Implemented load_buffer_format_* conversions (#295)

* Implemented load_buffer_format_* conversions

* clang-format insists on ugly things
This commit is contained in:
Vladislav Mikhalin 2024-07-16 15:03:07 +03:00 committed by GitHub
parent c6cdfcfb0b
commit f9e96793cc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 475 additions and 91 deletions

View file

@ -4,6 +4,8 @@
#include "shader_recompiler/backend/spirv/emit_spirv_instructions.h"
#include "shader_recompiler/backend/spirv/spirv_emit_context.h"
#include <magic_enum.hpp>
namespace Shader::Backend::SPIRV {
namespace {
@ -209,57 +211,216 @@ void EmitSetAttribute(EmitContext& ctx, IR::Attribute attr, Id value, u32 elemen
ctx.OpStore(pointer, value);
}
Id EmitLoadBufferF32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
const auto info = inst->Flags<IR::BufferInstInfo>();
const auto& buffer = ctx.buffers[handle];
if (info.index_enable && info.offset_enable) {
UNREACHABLE();
} else if (info.index_enable) {
const Id ptr{
ctx.OpAccessChain(buffer.pointer_type, buffer.id, ctx.u32_zero_value, address)};
return ctx.OpLoad(buffer.data_types->Get(1), ptr);
}
UNREACHABLE();
}
Id EmitLoadBufferU32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
return EmitLoadBufferF32(ctx, inst, handle, address);
}
Id EmitLoadBufferF32x2(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
const auto info = inst->Flags<IR::BufferInstInfo>();
template <int N>
static Id EmitLoadBufferF32xN(EmitContext& ctx, u32 handle, Id address) {
const auto& buffer = ctx.buffers[handle];
boost::container::static_vector<Id, 2> ids;
for (u32 i = 0; i < 2; i++) {
const Id index{ctx.OpIAdd(ctx.U32[1], address, ctx.ConstU32(i))};
const Id ptr{ctx.OpAccessChain(buffer.pointer_type, buffer.id, ctx.u32_zero_value, index)};
ids.push_back(ctx.OpLoad(buffer.data_types->Get(1), ptr));
Id index = ctx.OpShiftRightLogical(ctx.U32[1], address, ctx.ConstU32(2u));
if constexpr (N == 1) {
const Id ptr{
ctx.OpAccessChain(buffer.pointer_type, buffer.id, ctx.u32_zero_value, address)};
return ctx.OpLoad(buffer.data_types->Get(1), ptr);
} else {
boost::container::static_vector<Id, N> ids;
for (u32 i = 0; i < N; i++) {
index = ctx.OpIAdd(ctx.U32[1], index, ctx.ConstU32(i));
const Id ptr{
ctx.OpAccessChain(buffer.pointer_type, buffer.id, ctx.u32_zero_value, index)};
ids.push_back(ctx.OpLoad(buffer.data_types->Get(1), ptr));
}
return ctx.OpCompositeConstruct(buffer.data_types->Get(N), ids);
}
return ctx.OpCompositeConstruct(buffer.data_types->Get(2), ids);
}
Id EmitLoadBufferF32x3(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
const auto info = inst->Flags<IR::BufferInstInfo>();
const auto& buffer = ctx.buffers[handle];
boost::container::static_vector<Id, 3> ids;
for (u32 i = 0; i < 3; i++) {
const Id index{ctx.OpIAdd(ctx.U32[1], address, ctx.ConstU32(i))};
const Id ptr{ctx.OpAccessChain(buffer.pointer_type, buffer.id, ctx.u32_zero_value, index)};
ids.push_back(ctx.OpLoad(buffer.data_types->Get(1), ptr));
}
return ctx.OpCompositeConstruct(buffer.data_types->Get(3), ids);
Id EmitLoadBufferF32(EmitContext& ctx, IR::Inst*, u32 handle, Id address) {
return EmitLoadBufferF32xN<1>(ctx, handle, address);
}
Id EmitLoadBufferF32x4(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
const auto info = inst->Flags<IR::BufferInstInfo>();
const auto& buffer = ctx.buffers[handle];
boost::container::static_vector<Id, 4> ids;
for (u32 i = 0; i < 4; i++) {
const Id index{ctx.OpIAdd(ctx.U32[1], address, ctx.ConstU32(i))};
const Id ptr{ctx.OpAccessChain(buffer.pointer_type, buffer.id, ctx.u32_zero_value, index)};
ids.push_back(ctx.OpLoad(buffer.data_types->Get(1), ptr));
Id EmitLoadBufferF32x2(EmitContext& ctx, IR::Inst*, u32 handle, Id address) {
return EmitLoadBufferF32xN<2>(ctx, handle, address);
}
Id EmitLoadBufferF32x3(EmitContext& ctx, IR::Inst*, u32 handle, Id address) {
return EmitLoadBufferF32xN<3>(ctx, handle, address);
}
Id EmitLoadBufferF32x4(EmitContext& ctx, IR::Inst*, u32 handle, Id address) {
return EmitLoadBufferF32xN<4>(ctx, handle, address);
}
static bool IsSignedInteger(AmdGpu::NumberFormat format) {
switch (format) {
case AmdGpu::NumberFormat::Unorm:
case AmdGpu::NumberFormat::Uscaled:
case AmdGpu::NumberFormat::Uint:
return false;
case AmdGpu::NumberFormat::Snorm:
case AmdGpu::NumberFormat::Sscaled:
case AmdGpu::NumberFormat::Sint:
case AmdGpu::NumberFormat::SnormNz:
return true;
case AmdGpu::NumberFormat::Float:
default:
UNREACHABLE();
}
return ctx.OpCompositeConstruct(buffer.data_types->Get(4), ids);
}
static u32 UXBitsMax(u32 bit_width) {
return (1u << bit_width) - 1u;
}
static u32 SXBitsMax(u32 bit_width) {
return (1u << (bit_width - 1u)) - 1u;
}
static Id ConvertValue(EmitContext& ctx, Id value, AmdGpu::NumberFormat format, u32 bit_width) {
switch (format) {
case AmdGpu::NumberFormat::Unorm:
return ctx.OpFDiv(ctx.F32[1], value, ctx.ConstF32(float(UXBitsMax(bit_width))));
case AmdGpu::NumberFormat::Snorm:
return ctx.OpFDiv(ctx.F32[1], value, ctx.ConstF32(float(SXBitsMax(bit_width))));
case AmdGpu::NumberFormat::SnormNz:
// (x * 2 + 1) / (Format::SMAX * 2)
value = ctx.OpFMul(ctx.F32[1], value, ctx.ConstF32(2.f));
value = ctx.OpFAdd(ctx.F32[1], value, ctx.ConstF32(1.f));
return ctx.OpFDiv(ctx.F32[1], value, ctx.ConstF32(float(SXBitsMax(bit_width) * 2)));
case AmdGpu::NumberFormat::Uscaled:
case AmdGpu::NumberFormat::Sscaled:
case AmdGpu::NumberFormat::Uint:
case AmdGpu::NumberFormat::Sint:
case AmdGpu::NumberFormat::Float:
return value;
default:
UNREACHABLE_MSG("Unsupported number fromat for conversion: {}",
magic_enum::enum_name(format));
}
}
static Id ComponentOffset(EmitContext& ctx, Id address, u32 stride, u32 bit_offset) {
Id comp_offset = ctx.ConstU32(bit_offset);
if (stride < 4) {
// comp_offset += (address % 4) * 8;
const Id byte_offset = ctx.OpUMod(ctx.U32[1], address, ctx.ConstU32(4u));
const Id bit_offset = ctx.OpShiftLeftLogical(ctx.U32[1], byte_offset, ctx.ConstU32(3u));
comp_offset = ctx.OpIAdd(ctx.U32[1], comp_offset, bit_offset);
}
return comp_offset;
}
static Id GetBufferFormatValue(EmitContext& ctx, u32 handle, Id address, u32 comp) {
const auto& buffer = ctx.buffers[handle];
const auto format = buffer.buffer.GetDataFmt();
switch (format) {
case AmdGpu::DataFormat::FormatInvalid:
return ctx.f32_zero_value;
case AmdGpu::DataFormat::Format8:
case AmdGpu::DataFormat::Format16:
case AmdGpu::DataFormat::Format32:
case AmdGpu::DataFormat::Format8_8:
case AmdGpu::DataFormat::Format16_16:
case AmdGpu::DataFormat::Format10_11_11:
case AmdGpu::DataFormat::Format11_11_10:
case AmdGpu::DataFormat::Format10_10_10_2:
case AmdGpu::DataFormat::Format2_10_10_10:
case AmdGpu::DataFormat::Format8_8_8_8:
case AmdGpu::DataFormat::Format32_32:
case AmdGpu::DataFormat::Format16_16_16_16:
case AmdGpu::DataFormat::Format32_32_32:
case AmdGpu::DataFormat::Format32_32_32_32: {
const u32 num_components = AmdGpu::NumComponents(format);
if (comp >= num_components) {
return ctx.f32_zero_value;
}
// uint index = address / 4;
Id index = ctx.OpShiftRightLogical(ctx.U32[1], address, ctx.ConstU32(2u));
const u32 stride = buffer.buffer.GetStride();
if (stride > 4) {
const u32 index_offset = u32(AmdGpu::ComponentOffset(format, comp) / 32);
if (index_offset > 0) {
// index += index_offset;
index = ctx.OpIAdd(ctx.U32[1], index, ctx.ConstU32(index_offset));
}
}
const Id ptr = ctx.OpAccessChain(buffer.pointer_type, buffer.id, ctx.u32_zero_value, index);
const u32 bit_offset = AmdGpu::ComponentOffset(format, comp) % 32;
const u32 bit_width = AmdGpu::ComponentBits(format, comp);
const auto num_format = buffer.buffer.GetNumberFmt();
if (num_format == AmdGpu::NumberFormat::Float) {
if (bit_width == 32) {
return ctx.OpLoad(ctx.F32[1], ptr);
} else if (bit_width == 16) {
const Id comp_offset = ComponentOffset(ctx, address, stride, bit_offset);
Id value = ctx.OpLoad(ctx.U32[1], ptr);
value =
ctx.OpBitFieldSExtract(ctx.S32[1], value, comp_offset, ctx.ConstU32(bit_width));
value = ctx.OpSConvert(ctx.U16, value);
value = ctx.OpBitcast(ctx.F16[1], value);
return ctx.OpFConvert(ctx.F32[1], value);
} else {
UNREACHABLE_MSG("Invalid float bit width {}", bit_width);
}
} else {
Id value = ctx.OpLoad(ctx.U32[1], ptr);
const bool is_signed = IsSignedInteger(num_format);
if (bit_width < 32) {
const Id comp_offset = ComponentOffset(ctx, address, stride, bit_offset);
if (is_signed) {
value = ctx.OpBitFieldSExtract(ctx.S32[1], value, comp_offset,
ctx.ConstU32(bit_width));
value = ctx.OpConvertSToF(ctx.F32[1], value);
} else {
value = ctx.OpBitFieldUExtract(ctx.U32[1], value, comp_offset,
ctx.ConstU32(bit_width));
value = ctx.OpConvertUToF(ctx.F32[1], value);
}
} else {
if (is_signed) {
value = ctx.OpConvertSToF(ctx.F32[1], value);
} else {
value = ctx.OpConvertUToF(ctx.F32[1], value);
}
}
return ConvertValue(ctx, value, num_format, bit_width);
}
break;
}
default:
UNREACHABLE_MSG("Invalid format for conversion: {}", magic_enum::enum_name(format));
}
}
template <int N>
static Id EmitLoadBufferFormatF32xN(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
if constexpr (N == 1) {
return GetBufferFormatValue(ctx, handle, address, 0);
} else {
boost::container::static_vector<Id, N> ids;
for (u32 i = 0; i < N; i++) {
ids.push_back(GetBufferFormatValue(ctx, handle, address, i));
}
return ctx.OpCompositeConstruct(ctx.F32[N], ids);
}
}
Id EmitLoadBufferFormatF32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
return EmitLoadBufferFormatF32xN<1>(ctx, inst, handle, address);
}
Id EmitLoadBufferFormatF32x2(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
return EmitLoadBufferFormatF32xN<2>(ctx, inst, handle, address);
}
Id EmitLoadBufferFormatF32x3(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
return EmitLoadBufferFormatF32xN<3>(ctx, inst, handle, address);
}
Id EmitLoadBufferFormatF32x4(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address) {
return EmitLoadBufferFormatF32xN<4>(ctx, inst, handle, address);
}
void EmitStoreBufferF32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address, Id value) {

View file

@ -66,6 +66,10 @@ Id EmitLoadBufferF32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferF32x2(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferF32x3(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferF32x4(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferFormatF32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferFormatF32x2(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferFormatF32x3(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferFormatF32x4(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
Id EmitLoadBufferU32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address);
void EmitStoreBufferF32(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address, Id value);
void EmitStoreBufferF32x2(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address, Id value);

View file

@ -301,9 +301,7 @@ void EmitContext::DefineBuffers(const Info& info) {
for (u32 i = 0; const auto& buffer : info.buffers) {
const auto* data_types = True(buffer.used_types & IR::Type::F32) ? &F32 : &U32;
const Id data_type = (*data_types)[1];
const u32 stride = buffer.stride == 0 ? 1 : buffer.stride;
const u32 num_elements = stride * buffer.num_records;
const Id record_array_type{TypeArray(data_type, ConstU32(num_elements))};
const Id record_array_type{TypeArray(data_type, ConstU32(buffer.length))};
const Id struct_type{TypeStruct(record_array_type)};
if (std::ranges::find(type_ids, record_array_type.value, &Id::value) == type_ids.end()) {
Decorate(record_array_type, spv::Decoration::ArrayStride, 4);
@ -333,6 +331,7 @@ void EmitContext::DefineBuffers(const Info& info) {
.id = id,
.data_types = data_types,
.pointer_type = pointer_type,
.buffer = buffer.GetVsharp(info),
});
interfaces.push_back(id);
i++;

View file

@ -201,6 +201,7 @@ public:
Id id;
const VectorIds* data_types;
Id pointer_type;
AmdGpu::Buffer buffer;
};
u32& binding;

View file

@ -254,8 +254,7 @@ void Translator::EmitFetch(const GcnInst& inst) {
info.buffers.push_back({
.sgpr_base = attrib.sgpr_base,
.dword_offset = attrib.dword_offset,
.stride = buffer.GetStride(),
.num_records = buffer.num_records,
.length = buffer.num_records,
.used_types = IR::Type::F32,
.is_storage = true, // we may not fit into UBO with large meshes
.is_instance_data = true,
@ -571,28 +570,40 @@ void Translate(IR::Block* block, u32 block_base, std::span<const GcnInst> inst_l
translator.V_CNDMASK_B32(inst);
break;
case Opcode::TBUFFER_LOAD_FORMAT_X:
translator.BUFFER_LOAD_FORMAT(1, true, inst);
translator.BUFFER_LOAD_FORMAT(1, true, true, inst);
break;
case Opcode::TBUFFER_LOAD_FORMAT_XY:
translator.BUFFER_LOAD_FORMAT(2, true, inst);
translator.BUFFER_LOAD_FORMAT(2, true, true, inst);
break;
case Opcode::TBUFFER_LOAD_FORMAT_XYZ:
translator.BUFFER_LOAD_FORMAT(3, true, inst);
translator.BUFFER_LOAD_FORMAT(3, true, true, inst);
break;
case Opcode::TBUFFER_LOAD_FORMAT_XYZW:
translator.BUFFER_LOAD_FORMAT(4, true, inst);
translator.BUFFER_LOAD_FORMAT(4, true, true, inst);
break;
case Opcode::BUFFER_LOAD_FORMAT_X:
case Opcode::BUFFER_LOAD_DWORD:
translator.BUFFER_LOAD_FORMAT(1, false, inst);
translator.BUFFER_LOAD_FORMAT(1, false, true, inst);
break;
case Opcode::BUFFER_LOAD_FORMAT_XY:
translator.BUFFER_LOAD_FORMAT(2, false, true, inst);
break;
case Opcode::BUFFER_LOAD_FORMAT_XYZ:
case Opcode::BUFFER_LOAD_DWORDX3:
translator.BUFFER_LOAD_FORMAT(3, false, inst);
translator.BUFFER_LOAD_FORMAT(3, false, true, inst);
break;
case Opcode::BUFFER_LOAD_FORMAT_XYZW:
translator.BUFFER_LOAD_FORMAT(4, false, true, inst);
break;
case Opcode::BUFFER_LOAD_DWORD:
translator.BUFFER_LOAD_FORMAT(1, false, false, inst);
break;
case Opcode::BUFFER_LOAD_DWORDX2:
translator.BUFFER_LOAD_FORMAT(2, false, false, inst);
break;
case Opcode::BUFFER_LOAD_DWORDX3:
translator.BUFFER_LOAD_FORMAT(3, false, false, inst);
break;
case Opcode::BUFFER_LOAD_DWORDX4:
translator.BUFFER_LOAD_FORMAT(4, false, inst);
translator.BUFFER_LOAD_FORMAT(4, false, false, inst);
break;
case Opcode::BUFFER_STORE_FORMAT_X:
case Opcode::BUFFER_STORE_DWORD:

View file

@ -160,7 +160,7 @@ public:
void V_CMP_CLASS_F32(const GcnInst& inst);
// Vector Memory
void BUFFER_LOAD_FORMAT(u32 num_dwords, bool is_typed, const GcnInst& inst);
void BUFFER_LOAD_FORMAT(u32 num_dwords, bool is_typed, bool is_format, const GcnInst& inst);
void BUFFER_STORE_FORMAT(u32 num_dwords, bool is_typed, const GcnInst& inst);
// Vector interpolation

View file

@ -225,7 +225,8 @@ void Translator::IMAGE_STORE(const GcnInst& inst) {
ir.ImageWrite(handle, body, value, {});
}
void Translator::BUFFER_LOAD_FORMAT(u32 num_dwords, bool is_typed, const GcnInst& inst) {
void Translator::BUFFER_LOAD_FORMAT(u32 num_dwords, bool is_typed, bool is_format,
const GcnInst& inst) {
const auto& mtbuf = inst.control.mtbuf;
const IR::VectorReg vaddr{inst.src[0].code};
const IR::ScalarReg sharp{inst.src[2].code * 4};
@ -254,7 +255,8 @@ void Translator::BUFFER_LOAD_FORMAT(u32 num_dwords, bool is_typed, const GcnInst
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(sharp), ir.GetScalarReg(sharp + 1),
ir.GetScalarReg(sharp + 2), ir.GetScalarReg(sharp + 3));
const IR::Value value = ir.LoadBuffer(num_dwords, handle, address, info);
const IR::Value value = is_format ? ir.LoadBufferFormat(num_dwords, handle, address, info)
: ir.LoadBuffer(num_dwords, handle, address, info);
const IR::VectorReg dst_reg{inst.src[1].code};
if (num_dwords == 1) {
ir.SetVectorReg(dst_reg, IR::F32{value});

View file

@ -327,6 +327,22 @@ Value IREmitter::LoadBuffer(int num_dwords, const Value& handle, const Value& ad
}
}
Value IREmitter::LoadBufferFormat(int num_dwords, const Value& handle, const Value& address,
BufferInstInfo info) {
switch (num_dwords) {
case 1:
return Inst(Opcode::LoadBufferFormatF32, Flags{info}, handle, address);
case 2:
return Inst(Opcode::LoadBufferFormatF32x2, Flags{info}, handle, address);
case 3:
return Inst(Opcode::LoadBufferFormatF32x3, Flags{info}, handle, address);
case 4:
return Inst(Opcode::LoadBufferFormatF32x4, Flags{info}, handle, address);
default:
UNREACHABLE_MSG("Invalid number of dwords {}", num_dwords);
}
}
void IREmitter::StoreBuffer(int num_dwords, const Value& handle, const Value& address,
const Value& data, BufferInstInfo info) {
switch (num_dwords) {

View file

@ -89,6 +89,8 @@ public:
[[nodiscard]] Value LoadBuffer(int num_dwords, const Value& handle, const Value& address,
BufferInstInfo info);
[[nodiscard]] Value LoadBufferFormat(int num_dwords, const Value& handle, const Value& address,
BufferInstInfo info);
void StoreBuffer(int num_dwords, const Value& handle, const Value& address, const Value& data,
BufferInstInfo info);

View file

@ -79,6 +79,10 @@ OPCODE(LoadBufferF32, F32, Opaq
OPCODE(LoadBufferF32x2, F32x2, Opaque, Opaque, )
OPCODE(LoadBufferF32x3, F32x3, Opaque, Opaque, )
OPCODE(LoadBufferF32x4, F32x4, Opaque, Opaque, )
OPCODE(LoadBufferFormatF32, F32, Opaque, Opaque, )
OPCODE(LoadBufferFormatF32x2, F32x2, Opaque, Opaque, )
OPCODE(LoadBufferFormatF32x3, F32x3, Opaque, Opaque, )
OPCODE(LoadBufferFormatF32x4, F32x4, Opaque, Opaque, )
OPCODE(LoadBufferU32, U32, Opaque, Opaque, )
OPCODE(StoreBufferF32, Void, Opaque, Opaque, F32, )
OPCODE(StoreBufferF32x2, Void, Opaque, Opaque, F32x2, )

View file

@ -27,6 +27,10 @@ bool IsBufferInstruction(const IR::Inst& inst) {
case IR::Opcode::LoadBufferF32x2:
case IR::Opcode::LoadBufferF32x3:
case IR::Opcode::LoadBufferF32x4:
case IR::Opcode::LoadBufferFormatF32:
case IR::Opcode::LoadBufferFormatF32x2:
case IR::Opcode::LoadBufferFormatF32x3:
case IR::Opcode::LoadBufferFormatF32x4:
case IR::Opcode::LoadBufferU32:
case IR::Opcode::ReadConstBuffer:
case IR::Opcode::ReadConstBufferU32:
@ -41,8 +45,49 @@ bool IsBufferInstruction(const IR::Inst& inst) {
}
}
IR::Type BufferDataType(const IR::Inst& inst) {
static bool UseFP16(AmdGpu::DataFormat data_format, AmdGpu::NumberFormat num_format) {
switch (num_format) {
case AmdGpu::NumberFormat::Float:
switch (data_format) {
case AmdGpu::DataFormat::Format16:
case AmdGpu::DataFormat::Format16_16:
case AmdGpu::DataFormat::Format16_16_16_16:
return true;
default:
return false;
}
case AmdGpu::NumberFormat::Unorm:
case AmdGpu::NumberFormat::Snorm:
case AmdGpu::NumberFormat::Uscaled:
case AmdGpu::NumberFormat::Sscaled:
case AmdGpu::NumberFormat::Uint:
case AmdGpu::NumberFormat::Sint:
case AmdGpu::NumberFormat::SnormNz:
default:
return false;
}
}
IR::Type BufferDataType(const IR::Inst& inst, AmdGpu::NumberFormat num_format) {
switch (inst.GetOpcode()) {
case IR::Opcode::LoadBufferFormatF32:
case IR::Opcode::LoadBufferFormatF32x2:
case IR::Opcode::LoadBufferFormatF32x3:
case IR::Opcode::LoadBufferFormatF32x4:
switch (num_format) {
case AmdGpu::NumberFormat::Unorm:
case AmdGpu::NumberFormat::Snorm:
case AmdGpu::NumberFormat::Uscaled:
case AmdGpu::NumberFormat::Sscaled:
case AmdGpu::NumberFormat::Uint:
case AmdGpu::NumberFormat::Sint:
case AmdGpu::NumberFormat::SnormNz:
return IR::Type::U32;
case AmdGpu::NumberFormat::Float:
return IR::Type::F32;
default:
UNREACHABLE();
}
case IR::Opcode::LoadBufferF32:
case IR::Opcode::LoadBufferF32x2:
case IR::Opcode::LoadBufferF32x3:
@ -141,7 +186,7 @@ public:
desc.inline_cbuf == existing.inline_cbuf;
})};
auto& buffer = buffer_resources[index];
ASSERT(buffer.stride == desc.stride && buffer.num_records == desc.num_records);
ASSERT(buffer.length == desc.length);
buffer.is_storage |= desc.is_storage;
buffer.used_types |= desc.used_types;
return index;
@ -263,6 +308,41 @@ SharpLocation TrackSharp(const IR::Inst* inst) {
static constexpr size_t MaxUboSize = 65536;
static bool IsLoadBufferFormat(const IR::Inst& inst) {
switch (inst.GetOpcode()) {
case IR::Opcode::LoadBufferFormatF32:
case IR::Opcode::LoadBufferFormatF32x2:
case IR::Opcode::LoadBufferFormatF32x3:
case IR::Opcode::LoadBufferFormatF32x4:
return true;
default:
return false;
}
}
static bool IsReadConstBuffer(const IR::Inst& inst) {
switch (inst.GetOpcode()) {
case IR::Opcode::ReadConstBuffer:
case IR::Opcode::ReadConstBufferU32:
return true;
default:
return false;
}
}
static u32 BufferLength(const AmdGpu::Buffer& buffer) {
const auto stride = buffer.GetStride();
if (stride < sizeof(f32)) {
ASSERT(sizeof(f32) % stride == 0);
return (((buffer.num_records - 1) / sizeof(f32)) + 1) * stride;
} else if (stride == sizeof(f32)) {
return buffer.num_records;
} else {
ASSERT(stride % sizeof(f32) == 0);
return buffer.num_records * (stride / sizeof(f32));
}
}
s32 TryHandleInlineCbuf(IR::Inst& inst, Info& info, Descriptors& descriptors,
AmdGpu::Buffer& cbuf) {
@ -298,9 +378,8 @@ s32 TryHandleInlineCbuf(IR::Inst& inst, Info& info, Descriptors& descriptors,
return descriptors.Add(BufferResource{
.sgpr_base = std::numeric_limits<u32>::max(),
.dword_offset = 0,
.stride = cbuf.GetStride(),
.num_records = u32(cbuf.num_records),
.used_types = BufferDataType(inst),
.length = BufferLength(cbuf),
.used_types = BufferDataType(inst, cbuf.GetNumberFmt()),
.inline_cbuf = cbuf,
.is_storage = IsBufferStore(inst) || cbuf.GetSize() > MaxUboSize,
});
@ -318,9 +397,8 @@ void PatchBufferInstruction(IR::Block& block, IR::Inst& inst, Info& info,
binding = descriptors.Add(BufferResource{
.sgpr_base = sharp.sgpr_base,
.dword_offset = sharp.dword_offset,
.stride = buffer.GetStride(),
.num_records = u32(buffer.num_records),
.used_types = BufferDataType(inst),
.length = BufferLength(buffer),
.used_types = BufferDataType(inst, buffer.GetNumberFmt()),
.is_storage = IsBufferStore(inst) || buffer.GetSize() > MaxUboSize,
});
}
@ -337,24 +415,31 @@ void PatchBufferInstruction(IR::Block& block, IR::Inst& inst, Info& info,
inst_info.dmft == AmdGpu::DataFormat::Format32_32 ||
inst_info.dmft == AmdGpu::DataFormat::Format32));
}
if (inst.GetOpcode() == IR::Opcode::ReadConstBuffer ||
inst.GetOpcode() == IR::Opcode::ReadConstBufferU32) {
if (IsReadConstBuffer(inst)) {
return;
}
// Calculate buffer address.
const u32 dword_stride = buffer.GetStrideElements(sizeof(u32));
const u32 dword_offset = inst_info.inst_offset.Value() / sizeof(u32);
IR::U32 address = ir.Imm32(dword_offset);
if (inst_info.index_enable && inst_info.offset_enable) {
const IR::U32 offset{ir.CompositeExtract(inst.Arg(1), 1)};
const IR::U32 index{ir.CompositeExtract(inst.Arg(1), 0)};
address = ir.IAdd(ir.IMul(index, ir.Imm32(dword_stride)), address);
address = ir.IAdd(address, ir.ShiftRightLogical(offset, ir.Imm32(2)));
} else if (inst_info.index_enable) {
const IR::U32 index{inst.Arg(1)};
address = ir.IAdd(ir.IMul(index, ir.Imm32(dword_stride)), address);
} else if (inst_info.offset_enable) {
const IR::U32 offset{inst.Arg(1)};
if (IsLoadBufferFormat(inst)) {
if (UseFP16(buffer.GetDataFmt(), buffer.GetNumberFmt())) {
info.uses_fp16 = true;
}
} else {
const u32 stride = buffer.GetStride();
ASSERT_MSG(stride >= 4, "non-formatting load_buffer_* is not implemented for stride {}",
stride);
}
IR::U32 address = ir.Imm32(inst_info.inst_offset.Value());
if (inst_info.index_enable) {
const IR::U32 index = inst_info.offset_enable ? IR::U32{ir.CompositeExtract(inst.Arg(1), 0)}
: IR::U32{inst.Arg(1)};
address = ir.IAdd(address, ir.IMul(index, ir.Imm32(buffer.GetStride())));
}
if (inst_info.offset_enable) {
const IR::U32 offset = inst_info.index_enable ? IR::U32{ir.CompositeExtract(inst.Arg(1), 1)}
: IR::U32{inst.Arg(1)};
address = ir.IAdd(address, offset);
}
inst.SetArg(1, address);
}

View file

@ -74,8 +74,7 @@ struct Info;
struct BufferResource {
u32 sgpr_base;
u32 dword_offset;
u32 stride;
u32 num_records;
u32 length;
IR::Type used_types;
AmdGpu::Buffer inline_cbuf;
bool is_storage{false};

View file

@ -66,4 +66,110 @@ int NumBits(DataFormat format) {
return num_bits_per_element[index];
}
static constexpr std::array component_bits = {
std::array{0, 0, 0, 0}, // 0 FormatInvalid
std::array{8, 0, 0, 0}, // 1 Format8
std::array{16, 0, 0, 0}, // 2 Format16
std::array{8, 8, 0, 0}, // 3 Format8_8
std::array{32, 0, 0, 0}, // 4 Format32
std::array{16, 16, 0, 0}, // 5 Format16_16
std::array{10, 11, 11, 0}, // 6 Format10_11_11
std::array{11, 11, 10, 0}, // 7 Format11_11_10
std::array{10, 10, 10, 2}, // 8 Format10_10_10_2
std::array{2, 10, 10, 10}, // 9 Format2_10_10_10
std::array{8, 8, 8, 8}, // 10 Format8_8_8_8
std::array{32, 32, 0, 0}, // 11 Format32_32
std::array{16, 16, 16, 16}, // 12 Format16_16_16_16
std::array{32, 32, 32, 0}, // 13 Format32_32_32
std::array{32, 32, 32, 32}, // 14 Format32_32_32_32
std::array{0, 0, 0, 0}, // 15
std::array{5, 6, 5, 0}, // 16 Format5_6_5
std::array{1, 5, 5, 5}, // 17 Format1_5_5_5
std::array{5, 5, 5, 1}, // 18 Format5_5_5_1
std::array{4, 4, 4, 4}, // 19 Format4_4_4_4
std::array{8, 24, 0, 0}, // 20 Format8_24
std::array{24, 8, 0, 0}, // 21 Format24_8
std::array{24, 8, 0, 0}, // 22 FormatX24_8_32
std::array{0, 0, 0, 0}, // 23
std::array{0, 0, 0, 0}, // 24
std::array{0, 0, 0, 0}, // 25
std::array{0, 0, 0, 0}, // 26
std::array{0, 0, 0, 0}, // 27
std::array{0, 0, 0, 0}, // 28
std::array{0, 0, 0, 0}, // 29
std::array{0, 0, 0, 0}, // 30
std::array{0, 0, 0, 0}, // 31
std::array{0, 0, 0, 0}, // 32 FormatGB_GR
std::array{0, 0, 0, 0}, // 33 FormatBG_RG
std::array{0, 0, 0, 0}, // 34 Format5_9_9_9
std::array{0, 0, 0, 0}, // 35 FormatBc1
std::array{0, 0, 0, 0}, // 36 FormatBc2
std::array{0, 0, 0, 0}, // 37 FormatBc3
std::array{0, 0, 0, 0}, // 38 FormatBc4
std::array{0, 0, 0, 0}, // 39 FormatBc5
std::array{0, 0, 0, 0}, // 40 FormatBc6
std::array{0, 0, 0, 0}, // 41 FormatBc7
};
u32 ComponentBits(DataFormat format, u32 comp) {
const u32 index = static_cast<u32>(format);
if (index >= component_bits.size() || comp >= 4) {
return 0;
}
return component_bits[index][comp];
}
static constexpr std::array component_offset = {
std::array{-1, -1, -1, -1}, // 0 FormatInvalid
std::array{0, -1, -1, -1}, // 1 Format8
std::array{0, -1, -1, -1}, // 2 Format16
std::array{0, 8, -1, -1}, // 3 Format8_8
std::array{0, -1, -1, -1}, // 4 Format32
std::array{0, 16, -1, -1}, // 5 Format16_16
std::array{0, 10, 21, -1}, // 6 Format10_11_11
std::array{0, 11, 22, -1}, // 7 Format11_11_10
std::array{0, 10, 20, 30}, // 8 Format10_10_10_2
std::array{0, 2, 12, 22}, // 9 Format2_10_10_10
std::array{0, 8, 16, 24}, // 10 Format8_8_8_8
std::array{0, 32, -1, -1}, // 11 Format32_32
std::array{0, 16, 32, 48}, // 12 Format16_16_16_16
std::array{0, 32, 64, -1}, // 13 Format32_32_32
std::array{0, 32, 64, 96}, // 14 Format32_32_32_32
std::array{-1, -1, -1, -1}, // 15
std::array{0, 5, 11, -1}, // 16 Format5_6_5
std::array{0, 1, 6, 11}, // 17 Format1_5_5_5
std::array{0, 5, 10, 15}, // 18 Format5_5_5_1
std::array{0, 4, 8, 12}, // 19 Format4_4_4_4
std::array{0, 8, -1, -1}, // 20 Format8_24
std::array{0, 24, -1, -1}, // 21 Format24_8
std::array{0, 24, -1, -1}, // 22 FormatX24_8_32
std::array{-1, -1, -1, -1}, // 23
std::array{-1, -1, -1, -1}, // 24
std::array{-1, -1, -1, -1}, // 25
std::array{-1, -1, -1, -1}, // 26
std::array{-1, -1, -1, -1}, // 27
std::array{-1, -1, -1, -1}, // 28
std::array{-1, -1, -1, -1}, // 29
std::array{-1, -1, -1, -1}, // 30
std::array{-1, -1, -1, -1}, // 31
std::array{-1, -1, -1, -1}, // 32 FormatGB_GR
std::array{-1, -1, -1, -1}, // 33 FormatBG_RG
std::array{-1, -1, -1, -1}, // 34 Format5_9_9_9
std::array{-1, -1, -1, -1}, // 35 FormatBc1
std::array{-1, -1, -1, -1}, // 36 FormatBc2
std::array{-1, -1, -1, -1}, // 37 FormatBc3
std::array{-1, -1, -1, -1}, // 38 FormatBc4
std::array{-1, -1, -1, -1}, // 39 FormatBc5
std::array{-1, -1, -1, -1}, // 40 FormatBc6
std::array{-1, -1, -1, -1}, // 41 FormatBc7
};
s32 ComponentOffset(DataFormat format, u32 comp) {
const u32 index = static_cast<u32>(format);
if (index >= component_offset.size() || comp >= 4) {
return -1;
}
return component_offset[index][comp];
}
} // namespace AmdGpu

View file

@ -65,6 +65,8 @@ enum class NumberFormat : u32 {
int NumComponents(DataFormat format);
int NumBits(DataFormat format);
u32 ComponentBits(DataFormat format, u32 comp);
s32 ComponentOffset(DataFormat format, u32 comp);
} // namespace AmdGpu

View file

@ -62,14 +62,6 @@ struct Buffer {
return stride == 0 ? 1U : stride;
}
u32 GetStrideElements(u32 element_size) const noexcept {
if (stride == 0) {
return 1U;
}
ASSERT(stride % element_size == 0);
return stride / element_size;
}
u32 GetSize() const noexcept {
return GetStride() * num_records;
}