winamp/Src/Winamp/benskiQ/benskiQ.cpp
2024-09-24 14:54:57 +02:00

232 lines
6 KiB
C++

#include "main.h"
#include "EqBand.h"
#include "WinampAttributes.h"
#include <math.h>
extern int filter_srate, filter_enabled, filter_top, filter_top2;
extern float preamp_val;
static int filter_nch=0;
static bool init=false;
static EqBand benskiQ[10];
//#define BENSKIQ_Q 0.70710678118654752440084436210485
#define BENSKIQ_Q 1.41
static double benskiQ_freqs_iso[10]={31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000}; // ISO standard equalizer frequency table
static double benskiQ_freqs[10]={ 70, 180, 320, 600, 1000, 3000, 6000, 12000, 14000, 16000 }; // winamp style frequency table
static CRITICAL_SECTION benskiQ_cs;
void benskiQ_init()
{
InitializeCriticalSection(&benskiQ_cs);
for (int x=0;x<10;x++)
{
benskiQ[x].set_parameters((config_eq_frequencies==EQ_FREQUENCIES_WINAMP)?benskiQ_freqs[x]:benskiQ_freqs_iso[x], 1.0, BENSKIQ_Q);
}
}
static __inline double VALTODB(int v)
{
v -= 31;
if (v < -31) v = -31;
if (v > 32) v = 32;
if (v > 0) return -12.0*(v / 32.0);
else if (v < 0)
{
return -12.0*(v / 31.0);
}
return 0.0f;
}
static __inline double VALTOGAIN(int v)
{
return pow(10.0, VALTODB(v)/20.0);
}
void benskiQ_eq_set(char data[10])
{
if (!init)
{
init=true; benskiQ_init();
}
EnterCriticalSection(&benskiQ_cs);
for (int x = 0; x < 10; x ++)
{
benskiQ[x].set_parameters((config_eq_frequencies==EQ_FREQUENCIES_WINAMP)?benskiQ_freqs[x]:benskiQ_freqs_iso[x], VALTOGAIN(data[x]), BENSKIQ_Q);
}
LeaveCriticalSection(&benskiQ_cs);
}
static void FillFloat(float **floatBuf, void *samples, size_t bps, size_t numSamples, size_t numChannels, float preamp)
{
switch (bps)
{
case 8:
{
preamp /= 256.0f;
unsigned __int8 *samples8 = (unsigned __int8 *)samples;
for (size_t c=0;c<numChannels;c++)
for (size_t x = 0; x != numSamples; x ++)
{
floatBuf[c][x] = (float)(samples8[c+numChannels*x]-128) * preamp;
}
}
break;
case 16:
{
preamp/=32768.0f;
short *samples16 = (short *)samples;
for (size_t c=0;c<numChannels;c++)
for (size_t x = 0; x != numSamples; x ++)
{
floatBuf[c][x] = (float)samples16[c+numChannels*x] * preamp;
}
}
break;
case 24:
{
preamp/=2147483648.0f;
unsigned __int8 *samples8 = (unsigned __int8 *)samples;
long temp;
for (size_t x = 0; x != numSamples; x ++)
for (size_t c=0;c<numChannels;c++)
{
temp = (((long)samples8[0]) << 8);
temp = temp | (((long)samples8[1]) << 16);
temp = temp | (((long)samples8[2]) << 24);
floatBuf[c][x] = (float)temp * preamp;
samples8+=3;
}
}
break;
case 32:
{
preamp /= 2147483648.0f;
int32_t *samples32 = (int32_t *)samples;
for (size_t x = 0; x != numSamples; x ++)
for (size_t c=0;c<numChannels;c++)
{
floatBuf[c][x] = (float)samples32[c+x*numChannels] * preamp;
}
}
break;
}
}
static void FillSamples(void *samples, float **floatBuf, size_t bps, size_t numSamples, size_t numChannels)
{
switch (bps)
{
case 16:
for (size_t i=0;i<numChannels;i++)
Float32_To_Int16_Clip((char *)samples+i*(bps/8), (signed int)numChannels, floatBuf[i], 1, (unsigned int) numSamples);
break;
case 24:
for (size_t i=0;i<numChannels;i++)
Float32_To_Int24_Clip((char *)samples+i*(bps/8), (signed int)numChannels, floatBuf[i], 1, (unsigned int) numSamples);
break;
}
}
static int last_nch=0, last_numsamples=0;
static float **last_sample=0;
void DeleteSample(float **big, int nch)
{
for (int i=0;i<nch;i++)
delete big[i];
delete[]big;
}
float **MakeSample(int numsamples, int nch)
{
if (last_nch < nch || last_numsamples < numsamples)
{
DeleteSample(last_sample, last_nch);
last_nch=max(nch, last_nch);
last_numsamples=max(numsamples, last_numsamples);
last_sample = new float*[last_nch];
for (int i=0;i<last_nch;i++)
last_sample [i]=new float[last_numsamples];
}
return last_sample;
}
void benskiQ_reset(int srate, int nch)
{
for (int i=0;i<10;i++)
{
benskiQ[i].SetSampleRate(srate);
benskiQ[i].set_num_channels(nch);
}
int x;
if (config_eq_frequencies == EQ_FREQUENCIES_WINAMP)
for (x = 0; x < 10 && benskiQ_freqs[x]*2 <= srate; x++);
else
for (x = 0; x < 10 && benskiQ_freqs_iso[x]*2 <= srate; x++);
filter_top = min(x, filter_top2);
filter_srate=srate;
filter_nch=nch;
}
static float NonReplayGainAdjust()
{
if (!(in_mod->UsesOutputPlug&IN_MODULE_FLAG_REPLAYGAIN) && config_replaygain.GetBool())
return pow(10.0f, (float)config_replaygain_non_rg_gain/20.0f);
else
return 1.0f;
}
static float ReplayGainPreamp()
{
if (!(in_mod->UsesOutputPlug&IN_MODULE_FLAG_REPLAYGAIN_PREAMP) && config_replaygain.GetBool())
return pow(10.0f, (float)config_replaygain_preamp/20.0f);
else
return 1.0f;
}
int benskiQ_eq_dosamples(short *samples, int numsamples, int bps, int nch, int srate)
{
if (filter_enabled && in_mod && !(in_mod->UsesOutputPlug&IN_MODULE_FLAG_EQ) && bps != 32)
{
if (srate !=filter_srate || nch != filter_nch)
benskiQ_reset(srate, nch);
if (!init)
{
init=true; benskiQ_init();
}
float **in = MakeSample(numsamples, nch);
FillFloat(in, samples, bps, numsamples, nch, preamp_val*NonReplayGainAdjust()*ReplayGainPreamp());
EnterCriticalSection(&benskiQ_cs);
for (int x = 0; x < filter_top; x ++)
{
benskiQ[x].process(in, in, numsamples, nch);
}
LeaveCriticalSection(&benskiQ_cs);
FillSamples(samples, in, bps, numsamples, nch);
}
else if (!(in_mod->UsesOutputPlug&IN_MODULE_FLAG_REPLAYGAIN) && config_replaygain.GetBool() && (config_replaygain_non_rg_gain.GetFloat() != 0) && bps != 32)
{
float **in = MakeSample(numsamples, nch);
FillFloat(in, samples, bps, numsamples, nch, NonReplayGainAdjust()*ReplayGainPreamp());
FillSamples(samples, in, bps, numsamples, nch);
}
else if (!(in_mod->UsesOutputPlug&IN_MODULE_FLAG_REPLAYGAIN_PREAMP) && config_replaygain.GetBool() && (config_replaygain_preamp.GetFloat() != 0) && bps != 32)
{
float **in = MakeSample(numsamples, nch);
FillFloat(in, samples, bps, numsamples, nch, ReplayGainPreamp());
FillSamples(samples, in, bps, numsamples, nch);
}
else
filter_srate = 0;
return dsp_dosamples(samples, numsamples, bps, nch, srate);
}