common_types: Convert typedefs to using aliases
May as well while we're making changes to this file.
This commit is contained in:
parent
e8e5041955
commit
16ffecd8fb
|
@ -27,23 +27,23 @@
|
|||
#include <array>
|
||||
#include <cstdint>
|
||||
|
||||
typedef std::uint8_t u8; ///< 8-bit unsigned byte
|
||||
typedef std::uint16_t u16; ///< 16-bit unsigned short
|
||||
typedef std::uint32_t u32; ///< 32-bit unsigned word
|
||||
typedef std::uint64_t u64; ///< 64-bit unsigned int
|
||||
using u8 = std::uint8_t; ///< 8-bit unsigned byte
|
||||
using u16 = std::uint16_t; ///< 16-bit unsigned short
|
||||
using u32 = std::uint32_t; ///< 32-bit unsigned word
|
||||
using u64 = std::uint64_t; ///< 64-bit unsigned int
|
||||
|
||||
typedef std::int8_t s8; ///< 8-bit signed byte
|
||||
typedef std::int16_t s16; ///< 16-bit signed short
|
||||
typedef std::int32_t s32; ///< 32-bit signed word
|
||||
typedef std::int64_t s64; ///< 64-bit signed int
|
||||
using s8 = std::int8_t; ///< 8-bit signed byte
|
||||
using s16 = std::int16_t; ///< 16-bit signed short
|
||||
using s32 = std::int32_t; ///< 32-bit signed word
|
||||
using s64 = std::int64_t; ///< 64-bit signed int
|
||||
|
||||
typedef float f32; ///< 32-bit floating point
|
||||
typedef double f64; ///< 64-bit floating point
|
||||
using f32 = float; ///< 32-bit floating point
|
||||
using f64 = double; ///< 64-bit floating point
|
||||
|
||||
// TODO: It would be nice to eventually replace these with strong types that prevent accidental
|
||||
// conversion between each other.
|
||||
typedef u64 VAddr; ///< Represents a pointer in the userspace virtual address space.
|
||||
typedef u64 PAddr; ///< Represents a pointer in the ARM11 physical address space.
|
||||
using VAddr = u64; ///< Represents a pointer in the userspace virtual address space.
|
||||
using PAddr = u64; ///< Represents a pointer in the ARM11 physical address space.
|
||||
|
||||
using u128 = std::array<std::uint64_t, 2>;
|
||||
static_assert(sizeof(u128) == 16, "u128 must be 128 bits wide");
|
||||
|
|
Loading…
Reference in a new issue