
/// Registers a new host thread by allocating a host thread ID for it
|
|
void RegisterHostThread() {
|
|
[[maybe_unused]] const auto this_id = GetHostThreadId();
|
|
[[maybe_unused]] const auto dummy_thread = GetHostDummyThread();
|
|
}
|
|
|
|
[[nodiscard]] u32 GetCurrentHostThreadID() {
|
|
const auto this_id = GetHostThreadId();
|
|
if (!is_multicore && single_core_thread_id == this_id) {
|
|
return static_cast<u32>(system.GetCpuManager().CurrentCore());
|
|
}
|
|
return this_id;
|
|
}
|
|
|
|
bool IsPhantomModeForSingleCore() const {
|
|
return is_phantom_mode_for_singlecore;
|
|
}
|
|
|
|
void SetIsPhantomModeForSingleCore(bool value) {
|
|
ASSERT(!is_multicore);
|
|
is_phantom_mode_for_singlecore = value;
|
|
}
|
|
|
|
KThread* GetCurrentEmuThread() {
|
|
const auto thread_id = GetCurrentHostThreadID();
|
|
if (thread_id >= Core::Hardware::NUM_CPU_CORES) {
|
|
return GetHostDummyThread();
|
|
}
|
|
return schedulers[thread_id]->GetCurrentThread();
|
|
}
|
|
|
|
void InitializeMemoryLayout() {
|
|
// Initialize memory layout
|
|
constexpr KMemoryLayout layout{KMemoryLayout::GetDefaultLayout()};
|
|
constexpr std::size_t hid_size{0x40000};
|
|
constexpr std::size_t font_size{0x1100000};
|
|
constexpr std::size_t irs_size{0x8000};
|
|
constexpr std::size_t time_size{0x1000};
|
|
constexpr PAddr hid_addr{layout.System().StartAddress()};
|
|
constexpr PAddr font_pa{layout.System().StartAddress() + hid_size};
|
|
constexpr PAddr irs_addr{layout.System().StartAddress() + hid_size + font_size};
|
|
constexpr PAddr time_addr{layout.System().StartAddress() + hid_size + font_size + irs_size};
|
|
|
|
// Initialize memory manager
|
|
memory_manager = std::make_unique<KMemoryManager>();
|
|
memory_manager->InitializeManager(KMemoryManager::Pool::Application,
|
|
layout.Application().StartAddress(),
|
|
layout.Application().EndAddress());
|
|
memory_manager->InitializeManager(KMemoryManager::Pool::Applet,
|
|
layout.Applet().StartAddress(),
|
|
layout.Applet().EndAddress());
|
|
memory_manager->InitializeManager(KMemoryManager::Pool::System,
|
|
layout.System().StartAddress(),
|
|
layout.System().EndAddress());
|
|
|
|
hid_shared_mem = Kernel::KSharedMemory::Create(
|
|
system.Kernel(), system.DeviceMemory(), nullptr, {hid_addr, hid_size / PageSize},
|
|
KMemoryPermission::None, KMemoryPermission::Read, hid_addr, hid_size,
|
|
"HID:SharedMemory");
|
|
font_shared_mem = Kernel::KSharedMemory::Create(
|
|
system.Kernel(), system.DeviceMemory(), nullptr, {font_pa, font_size / PageSize},
|
|
KMemoryPermission::None, KMemoryPermission::Read, font_pa, font_size,
|
|
"Font:SharedMemory");
|
|
irs_shared_mem = Kernel::KSharedMemory::Create(
|
|
system.Kernel(), system.DeviceMemory(), nullptr, {irs_addr, irs_size / PageSize},
|
|
KMemoryPermission::None, KMemoryPermission::Read, irs_addr, irs_size,
|
|
"IRS:SharedMemory");
|
|
time_shared_mem = Kernel::KSharedMemory::Create(
|
|
system.Kernel(), system.DeviceMemory(), nullptr, {time_addr, time_size / PageSize},
|
|
KMemoryPermission::None, KMemoryPermission::Read, time_addr, time_size,
|
|
"Time:SharedMemory");
|
|
|
|
// Allocate slab heaps
|
|
user_slab_heap_pages = std::make_unique<KSlabHeap<Page>>();
|
|
|
|
constexpr u64 user_slab_heap_size{0x1ef000};
|
|
// Reserve slab heaps
|
|
ASSERT(
|
|
system_resource_limit->Reserve(LimitableResource::PhysicalMemory, user_slab_heap_size));
|
|
// Initialize slab heaps
|
|
user_slab_heap_pages->Initialize(
|
|
system.DeviceMemory().GetPointer(Core::DramMemoryMap::SlabHeapBase),
|
|
user_slab_heap_size);
|
|
}
|
|
|
|
std::atomic<u32> next_object_id{0};
|
|
std::atomic<u64> next_kernel_process_id{Process::InitialKIPIDMin};
|
|
std::atomic<u64> next_user_process_id{Process::ProcessIDMin};
|
|
std::atomic<u64> next_thread_id{1};
|
|
|
|
// Lists all processes that exist in the current session.
|
|
std::vector<std::shared_ptr<Process>> process_list;
|
|
Process* current_process = nullptr;
|
|
std::unique_ptr<Kernel::GlobalSchedulerContext> global_scheduler_context;
|
|
Kernel::TimeManager time_manager;
|
|
|
|
std::shared_ptr<KResourceLimit> system_resource_limit;
|
|
|
|
std::shared_ptr<Core::Timing::EventType> preemption_event;
|
|
|
|
// This is the kernel's handle table or supervisor handle table which
|
|
// stores all the objects in place.
|
|
HandleTable global_handle_table;
|
|
|
|
/// Map of named ports managed by the kernel, which can be retrieved using
|
|
/// the ConnectToPort SVC.
|
|
NamedPortTable named_ports;
|
|
|
|
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
|
|
std::vector<Kernel::PhysicalCore> cores;
|
|
|
|
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
|
|
std::atomic<u32> next_host_thread_id{Core::Hardware::NUM_CPU_CORES};
|
|
|
|
// Kernel memory management
|
|
std::unique_ptr<KMemoryManager> memory_manager;
|
|
std::unique_ptr<KSlabHeap<Page>> user_slab_heap_pages;
|
|
|
|
// Shared memory for services
|
|
std::shared_ptr<Kernel::KSharedMemory> hid_shared_mem;
|
|
std::shared_ptr<Kernel::KSharedMemory> font_shared_mem;
|
|
std::shared_ptr<Kernel::KSharedMemory> irs_shared_mem;
|
|
std::shared_ptr<Kernel::KSharedMemory> time_shared_mem;
|
|
|
|
// Threads used for services
|
|
std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads;
|
|
|
|
// Service threads are managed by a worker thread, so that a calling service thread can queue up
|
|
// the release of itself
|
|
std::unique_ptr<Common::ThreadWorker> service_thread_manager;
|
|
|
|
std::array<std::shared_ptr<KThread>, Core::Hardware::NUM_CPU_CORES> suspend_threads{};
|
|
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{};
|
|
std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{};
|
|
|
|
bool is_multicore{};
|
|
bool is_phantom_mode_for_singlecore{};
|
|
u32 single_core_thread_id{};
|
|
|
|
std::array<u64, Core::Hardware::NUM_CPU_CORES> svc_ticks{};
|
|
|
|
// System context
|
|
Core::System& system;
|
|
};
|
|
|
|
KernelCore::KernelCore(Core::System& system) : impl{std::make_unique<Impl>(system, *this)} {}
|
|
KernelCore::~KernelCore() {
|
|
Shutdown();
|
|
}
|
|
|
|
void KernelCore::SetMulticore(bool is_multicore) {
|
|
impl->SetMulticore(is_multicore);
|
|
}
|
|
|
|
void KernelCore::Initialize() {
|
|
impl->Initialize(*this);
|
|
}
|
|
|
|
void KernelCore::InitializeCores() {
|
|
impl->InitializeCores();
|
|
}
|
|
|
|
void KernelCore::Shutdown() {
|
|
impl->Shutdown();
|
|
}
|
|
|
|
std::shared_ptr<KResourceLimit> KernelCore::GetSystemResourceLimit() const {
|
|
return impl->system_resource_limit;
|
|
}
|
|
|
|
std::shared_ptr<KThread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
|
|
return impl->global_handle_table.Get<KThread>(handle);
|
|
}
|
|
|
|
void KernelCore::AppendNewProcess(std::shared_ptr<Process> process) {
|
|
impl->process_list.push_back(std::move(process));
|
|
}
|
|
|
|
void KernelCore::MakeCurrentProcess(Process* process) {
|
|
impl->MakeCurrentProcess(process);
|
|
}
|
|
|
|
Process* KernelCore::CurrentProcess() {
|
|
return impl->current_process;
|
|
}
|
|
|
|
const Process* KernelCore::CurrentProcess() const {
|
|
return impl->current_process;
|
|
}
|
|
|
|
const std::vector<std::shared_ptr<Process>>& KernelCore::GetProcessList() const {
|
|
return impl->process_list;
|
|
}
|
|
|
|
Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() {
|
|
return *impl->global_scheduler_context;
|
|
}
|
|
|
|
const Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() const {
|
|
return *impl->global_scheduler_context;
|
|
}
|
|
|
|
Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) {
|
|
return *impl->schedulers[id];
|
|
}
|
|
|
|
const Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) const {
|
|
return *impl->schedulers[id];
|
|
}
|
|
|
|
Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) {
|
|
return impl->cores[id];
|
|
}
|
|
|
|
const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
|
|
return impl->cores[id];
|
|
}
|
|
|
|
Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() {
|
|
u32 core_id = impl->GetCurrentHostThreadID();
|
|
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
|
return impl->cores[core_id];
|
|
}
|
|
|
|
const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const {
|
|
u32 core_id = impl->GetCurrentHostThreadID();
|
|
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
|
return impl->cores[core_id];
|
|
}
|
|
|
|
Kernel::KScheduler* KernelCore::CurrentScheduler() {
|
|
u32 core_id = impl->GetCurrentHostThreadID();
|
|
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
|
|
// This is expected when called from not a guest thread
|
|
return {};
|
|
}
|
|
return impl->schedulers[core_id].get();
|
|
}
|
|
|
|
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts() {
|
|
return impl->interrupts;
|
|
}
|
|
|
|
const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts()
|
|
const {
|
|
return impl->interrupts;
|
|
}
|
|
|
|
Kernel::TimeManager& KernelCore::TimeManager() {
|
|
return impl->time_manager;
|
|
}
|
|
|
|
const Kernel::TimeManager& KernelCore::TimeManager() const {
|
|
return impl->time_manager;
|
|
}
|
|
|
|
Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
|
|
return *impl->exclusive_monitor;
|
|
}
|
|
|
|
const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
|
|
return *impl->exclusive_monitor;
|
|
}
|
|
|
|
void KernelCore::InvalidateAllInstructionCaches() {
|
|
for (auto& physical_core : impl->cores) {
|
|
physical_core.ArmInterface().ClearInstructionCache();
|
|
}
|
|
}
|
|
|
|
void KernelCore::InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size) {
|
|
for (auto& physical_core : impl->cores) {
|
|
if (!physical_core.IsInitialized()) {
|
|
continue;
|
|
}
|
|
physical_core.ArmInterface().InvalidateCacheRange(addr, size);
|
|
}
|
|
}
|
|
|
|
void KernelCore::PrepareReschedule(std::size_t id) {
|
|
// TODO: Reimplement, this
|
|
}
|
|
|
|
void KernelCore::AddNamedPort(std::string name, std::shared_ptr<ClientPort> port) {
|
|
impl->named_ports.emplace(std::move(name), std::move(port));
|
|
}
|
|
|
|
KernelCore::NamedPortTable::iterator KernelCore::FindNamedPort(const std::string& name) {
|
|
return impl->named_ports.find(name);
|
|
}
|
|
|
|
KernelCore::NamedPortTable::const_iterator KernelCore::FindNamedPort(
|
|
const std::string& name) const {
|
|
return impl->named_ports.find(name);
|
|
}
|
|
|
|
bool KernelCore::IsValidNamedPort(NamedPortTable::const_iterator port) const {
|
|
return port != impl->named_ports.cend();
|
|
}
|
|
|
|
u32 KernelCore::CreateNewObjectID() {
|
|
return impl->next_object_id++;
|
|
}
|
|
|
|
u64 KernelCore::CreateNewThreadID() {
|
|
return impl->next_thread_id++;
|
|
}
|
|
|
|
u64 KernelCore::CreateNewKernelProcessID() {
|
|
return impl->next_kernel_process_id++;
|
|
}
|
|
|
|
u64 KernelCore::CreateNewUserProcessID() {
|
|
return impl->next_user_process_id++;
|
|
}
|
|
|
|
Kernel::HandleTable& KernelCore::GlobalHandleTable() {
|
|
return impl->global_handle_table;
|
|
}
|
|
|
|
const Kernel::HandleTable& KernelCore::GlobalHandleTable() const {
|
|
return impl->global_handle_table;
|
|
}
|
|
|
|
void KernelCore::RegisterCoreThread(std::size_t core_id) {
|
|
impl->RegisterCoreThread(core_id);
|
|
}
|
|
|
|
void KernelCore::RegisterHostThread() {
|
|
impl->RegisterHostThread();
|
|
}
|
|
|
|
u32 KernelCore::GetCurrentHostThreadID() const {
|
|
return impl->GetCurrentHostThreadID();
|
|
}
|
|
|
|
KThread* KernelCore::GetCurrentEmuThread() const {
|
|
return impl->GetCurrentEmuThread();
|
|
}
|
|
|
|
KMemoryManager& KernelCore::MemoryManager() {
|
|
return *impl->memory_manager;
|
|
}
|
|
|
|
const KMemoryManager& KernelCore::MemoryManager() const {
|
|
return *impl->memory_manager;
|
|
}
|
|
|
|
KSlabHeap<Page>& KernelCore::GetUserSlabHeapPages() {
|
|
return *impl->user_slab_heap_pages;
|
|
}
|
|
|
|
const KSlabHeap<Page>& KernelCore::GetUserSlabHeapPages() const {
|
|
return *impl->user_slab_heap_pages;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetHidSharedMem() {
|
|
return *impl->hid_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetHidSharedMem() const {
|
|
return *impl->hid_shared_mem;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetFontSharedMem() {
|
|
return *impl->font_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetFontSharedMem() const {
|
|
return *impl->font_shared_mem;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetIrsSharedMem() {
|
|
return *impl->irs_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetIrsSharedMem() const {
|
|
return *impl->irs_shared_mem;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetTimeSharedMem() {
|
|
return *impl->time_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetTimeSharedMem() const {
|
|
return *impl->time_shared_mem;
|
|
}
|
|
|
|
void KernelCore::Suspend(bool in_suspention) {
|
|
const bool should_suspend = exception_exited || in_suspention;
|
|
{
|
|
KScopedSchedulerLock lock(*this);
|
|
const auto state = should_suspend ? ThreadState::Runnable : ThreadState::Waiting;
|
|
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
|
impl->suspend_threads[i]->SetState(state);
|
|
impl->suspend_threads[i]->SetWaitReasonForDebugging(
|
|
ThreadWaitReasonForDebugging::Suspended);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool KernelCore::IsMulticore() const {
|
|
return impl->is_multicore;
|
|
}
|
|
|
|
void KernelCore::ExceptionalExit() {
|
|
exception_exited = true;
|
|
Suspend(true);
|
|
}
|
|
|
|
void KernelCore::EnterSVCProfile() {
|
|
std::size_t core = impl->GetCurrentHostThreadID();
|
|
impl->svc_ticks[core] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
|
|
}
|
|
|
|
void KernelCore::ExitSVCProfile() {
|
|
std::size_t core = impl->GetCurrentHostThreadID();
|
|
MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[core]);
|
|
}
|
|
|
|
std::weak_ptr<Kernel::ServiceThread> KernelCore::CreateServiceThread(const std::string& name) {
|
|
auto service_thread = std::make_shared<Kernel::ServiceThread>(*this, 1, name);
|
|
impl->service_thread_manager->QueueWork(
|
|
[this, service_thread] { impl->service_threads.emplace(service_thread); });
|
|
return service_thread;
|
|
}
|
|
|
|
void KernelCore::ReleaseServiceThread(std::weak_ptr<Kernel::ServiceThread> service_thread) {
|
|
impl->service_thread_manager->QueueWork([this, service_thread] {
|
|
if (auto strong_ptr = service_thread.lock()) {
|
|
impl->service_threads.erase(strong_ptr);
|
|
}
|
|
});
|
|
}
|
|
|
|
bool KernelCore::IsPhantomModeForSingleCore() const {
|
|
return impl->IsPhantomModeForSingleCore();
|
|
}
|
|
|
|
void KernelCore::SetIsPhantomModeForSingleCore(bool value) {
|
|
impl->SetIsPhantomModeForSingleCore(value);
|
|
}
|
|
|
|
} // namespace Kernel
|