// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include "common/alignment.h" #include "common/arch.h" #include "common/assert.h" #include "common/error.h" #include "core/address_space.h" #include "core/libraries/kernel/memory_management.h" #include "core/memory.h" #include "libraries/error_codes.h" #ifdef _WIN32 #include #else #include #include #endif #if defined(__APPLE__) && defined(ARCH_X86_64) // Reserve space for the system address space using a zerofill section. asm(".zerofill GUEST_SYSTEM,GUEST_SYSTEM,__guest_system,0xFBFC00000"); #endif namespace Core { static constexpr size_t BackingSize = SCE_KERNEL_MAIN_DMEM_SIZE_PRO; #ifdef _WIN32 [[nodiscard]] constexpr u64 ToWindowsProt(Core::MemoryProt prot) { if (True(prot & Core::MemoryProt::CpuReadWrite) || True(prot & Core::MemoryProt::GpuReadWrite)) { return PAGE_READWRITE; } else if (True(prot & Core::MemoryProt::CpuRead) || True(prot & Core::MemoryProt::GpuRead)) { return PAGE_READONLY; } else { return PAGE_NOACCESS; } } struct AddressSpace::Impl { Impl() : process{GetCurrentProcess()} { // Allocate virtual address placeholder for our address space. MEM_ADDRESS_REQUIREMENTS req{}; MEM_EXTENDED_PARAMETER param{}; req.LowestStartingAddress = reinterpret_cast(SYSTEM_MANAGED_MIN); // The ending address must align to page boundary - 1 // https://stackoverflow.com/questions/54223343/virtualalloc2-with-memextendedparameteraddressrequirements-always-produces-error req.HighestEndingAddress = reinterpret_cast(USER_MIN + UserSize - 1); req.Alignment = 0; param.Type = MemExtendedParameterAddressRequirements; param.Pointer = &req; // Typically, lower parts of system managed area is already reserved in windows. // If reservation fails attempt again by reducing the area size a little bit. // System managed is about 31GB in size so also cap the number of times we can reduce it // to a reasonable amount. static constexpr size_t ReductionOnFail = 1_GB; static constexpr size_t MaxReductions = 10; size_t reduction = 0; size_t virtual_size = SystemManagedSize + SystemReservedSize + UserSize; for (u32 i = 0; i < MaxReductions; i++) { virtual_base = static_cast(VirtualAlloc2(process, NULL, virtual_size - reduction, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS, ¶m, 1)); if (virtual_base) { break; } reduction += ReductionOnFail; } ASSERT_MSG(virtual_base, "Unable to reserve virtual address space: {}", Common::GetLastErrorMsg()); // Take the reduction off of the system managed area, and leave the others unchanged. system_managed_base = virtual_base; system_managed_size = SystemManagedSize - reduction; system_reserved_base = reinterpret_cast(SYSTEM_RESERVED_MIN); system_reserved_size = SystemReservedSize; user_base = reinterpret_cast(USER_MIN); user_size = UserSize; LOG_INFO(Kernel_Vmm, "System managed virtual memory region: {} - {}", fmt::ptr(system_managed_base), fmt::ptr(system_managed_base + system_managed_size - 1)); LOG_INFO(Kernel_Vmm, "System reserved virtual memory region: {} - {}", fmt::ptr(system_reserved_base), fmt::ptr(system_reserved_base + system_reserved_size - 1)); LOG_INFO(Kernel_Vmm, "User virtual memory region: {} - {}", fmt::ptr(user_base), fmt::ptr(user_base + user_size - 1)); // Initializer placeholder tracker const uintptr_t system_managed_addr = reinterpret_cast(system_managed_base); const uintptr_t system_reserved_addr = reinterpret_cast(system_reserved_base); const uintptr_t user_addr = reinterpret_cast(user_base); placeholders.insert({system_managed_addr, virtual_size - reduction}); // Allocate backing file that represents the total physical memory. backing_handle = CreateFileMapping2(INVALID_HANDLE_VALUE, nullptr, FILE_MAP_WRITE | FILE_MAP_READ, PAGE_READWRITE, SEC_COMMIT, BackingSize, nullptr, nullptr, 0); ASSERT_MSG(backing_handle, "{}", Common::GetLastErrorMsg()); // Allocate a virtual memory for the backing file map as placeholder backing_base = static_cast(VirtualAlloc2(process, nullptr, BackingSize, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS, nullptr, 0)); // Map backing placeholder. This will commit the pages void* const ret = MapViewOfFile3(backing_handle, process, backing_base, 0, BackingSize, MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE, nullptr, 0); ASSERT_MSG(ret == backing_base, "{}", Common::GetLastErrorMsg()); } ~Impl() { if (virtual_base) { if (!VirtualFree(virtual_base, 0, MEM_RELEASE)) { LOG_CRITICAL(Render, "Failed to free virtual memory"); } } if (backing_base) { if (!UnmapViewOfFile2(process, backing_base, MEM_PRESERVE_PLACEHOLDER)) { LOG_CRITICAL(Render, "Failed to unmap backing memory placeholder"); } if (!VirtualFreeEx(process, backing_base, 0, MEM_RELEASE)) { LOG_CRITICAL(Render, "Failed to free backing memory"); } } if (!CloseHandle(backing_handle)) { LOG_CRITICAL(Render, "Failed to free backing memory file handle"); } } void* Map(VAddr virtual_addr, PAddr phys_addr, size_t size, ULONG prot, uintptr_t fd = 0) { const size_t aligned_size = Common::AlignUp(size, 16_KB); const auto it = placeholders.find(virtual_addr); ASSERT_MSG(it != placeholders.end(), "Cannot map already mapped region"); ASSERT_MSG(virtual_addr >= it->lower() && virtual_addr + aligned_size <= it->upper(), "Map range must be fully contained in a placeholder"); // Windows only allows splitting a placeholder into two. // This means that if the map range is fully // contained the the placeholder we need to perform two split operations, // one at the start and at the end. const VAddr placeholder_start = it->lower(); const VAddr placeholder_end = it->upper(); const VAddr virtual_end = virtual_addr + aligned_size; // If the placeholder doesn't exactly start at virtual_addr, split it at the start. if (placeholder_start != virtual_addr) { VirtualFreeEx(process, reinterpret_cast(placeholder_start), virtual_addr - placeholder_start, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER); } // If the placeholder doesn't exactly end at virtual_end, split it at the end. if (placeholder_end != virtual_end) { VirtualFreeEx(process, reinterpret_cast(virtual_end), placeholder_end - virtual_end, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER); } // Remove the placeholder. placeholders.erase({virtual_addr, virtual_end}); // Perform the map. void* ptr = nullptr; if (phys_addr != -1) { HANDLE backing = fd ? reinterpret_cast(fd) : backing_handle; if (fd && prot == PAGE_READONLY) { DWORD resultvar; ptr = VirtualAlloc2(process, reinterpret_cast(virtual_addr), aligned_size, MEM_RESERVE | MEM_COMMIT | MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE, nullptr, 0); bool ret = ReadFile(backing, ptr, size, &resultvar, NULL); ASSERT_MSG(ret, "ReadFile failed. {}", Common::GetLastErrorMsg()); ret = VirtualProtect(ptr, size, prot, &resultvar); ASSERT_MSG(ret, "VirtualProtect failed. {}", Common::GetLastErrorMsg()); } else { ptr = MapViewOfFile3(backing, process, reinterpret_cast(virtual_addr), phys_addr, aligned_size, MEM_REPLACE_PLACEHOLDER, prot, nullptr, 0); } } else { ptr = VirtualAlloc2(process, reinterpret_cast(virtual_addr), aligned_size, MEM_RESERVE | MEM_COMMIT | MEM_REPLACE_PLACEHOLDER, prot, nullptr, 0); } ASSERT_MSG(ptr, "{}", Common::GetLastErrorMsg()); return ptr; } void Unmap(VAddr virtual_addr, size_t size, bool has_backing) { bool ret; if (has_backing) { ret = UnmapViewOfFile2(process, reinterpret_cast(virtual_addr), MEM_PRESERVE_PLACEHOLDER); } else { ret = VirtualFreeEx(process, reinterpret_cast(virtual_addr), size, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER); } ASSERT_MSG(ret, "Unmap operation on virtual_addr={:#X} failed: {}", virtual_addr, Common::GetLastErrorMsg()); // The unmap call will create a new placeholder region. We need to see if we can coalesce it // with neighbors. VAddr placeholder_start = virtual_addr; VAddr placeholder_end = virtual_addr + size; // Check if a placeholder exists right before us. const auto left_it = placeholders.find(virtual_addr - 1); if (left_it != placeholders.end()) { ASSERT_MSG(left_it->upper() == virtual_addr, "Left placeholder does not end at virtual_addr!"); placeholder_start = left_it->lower(); VirtualFreeEx(process, reinterpret_cast(placeholder_start), placeholder_end - placeholder_start, MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS); } // Check if a placeholder exists right after us. const auto right_it = placeholders.find(placeholder_end + 1); if (right_it != placeholders.end()) { ASSERT_MSG(right_it->lower() == placeholder_end, "Right placeholder does not start at virtual_end!"); placeholder_end = right_it->upper(); VirtualFreeEx(process, reinterpret_cast(placeholder_start), placeholder_end - placeholder_start, MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS); } // Insert the new placeholder. placeholders.insert({placeholder_start, placeholder_end}); } void Protect(VAddr virtual_addr, size_t size, bool read, bool write, bool execute) { DWORD new_flags{}; if (read && write && execute) { new_flags = PAGE_EXECUTE_READWRITE; } else if (read && write) { new_flags = PAGE_READWRITE; } else if (read && !write) { new_flags = PAGE_READONLY; } else if (execute && !read && not write) { new_flags = PAGE_EXECUTE; } else if (!read && !write && !execute) { new_flags = PAGE_NOACCESS; } else { LOG_CRITICAL(Common_Memory, "Unsupported protection flag combination for address {:#x}, size {}", virtual_addr, size); return; } DWORD old_flags{}; bool success = VirtualProtect(reinterpret_cast(virtual_addr), size, new_flags, &old_flags); if (!success) { LOG_ERROR(Common_Memory, "Failed to change virtual memory protection for address {:#x}, size {}", virtual_addr, size); } // Use assert to ensure success in debug builds DEBUG_ASSERT(success && "Failed to change virtual memory protection"); } HANDLE process{}; HANDLE backing_handle{}; u8* backing_base{}; u8* virtual_base{}; u8* system_managed_base{}; size_t system_managed_size{}; u8* system_reserved_base{}; size_t system_reserved_size{}; u8* user_base{}; size_t user_size{}; boost::icl::separate_interval_set placeholders; }; #else enum PosixPageProtection { PAGE_NOACCESS = 0, PAGE_READONLY = PROT_READ, PAGE_READWRITE = PROT_READ | PROT_WRITE, PAGE_EXECUTE = PROT_EXEC, PAGE_EXECUTE_READ = PROT_EXEC | PROT_READ, PAGE_EXECUTE_READWRITE = PROT_EXEC | PROT_READ | PROT_WRITE }; [[nodiscard]] constexpr PosixPageProtection ToPosixProt(Core::MemoryProt prot) { if (True(prot & Core::MemoryProt::CpuReadWrite) || True(prot & Core::MemoryProt::GpuReadWrite)) { return PAGE_READWRITE; } else if (True(prot & Core::MemoryProt::CpuRead) || True(prot & Core::MemoryProt::GpuRead)) { return PAGE_READONLY; } else { return PAGE_NOACCESS; } } struct AddressSpace::Impl { Impl() { // Allocate virtual address placeholder for our address space. system_managed_size = SystemManagedSize; system_reserved_size = SystemReservedSize; user_size = UserSize; constexpr int protection_flags = PROT_READ | PROT_WRITE; constexpr int base_map_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE; #if defined(__APPLE__) && defined(ARCH_X86_64) // On ARM64 Macs under Rosetta 2, we run into limitations due to the commpage from // 0xFC0000000 - 0xFFFFFFFFF and the GPU carveout region from 0x1000000000 - 0x6FFFFFFFFF. // We can allocate the system managed region, as well as system reserved if reduced in size // slightly, but we cannot map the user region where we want, so we must let the OS put it // wherever possible and hope the game won't rely on its location. system_managed_base = reinterpret_cast( mmap(reinterpret_cast(SYSTEM_MANAGED_MIN), system_managed_size, protection_flags, base_map_flags | MAP_FIXED, -1, 0)); system_reserved_base = reinterpret_cast( mmap(reinterpret_cast(SYSTEM_RESERVED_MIN), system_reserved_size, protection_flags, base_map_flags | MAP_FIXED, -1, 0)); // Cannot guarantee enough space for these areas at the desired addresses, so not MAP_FIXED. user_base = reinterpret_cast(mmap(reinterpret_cast(USER_MIN), user_size, protection_flags, base_map_flags, -1, 0)); #else const auto virtual_size = system_managed_size + system_reserved_size + user_size; #if defined(ARCH_X86_64) const auto virtual_base = reinterpret_cast(mmap(reinterpret_cast(SYSTEM_MANAGED_MIN), virtual_size, protection_flags, base_map_flags | MAP_FIXED, -1, 0)); system_managed_base = virtual_base; system_reserved_base = reinterpret_cast(SYSTEM_RESERVED_MIN); user_base = reinterpret_cast(USER_MIN); #else // Map memory wherever possible and instruction translation can handle offsetting to the // base. const auto virtual_base = reinterpret_cast( mmap(nullptr, virtual_size, protection_flags, base_map_flags, -1, 0)); system_managed_base = virtual_base; system_reserved_base = virtual_base + SYSTEM_RESERVED_MIN - SYSTEM_MANAGED_MIN; user_base = virtual_base + USER_MIN - SYSTEM_MANAGED_MIN; #endif #endif if (system_managed_base == MAP_FAILED || system_reserved_base == MAP_FAILED || user_base == MAP_FAILED) { LOG_CRITICAL(Kernel_Vmm, "mmap failed: {}", strerror(errno)); throw std::bad_alloc{}; } LOG_INFO(Kernel_Vmm, "System managed virtual memory region: {} - {}", fmt::ptr(system_managed_base), fmt::ptr(system_managed_base + system_managed_size - 1)); LOG_INFO(Kernel_Vmm, "System reserved virtual memory region: {} - {}", fmt::ptr(system_reserved_base), fmt::ptr(system_reserved_base + system_reserved_size - 1)); LOG_INFO(Kernel_Vmm, "User virtual memory region: {} - {}", fmt::ptr(user_base), fmt::ptr(user_base + user_size - 1)); const VAddr system_managed_addr = reinterpret_cast(system_managed_base); const VAddr system_reserved_addr = reinterpret_cast(system_managed_base); const VAddr user_addr = reinterpret_cast(user_base); m_free_regions.insert({system_managed_addr, system_managed_addr + system_managed_size}); m_free_regions.insert({system_reserved_addr, system_reserved_addr + system_reserved_size}); m_free_regions.insert({user_addr, user_addr + user_size}); #ifdef __APPLE__ const auto shm_path = fmt::format("/BackingDmem{}", getpid()); backing_fd = shm_open(shm_path.c_str(), O_RDWR | O_CREAT | O_EXCL, 0600); if (backing_fd < 0) { LOG_CRITICAL(Kernel_Vmm, "shm_open failed: {}", strerror(errno)); throw std::bad_alloc{}; } shm_unlink(shm_path.c_str()); #else madvise(virtual_base, virtual_size, MADV_HUGEPAGE); backing_fd = memfd_create("BackingDmem", 0); if (backing_fd < 0) { LOG_CRITICAL(Kernel_Vmm, "memfd_create failed: {}", strerror(errno)); throw std::bad_alloc{}; } #endif // Defined to extend the file with zeros int ret = ftruncate(backing_fd, BackingSize); if (ret != 0) { LOG_CRITICAL(Kernel_Vmm, "ftruncate failed with {}, are you out-of-memory?", strerror(errno)); throw std::bad_alloc{}; } // Map backing dmem handle. backing_base = static_cast( mmap(nullptr, BackingSize, PROT_READ | PROT_WRITE, MAP_SHARED, backing_fd, 0)); if (backing_base == MAP_FAILED) { LOG_CRITICAL(Kernel_Vmm, "mmap failed: {}", strerror(errno)); throw std::bad_alloc{}; } } void* Map(VAddr virtual_addr, PAddr phys_addr, size_t size, PosixPageProtection prot, int fd = -1) { m_free_regions.subtract({virtual_addr, virtual_addr + size}); const int handle = phys_addr != -1 ? (fd == -1 ? backing_fd : fd) : -1; const off_t host_offset = phys_addr != -1 ? phys_addr : 0; const int flag = phys_addr != -1 ? MAP_SHARED : (MAP_ANONYMOUS | MAP_PRIVATE); void* ret = mmap(reinterpret_cast(virtual_addr), size, prot, MAP_FIXED | flag, handle, host_offset); ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno)); return ret; } void Unmap(VAddr virtual_addr, size_t size, bool) { // Check to see if we are adjacent to any regions. auto start_address = virtual_addr; auto end_address = start_address + size; auto it = m_free_regions.find({start_address - 1, end_address + 1}); // If we are, join with them, ensuring we stay in bounds. if (it != m_free_regions.end()) { start_address = std::min(start_address, it->lower()); end_address = std::max(end_address, it->upper()); } // Free the relevant region. m_free_regions.insert({start_address, end_address}); // Return the adjusted pointers. void* ret = mmap(reinterpret_cast(start_address), end_address - start_address, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno)); } void Protect(VAddr virtual_addr, size_t size, bool read, bool write, bool execute) { int flags = PROT_NONE; if (read) { flags |= PROT_READ; } if (write) { flags |= PROT_WRITE; } #ifdef ARCH_X86_64 if (execute) { flags |= PROT_EXEC; } #endif int ret = mprotect(reinterpret_cast(virtual_addr), size, flags); ASSERT_MSG(ret == 0, "mprotect failed: {}", strerror(errno)); } int backing_fd; u8* backing_base{}; u8* system_managed_base{}; size_t system_managed_size{}; u8* system_reserved_base{}; size_t system_reserved_size{}; u8* user_base{}; size_t user_size{}; boost::icl::interval_set m_free_regions; }; #endif AddressSpace::AddressSpace() : impl{std::make_unique()} { backing_base = impl->backing_base; system_managed_base = impl->system_managed_base; system_managed_size = impl->system_managed_size; system_reserved_base = impl->system_reserved_base; system_reserved_size = impl->system_reserved_size; user_base = impl->user_base; user_size = impl->user_size; } AddressSpace::~AddressSpace() = default; void* AddressSpace::Map(VAddr virtual_addr, size_t size, u64 alignment, PAddr phys_addr, bool is_exec) { #if ARCH_X86_64 const auto prot = is_exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; #else // On non-native architectures, we can simplify things by ignoring the execute flag for the // canonical copy of the memory and rely on the JIT to map translated code as executable. constexpr auto prot = PAGE_READWRITE; #endif return impl->Map(virtual_addr, phys_addr, size, prot); } void* AddressSpace::MapFile(VAddr virtual_addr, size_t size, size_t offset, u32 prot, uintptr_t fd) { #ifdef _WIN32 return impl->Map(virtual_addr, offset, size, ToWindowsProt(std::bit_cast(prot)), fd); #else return impl->Map(virtual_addr, offset, size, ToPosixProt(std::bit_cast(prot)), fd); #endif } void AddressSpace::Unmap(VAddr virtual_addr, size_t size, VAddr start_in_vma, VAddr end_in_vma, PAddr phys_base, bool is_exec, bool has_backing, bool readonly_file) { #ifdef _WIN32 // There does not appear to be comparable support for partial unmapping on Windows. // Unfortunately, a least one title was found to require this. The workaround is to unmap // the entire allocation and remap the portions outside of the requested unmapping range. impl->Unmap(virtual_addr, size, has_backing && !readonly_file); // TODO: Determine if any titles require partial unmapping support for flexible allocations. ASSERT_MSG(has_backing || (start_in_vma == 0 && end_in_vma == size), "Partial unmapping of flexible allocations is not supported"); if (start_in_vma != 0) { Map(virtual_addr, start_in_vma, 0, phys_base, is_exec); } if (end_in_vma != size) { Map(virtual_addr + end_in_vma, size - end_in_vma, 0, phys_base + end_in_vma, is_exec); } #else impl->Unmap(virtual_addr + start_in_vma, end_in_vma - start_in_vma, has_backing); #endif } void AddressSpace::Protect(VAddr virtual_addr, size_t size, MemoryPermission perms) { const bool read = True(perms & MemoryPermission::Read); const bool write = True(perms & MemoryPermission::Write); const bool execute = True(perms & MemoryPermission::Execute); return impl->Protect(virtual_addr, size, read, write, execute); } } // namespace Core