// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #pragma once #include #ifdef _MSC_VER #ifndef __clang__ #define HAS_INTRINSICS #include #pragma intrinsic(__umulh) #pragma intrinsic(_umul128) #pragma intrinsic(_udiv128) #else #endif #else #include #endif #include "common/types.h" namespace Common { // This function multiplies 2 u64 values and divides it by a u64 value. [[nodiscard]] static inline u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) { #ifdef HAS_INTRINSICS u128 r{}; r[0] = _umul128(a, b, &r[1]); u64 remainder; return _udiv128(r[1], r[0], d, &remainder); #else const u64 diva = a / d; const u64 moda = a % d; const u64 divb = b / d; const u64 modb = b % d; return diva * b + moda * divb + moda * modb / d; #endif } // This function multiplies 2 u64 values and produces a u128 value; [[nodiscard]] static inline u128 Multiply64Into128(u64 a, u64 b) { u128 result; #ifdef HAS_INTRINSICS result[0] = _umul128(a, b, &result[1]); #else unsigned __int128 tmp = a; tmp *= b; std::memcpy(&result, &tmp, sizeof(u128)); #endif return result; } [[nodiscard]] static inline u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) { #ifdef __SIZEOF_INT128__ const auto base = static_cast(numerator) << 64ULL; return static_cast(base / divisor); #elif defined(_M_X64) || defined(_M_ARM64) std::array r = {0, numerator}; u64 remainder; return _udiv128(r[1], r[0], divisor, &remainder); #else // This one is bit more inaccurate. return MultiplyAndDivide64(std::numeric_limits::max(), numerator, divisor); #endif } [[nodiscard]] static inline u64 MultiplyHigh(u64 a, u64 b) { #ifdef __SIZEOF_INT128__ return (static_cast(a) * static_cast(b)) >> 64; #elif defined(_M_X64) || defined(_M_ARM64) return __umulh(a, b); // MSVC #else // Generic fallback const u64 a_lo = u32(a); const u64 a_hi = a >> 32; const u64 b_lo = u32(b); const u64 b_hi = b >> 32; const u64 a_x_b_hi = a_hi * b_hi; const u64 a_x_b_mid = a_hi * b_lo; const u64 b_x_a_mid = b_hi * a_lo; const u64 a_x_b_lo = a_lo * b_lo; const u64 carry_bit = (static_cast(static_cast(a_x_b_mid)) + static_cast(static_cast(b_x_a_mid)) + (a_x_b_lo >> 32)) >> 32; const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit; return multhi; #endif } // This function divides a u128 by a u32 value and produces two u64 values: // the result of division and the remainder [[nodiscard]] static inline std::pair Divide128On32(const u128& dividend, u32 divisor) { u64 remainder = dividend[0] % divisor; u64 accum = dividend[0] / divisor; if (dividend[1] == 0) return {accum, remainder}; // We ignore dividend[1] / divisor as that overflows const u64 first_segment = (dividend[1] % divisor) << 32; accum += (first_segment / divisor) << 32; const u64 second_segment = (first_segment % divisor) << 32; accum += (second_segment / divisor); remainder += second_segment % divisor; if (remainder >= divisor) { accum++; remainder -= divisor; } return {accum, remainder}; } } // namespace Common