yuzu/src/core/hle/kernel/process.cpp

273 lines
10 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2018-01-01 19:38:34 +00:00
#include <algorithm>
#include <memory>
#include <random>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Kernel {
namespace {
/**
* Sets up the primary application thread
*
* @param owner_process The parent process for the main thread
* @param kernel The kernel instance to create the main thread under.
* @param entry_point The address at which the thread should start execution
* @param priority The priority to give the main thread
*/
void SetupMainThread(Process& owner_process, KernelCore& kernel, VAddr entry_point, u32 priority) {
// Initialize new "main" thread
const VAddr stack_top = owner_process.VMManager().GetTLSIORegionEndAddress();
auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0,
owner_process.GetIdealCore(), stack_top, owner_process);
SharedPtr<Thread> thread = std::move(thread_res).Unwrap();
// Register 1 must be a handle to the main thread
const Handle thread_handle = owner_process.GetHandleTable().Create(thread).Unwrap();
thread->GetContext().cpu_registers[1] = thread_handle;
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
thread->ResumeFromWait();
}
} // Anonymous namespace
SharedPtr<Process> Process::Create(Core::System& system, std::string&& name) {
auto& kernel = system.Kernel();
SharedPtr<Process> process(new Process(system));
process->name = std::move(name);
process->resource_limit = kernel.GetSystemResourceLimit();
2018-01-01 19:38:34 +00:00
process->status = ProcessStatus::Created;
process->program_id = 0;
process->process_id = kernel.CreateNewProcessID();
process->capabilities.InitializeForMetadatalessProcess();
std::mt19937 rng(Settings::values.rng_seed.value_or(0));
std::uniform_int_distribution<u64> distribution;
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
[&] { return distribution(rng); });
kernel.AppendNewProcess(process);
return process;
}
SharedPtr<ResourceLimit> Process::GetResourceLimit() const {
return resource_limit;
}
u64 Process::GetTotalPhysicalMemoryUsed() const {
return vm_manager.GetCurrentHeapSize() + main_thread_stack_size + code_memory_size;
}
void Process::RegisterThread(const Thread* thread) {
thread_list.push_back(thread);
}
void Process::UnregisterThread(const Thread* thread) {
thread_list.remove(thread);
}
ResultCode Process::ClearSignalState() {
if (status == ProcessStatus::Exited) {
LOG_ERROR(Kernel, "called on a terminated process instance.");
return ERR_INVALID_STATE;
}
if (!is_signaled) {
LOG_ERROR(Kernel, "called on a process instance that isn't signaled.");
return ERR_INVALID_STATE;
}
is_signaled = false;
return RESULT_SUCCESS;
}
ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
program_id = metadata.GetTitleID();
ideal_core = metadata.GetMainThreadCore();
is_64bit_process = metadata.Is64BitProgram();
vm_manager.Reset(metadata.GetAddressSpaceType());
// Ensure that the potentially resized page table is seen by CPU backends.
Memory::SetCurrentPageTable(&vm_manager.page_table);
const auto& caps = metadata.GetKernelCapabilities();
const auto capability_init_result =
capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
if (capability_init_result.IsError()) {
return capability_init_result;
}
return handle_table.SetSize(capabilities.GetHandleTableSize());
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u64 stack_size) {
// The kernel always ensures that the given stack size is page aligned.
main_thread_stack_size = Common::AlignUp(stack_size, Memory::PAGE_SIZE);
2018-03-10 22:51:23 +00:00
// Allocate and map the main thread stack
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
// of the user address space.
const VAddr mapping_address = vm_manager.GetTLSIORegionEndAddress() - main_thread_stack_size;
vm_manager
.MapMemoryBlock(mapping_address, std::make_shared<std::vector<u8>>(main_thread_stack_size),
0, main_thread_stack_size, MemoryState::Stack)
.Unwrap();
vm_manager.LogLayout();
ChangeStatus(ProcessStatus::Running);
SetupMainThread(*this, kernel, entry_point, main_thread_priority);
}
void Process::PrepareForTermination() {
ChangeStatus(ProcessStatus::Exiting);
const auto stop_threads = [this](const std::vector<SharedPtr<Thread>>& thread_list) {
for (auto& thread : thread_list) {
if (thread->GetOwnerProcess() != this)
continue;
if (thread == system.CurrentScheduler().GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynchAny ||
thread->GetStatus() == ThreadStatus::WaitSynchAll,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
};
stop_threads(system.Scheduler(0).GetThreadList());
stop_threads(system.Scheduler(1).GetThreadList());
stop_threads(system.Scheduler(2).GetThreadList());
stop_threads(system.Scheduler(3).GetThreadList());
ChangeStatus(ProcessStatus::Exited);
}
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
* Returns a tuple of (page, slot, alloc_needed) where:
* page: The index of the first allocated TLS page that has free slots.
* slot: The index of the first free slot in the indicated page.
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
*/
static std::tuple<std::size_t, std::size_t, bool> FindFreeThreadLocalSlot(
const std::vector<std::bitset<8>>& tls_slots) {
// Iterate over all the allocated pages, and try to find one where not all slots are used.
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
const auto& page_tls_slots = tls_slots[page];
if (!page_tls_slots.all()) {
// We found a page with at least one free slot, find which slot it is
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
if (!page_tls_slots.test(slot)) {
return std::make_tuple(page, slot, false);
}
}
}
}
return std::make_tuple(0, 0, true);
}
VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) {
auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots);
const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress();
if (needs_allocation) {
tls_slots.emplace_back(0); // The page is completely available at the start
available_page = tls_slots.size() - 1;
available_slot = 0; // Use the first slot in the new page
// Allocate some memory from the end of the linear heap for this region.
auto& tls_memory = thread.GetTLSMemory();
tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0);
vm_manager.RefreshMemoryBlockMappings(tls_memory.get());
vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0,
Memory::PAGE_SIZE, MemoryState::ThreadLocal);
}
tls_slots[available_page].set(available_slot);
return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE;
}
void Process::FreeTLSSlot(VAddr tls_address) {
const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress();
const VAddr tls_page = tls_base / Memory::PAGE_SIZE;
const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
tls_slots[tls_page].reset(tls_slot);
}
void Process::LoadModule(CodeSet module_, VAddr base_addr) {
const auto memory = std::make_shared<std::vector<u8>>(std::move(module_.memory));
const auto MapSegment = [&](const CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
const auto vma = vm_manager
.MapMemoryBlock(segment.addr + base_addr, memory, segment.offset,
segment.size, memory_state)
.Unwrap();
vm_manager.Reprotect(vma, permissions);
};
// Map CodeSet segments
MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code);
MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeData);
MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeData);
2019-04-02 04:44:32 +00:00
code_memory_size += module_.memory.size();
// Clear instruction cache in CPU JIT
system.InvalidateCpuInstructionCaches();
}
Process::Process(Core::System& system)
: WaitObject{system.Kernel()}, address_arbiter{system}, mutex{system}, system{system} {}
Process::~Process() = default;
void Process::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "Object unavailable!");
}
bool Process::ShouldWait(const Thread* thread) const {
return !is_signaled;
}
void Process::ChangeStatus(ProcessStatus new_status) {
if (status == new_status) {
return;
}
status = new_status;
is_signaled = true;
WakeupAllWaitingThreads();
}
2018-01-01 19:38:34 +00:00
} // namespace Kernel