Initial instancing and asynchronous compute queues (#207)

* gnm_driver: added `sceGnmRegisterOwner` and `sceGnmRegisterResource`

* video_out: `sceVideoOutGetDeviceCapabilityInfo` for sdk runtime

* gnm_driver: correct vqid index range

* amdgpu: indirect buffer, release mem and some additional irq modes

* amdgpu: added ASC commands processor

* shader_recompiler: added support for fetch instance id

* amdgpu: classic bitfields for T# representation (debugging experience)

* renderer_vulkan: skip zero sized VBs from binding

* texture_cache: image upload logic moved into `Image` object

* gnm_driver: `sceGnmDingDong` implementation

* texture_cache: `Image` usage flags moved; correct VO buffer pitch
This commit is contained in:
psucien 2024-06-22 18:50:20 +02:00 committed by GitHub
parent a9cbd8287c
commit cb6b21de1f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 361 additions and 100 deletions

View file

@ -252,6 +252,7 @@ constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_QUEUE_ID = 0x80D17001;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_RING_BASE_ADDR = 0x80D17003;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_RING_SIZE = 0x80D17002;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_READ_PTR_ADDR = 0x80D17004;
constexpr int ORBIS_GNM_ERROR_FAILURE = 0x8EEE00FF;
// Generic
constexpr int ORBIS_OK = 0x00000000;

View file

@ -31,6 +31,7 @@ static constexpr bool g_fair_hw_init = false;
// In case if `submitDone` is issued we need to block submissions until GPU idle
static u32 submission_lock{};
static std::mutex m_submission{};
static u64 frames_submitted{}; // frame counter
struct AscQueueInfo {
@ -211,9 +212,32 @@ int PS4_SYSV_ABI sceGnmDestroyWorkloadStream() {
return ORBIS_OK;
}
int PS4_SYSV_ABI sceGnmDingDong() {
LOG_ERROR(Lib_GnmDriver, "(STUBBED) called");
return ORBIS_OK;
void PS4_SYSV_ABI sceGnmDingDong(u32 gnm_vqid, u32 next_offs_dw) {
LOG_INFO(Lib_GnmDriver, "vqid {}, offset_dw {}", gnm_vqid, next_offs_dw);
if (gnm_vqid == 0) {
return;
}
std::unique_lock lock{m_submission};
if (submission_lock != 0) {
liverpool->WaitGpuIdle();
// Suspend logic goes here
submission_lock = 0;
}
auto vqid = gnm_vqid - 1;
auto& asc_queue = asc_queues[{vqid}];
const auto* acb_ptr = reinterpret_cast<const u32*>(asc_queue.map_addr + *asc_queue.read_addr);
const auto acb_size = next_offs_dw ? (next_offs_dw << 2u) - *asc_queue.read_addr
: (asc_queue.ring_size_dw << 2u) - *asc_queue.read_addr;
liverpool->SubmitAsc(vqid, {acb_ptr, acb_size >> 2u});
*asc_queue.read_addr += acb_size;
*asc_queue.read_addr %= asc_queue.ring_size_dw * 4;
}
int PS4_SYSV_ABI sceGnmDingDongForWorkload() {
@ -764,10 +788,12 @@ int PS4_SYSV_ABI sceGnmMapComputeQueue(u32 pipe_id, u32 queue_id, VAddr ring_bas
}
auto vqid = asc_queues.insert(VAddr(ring_base_addr), read_ptr_addr, ring_size_dw);
// We need to offset index as `dingDong` assumes it to be from the range [1..64]
const auto gnm_vqid = vqid.index + 1;
LOG_INFO(Lib_GnmDriver, "ASC pipe {} queue {} mapped to vqueue {}", pipe_id, queue_id,
vqid.index);
gnm_vqid);
return vqid.index;
return gnm_vqid;
}
int PS4_SYSV_ABI sceGnmMapComputeQueueWithPriority(u32 pipe_id, u32 queue_id, VAddr ring_base_addr,
@ -814,14 +840,16 @@ int PS4_SYSV_ABI sceGnmRegisterGnmLiveCallbackConfig() {
return ORBIS_OK;
}
int PS4_SYSV_ABI sceGnmRegisterOwner() {
LOG_ERROR(Lib_GnmDriver, "(STUBBED) called");
return ORBIS_OK;
s32 PS4_SYSV_ABI sceGnmRegisterOwner(void* handle, const char* name) {
LOG_TRACE(Lib_GnmDriver, "called");
return ORBIS_GNM_ERROR_FAILURE; // PA Debug is always disabled in retail FW
}
int PS4_SYSV_ABI sceGnmRegisterResource() {
LOG_ERROR(Lib_GnmDriver, "(STUBBED) called");
return ORBIS_OK;
s32 PS4_SYSV_ABI sceGnmRegisterResource(void* res_handle, void* owner_handle, const void* addr,
size_t size, const char* name, int res_type,
u64 user_data) {
LOG_TRACE(Lib_GnmDriver, "called");
return ORBIS_GNM_ERROR_FAILURE; // PA Debug is always disabled in retail FW
}
int PS4_SYSV_ABI sceGnmRequestFlipAndSubmitDone() {

View file

@ -33,7 +33,7 @@ int PS4_SYSV_ABI sceGnmDebuggerWriteSqIndirectRegister();
int PS4_SYSV_ABI sceGnmDebugHardwareStatus();
s32 PS4_SYSV_ABI sceGnmDeleteEqEvent(SceKernelEqueue eq, u64 id);
int PS4_SYSV_ABI sceGnmDestroyWorkloadStream();
int PS4_SYSV_ABI sceGnmDingDong();
void PS4_SYSV_ABI sceGnmDingDong(u32 gnm_vqid, u32 next_offs_dw);
int PS4_SYSV_ABI sceGnmDingDongForWorkload();
int PS4_SYSV_ABI sceGnmDisableMipStatsReport();
s32 PS4_SYSV_ABI sceGnmDispatchDirect(u32* cmdbuf, u32 size, u32 threads_x, u32 threads_y,
@ -125,8 +125,9 @@ int PS4_SYSV_ABI sceGnmQueryResourceRegistrationUserMemoryRequirements();
int PS4_SYSV_ABI sceGnmRaiseUserExceptionEvent();
int PS4_SYSV_ABI sceGnmRegisterGdsResource();
int PS4_SYSV_ABI sceGnmRegisterGnmLiveCallbackConfig();
int PS4_SYSV_ABI sceGnmRegisterOwner();
int PS4_SYSV_ABI sceGnmRegisterResource();
s32 PS4_SYSV_ABI sceGnmRegisterOwner(void* handle, const char* name);
s32 PS4_SYSV_ABI sceGnmRegisterResource(void* res_handle, void* owner_handle, const void* addr,
size_t size, const char* name, int res_type, u64 user_data);
int PS4_SYSV_ABI sceGnmRequestFlipAndSubmitDone();
int PS4_SYSV_ABI sceGnmRequestFlipAndSubmitDoneForWorkload();
int PS4_SYSV_ABI sceGnmRequestMipStatsReportAndReset();

View file

@ -288,6 +288,8 @@ void RegisterLib(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("uquVH4-Du78", "libSceVideoOut", 1, "libSceVideoOut", 0, 0, sceVideoOutClose);
LIB_FUNCTION("1FZBKy8HeNU", "libSceVideoOut", 1, "libSceVideoOut", 0, 0,
sceVideoOutGetVblankStatus);
LIB_FUNCTION("kGVLc3htQE8", "libSceVideoOut", 1, "libSceVideoOut", 0, 0,
sceVideoOutGetDeviceCapabilityInfo);
// openOrbis appears to have libSceVideoOut_v1 module libSceVideoOut_v1.1
LIB_FUNCTION("Up36PTk687E", "libSceVideoOut", 1, "libSceVideoOut", 1, 1, sceVideoOutOpen);

View file

@ -72,6 +72,9 @@ std::vector<VertexAttribute> ParseFetchShader(const u32* code) {
attrib.sgpr_base = it->base_sgpr;
attrib.dword_offset = it->dword_offset;
// Store instance id rate
attrib.instance_data = inst.src[0].code;
// Mark load as used.
it->dst_reg = -1;
}

View file

@ -9,11 +9,12 @@
namespace Shader::Gcn {
struct VertexAttribute {
u8 semantic; ///< Semantic index of the attribute
u8 dest_vgpr; ///< Destination VGPR to load first component.
u8 num_elements; ///< Number of components to load
u8 sgpr_base; ///< SGPR that contains the pointer to the list of vertex V#
u8 dword_offset; ///< The dword offset of the V# that describes this attribute.
u8 semantic; ///< Semantic index of the attribute
u8 dest_vgpr; ///< Destination VGPR to load first component.
u8 num_elements; ///< Number of components to load
u8 sgpr_base; ///< SGPR that contains the pointer to the list of vertex V#
u8 dword_offset; ///< The dword offset of the V# that describes this attribute.
u8 instance_data; ///< Indicates that the buffer will be accessed in instance rate
};
std::vector<VertexAttribute> ParseFetchShader(const u32* code);

View file

@ -194,6 +194,11 @@ void Translator::EmitFetch(const GcnInst& inst) {
ir.SetVectorReg(dst_reg++, ir.GetAttribute(attr, i));
}
if (attrib.instance_data == 2 || attrib.instance_data == 3) {
LOG_WARNING(Render_Recompiler, "Unsupported instance step rate = {}",
attrib.instance_data);
}
// Read the V# of the attribute to figure out component number and type.
const auto buffer = info.ReadUd<AmdGpu::Buffer>(attrib.sgpr_base, attrib.dword_offset);
const u32 num_components = AmdGpu::NumComponents(buffer.data_format);
@ -203,6 +208,7 @@ void Translator::EmitFetch(const GcnInst& inst) {
.num_components = std::min<u16>(attrib.num_elements, num_components),
.sgpr_base = attrib.sgpr_base,
.dword_offset = attrib.dword_offset,
.instance_step_rate = static_cast<Info::VsInput::InstanceIdType>(attrib.instance_data),
});
}
}

View file

@ -270,8 +270,8 @@ void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descrip
u32 image_binding = descriptors.Add(ImageResource{
.sgpr_base = tsharp.sgpr_base,
.dword_offset = tsharp.dword_offset,
.type = image.type,
.nfmt = static_cast<AmdGpu::NumberFormat>(image.num_format.Value()),
.type = image.GetType(),
.nfmt = static_cast<AmdGpu::NumberFormat>(image.GetNumberFmt()),
.is_storage = IsImageStorageInstruction(inst),
.is_depth = bool(inst_info.is_depth),
});
@ -293,7 +293,7 @@ void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descrip
// Now that we know the image type, adjust texture coordinate vector.
const IR::Inst* body = inst.Arg(1).InstRecursive();
const auto [coords, arg] = [&] -> std::pair<IR::Value, IR::Value> {
switch (image.type) {
switch (image.GetType()) {
case AmdGpu::ImageType::Color1D:
return {body->Arg(0), body->Arg(1)};
case AmdGpu::ImageType::Color1DArray:
@ -305,7 +305,7 @@ void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descrip
case AmdGpu::ImageType::Cube:
return {PatchCubeCoord(ir, body->Arg(0), body->Arg(1), body->Arg(2)), body->Arg(3)};
default:
UNREACHABLE_MSG("Unknown image type {}", image.type.Value());
UNREACHABLE_MSG("Unknown image type {}", image.GetType());
}
}();
inst.SetArg(1, coords);

View file

@ -72,11 +72,19 @@ using SamplerResourceList = boost::container::static_vector<SamplerResource, 8>;
struct Info {
struct VsInput {
enum InstanceIdType : u8 {
None = 0,
OverStepRate0 = 1,
OverStepRate1 = 2,
Plain = 3,
};
AmdGpu::NumberFormat fmt;
u16 binding;
u16 num_components;
u8 sgpr_base;
u8 dword_offset;
InstanceIdType instance_step_rate;
};
boost::container::static_vector<VsInput, 32> vs_inputs{};

View file

@ -12,7 +12,7 @@ namespace AmdGpu {
static const char* dcb_task_name{"DCB_TASK"};
static const char* ccb_task_name{"CCB_TASK"};
static const char* asc_task_name{"ACB_TASK"};
static const char* acb_task_name{"ACB_TASK"};
std::array<u8, 48_KB> Liverpool::ConstantEngine::constants_heap;
@ -381,6 +381,8 @@ Liverpool::Task Liverpool::ProcessGraphics(std::span<const u32> dcb, std::span<c
}
Liverpool::Task Liverpool::ProcessCompute(std::span<const u32> acb) {
TracyFiberEnter(acb_task_name);
while (!acb.empty()) {
const auto* header = reinterpret_cast<const PM4Header*>(acb.data());
const u32 type = header->type;
@ -393,6 +395,69 @@ Liverpool::Task Liverpool::ProcessCompute(std::span<const u32> acb) {
const PM4ItOpcode opcode = header->type3.opcode;
const auto* it_body = reinterpret_cast<const u32*>(header) + 1;
switch (opcode) {
case PM4ItOpcode::Nop: {
const auto* nop = reinterpret_cast<const PM4CmdNop*>(header);
break;
}
case PM4ItOpcode::IndirectBuffer: {
const auto* indirect_buffer = reinterpret_cast<const PM4CmdIndirectBuffer*>(header);
auto task =
ProcessCompute({indirect_buffer->Address<const u32>(), indirect_buffer->ib_size});
while (!task.handle.done()) {
task.handle.resume();
TracyFiberLeave;
co_yield {};
TracyFiberEnter(acb_task_name);
};
break;
}
case PM4ItOpcode::AcquireMem: {
break;
}
case PM4ItOpcode::SetShReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
std::memcpy(&regs.reg_array[ShRegWordOffset + set_data->reg_offset], header + 2,
(count - 1) * sizeof(u32));
break;
}
case PM4ItOpcode::DispatchDirect: {
const auto* dispatch_direct = reinterpret_cast<const PM4CmdDispatchDirect*>(header);
regs.cs_program.dim_x = dispatch_direct->dim_x;
regs.cs_program.dim_y = dispatch_direct->dim_y;
regs.cs_program.dim_z = dispatch_direct->dim_z;
regs.cs_program.dispatch_initiator = dispatch_direct->dispatch_initiator;
if (rasterizer && (regs.cs_program.dispatch_initiator & 1)) {
rasterizer->DispatchDirect();
}
break;
}
case PM4ItOpcode::WriteData: {
const auto* write_data = reinterpret_cast<const PM4CmdWriteData*>(header);
ASSERT(write_data->dst_sel.Value() == 2 || write_data->dst_sel.Value() == 5);
const u32 data_size = (header->type3.count.Value() - 2) * 4;
if (!write_data->wr_one_addr.Value()) {
std::memcpy(write_data->Address<void*>(), write_data->data, data_size);
} else {
UNREACHABLE();
}
break;
}
case PM4ItOpcode::WaitRegMem: {
const auto* wait_reg_mem = reinterpret_cast<const PM4CmdWaitRegMem*>(header);
ASSERT(wait_reg_mem->engine.Value() == PM4CmdWaitRegMem::Engine::Me);
while (!wait_reg_mem->Test()) {
TracyFiberLeave;
co_yield {};
TracyFiberEnter(acb_task_name);
}
break;
}
case PM4ItOpcode::ReleaseMem: {
const auto* release_mem = reinterpret_cast<const PM4CmdReleaseMem*>(header);
release_mem->SignalFence(Platform::InterruptId::Compute0RelMem); // <---
break;
}
default:
UNREACHABLE_MSG("Unknown PM4 type 3 opcode {:#x} with count {}",
static_cast<u32>(opcode), count);
@ -401,7 +466,7 @@ Liverpool::Task Liverpool::ProcessCompute(std::span<const u32> acb) {
acb = acb.subspan(header->type3.NumWords() + 1);
}
return {}; // Not a coroutine yet
TracyFiberLeave;
}
void Liverpool::SubmitGfx(std::span<const u32> dcb, std::span<const u32> ccb) {

View file

@ -265,6 +265,7 @@ enum class InterruptSelect : u32 {
None = 0,
IrqOnly = 1,
IrqWhenWriteConfirm = 2,
IrqUndocumented = 3,
};
struct PM4CmdEventWriteEop {
@ -299,6 +300,9 @@ struct PM4CmdEventWriteEop {
void SignalFence() const {
switch (data_sel.Value()) {
case DataSelect::None: {
break;
}
case DataSelect::Data32Low: {
*Address<u32>() = DataDWord();
break;
@ -321,6 +325,9 @@ struct PM4CmdEventWriteEop {
// No interrupt
break;
}
case InterruptSelect::IrqOnly:
ASSERT(data_sel == DataSelect::None);
[[fallthrough]];
case InterruptSelect::IrqWhenWriteConfirm: {
Platform::IrqC::Instance()->Signal(Platform::InterruptId::GfxEop);
break;
@ -559,4 +566,105 @@ struct PM4CmdDrawIndexBase {
u32 addr_hi;
};
struct PM4CmdIndirectBuffer {
PM4Type3Header header;
u32 ibase_lo; ///< Indirect buffer base address, must be 4 byte aligned
union {
BitField<0, 16, u32> ibase_hi; ///< Indirect buffer base address
u32 dw1;
};
union {
BitField<0, 20, u32> ib_size; ///< Indirect buffer size
BitField<20, 1, u32> chain; ///< set to chain to IB allocations
BitField<24, 8, u32> vmid; ///< Virtual memory domain ID for command buffer
u32 dw2;
};
template <typename T>
T* Address() const {
return reinterpret_cast<T*>((u64(ibase_hi) << 32u) | ibase_lo);
}
};
struct PM4CmdReleaseMem {
PM4Type3Header header;
union {
BitField<0, 6, u32> event_type; ///< Event type written to VGT_EVENT_INITIATOR
BitField<8, 4, u32> event_index; ///< Event index
BitField<12, 1, u32> tcl1_vol_action_ena;
BitField<13, 1, u32> tc_vol_action_ena;
BitField<15, 1, u32> tc_wb_action_ena;
BitField<16, 1, u32> tcl1__action_ena;
BitField<17, 1, u32> tc_action_ena;
BitField<25, 2, u32> cache_policy; ///< Cache Policy setting used for writing fences and
///< timestamps to the TCL2
u32 dw1;
};
union {
BitField<16, 2, u32> dst_sel; ///< destination select
BitField<24, 3, InterruptSelect> int_sel; ///< selects interrupt action for end-of-pipe
BitField<29, 3, DataSelect> data_sel; ///< selects source of data
u32 dw2;
};
u32 address_lo; ///< low bits of address
u32 address_hi; ///< high bits of address
union {
struct {
u16 gds_index; ///< Byte offset into GDS to copy from
u16 num_dw; ///< Number of DWORDS of GDS to copy
};
u32 data_lo; ///< value that will be written to memory when event occurs
};
u32 data_hi;
template <typename T>
T* Address() const {
return reinterpret_cast<T*>(address_lo | u64(address_hi) << 32);
}
u32 DataDWord() const {
return data_lo;
}
u64 DataQWord() const {
return data_lo | u64(data_hi) << 32;
}
void SignalFence(Platform::InterruptId irq_id) const {
switch (data_sel.Value()) {
case DataSelect::Data32Low: {
*Address<u32>() = DataDWord();
break;
}
case DataSelect::Data64: {
*Address<u64>() = DataQWord();
break;
}
case DataSelect::PerfCounter: {
*Address<u64>() = Common::FencedRDTSC();
break;
}
default: {
UNREACHABLE();
}
}
switch (int_sel.Value()) {
case InterruptSelect::None: {
// No interrupt
break;
}
case InterruptSelect::IrqUndocumented:
[[fallthrough]];
case InterruptSelect::IrqWhenWriteConfirm: {
Platform::IrqC::Instance()->Signal(irq_id);
break;
}
default: {
UNREACHABLE();
}
}
}
};
} // namespace AmdGpu

View file

@ -46,6 +46,7 @@ enum class PM4ItOpcode : u32 {
EventWrite = 0x46,
EventWriteEop = 0x47,
EventWriteEos = 0x48,
ReleaseMem = 0x49,
PremableCntl = 0x4A,
DmaData = 0x50,
ContextRegRmw = 0x51,

View file

@ -108,36 +108,39 @@ constexpr std::string_view NameOf(TilingMode type) {
}
struct Image {
union {
BitField<0, 38, u64> base_address;
BitField<40, 12, u64> min_lod;
BitField<52, 6, u64> data_format;
BitField<58, 4, u64> num_format;
BitField<62, 2, u64> mtype;
};
union {
BitField<0, 14, u64> width;
BitField<14, 14, u64> height;
BitField<28, 3, u64> perf_modulation;
BitField<31, 1, u64> interlaced;
BitField<32, 3, u64> dst_sel_x;
BitField<35, 3, u64> dst_sel_y;
BitField<38, 3, u64> dst_sel_z;
BitField<41, 3, u64> dst_sel_w;
BitField<44, 4, u64> base_level;
BitField<48, 4, u64> last_level;
BitField<52, 5, u64> tiling_index;
BitField<57, 1, u64> pow2pad;
BitField<58, 1, u64> mtype2;
BitField<59, 1, u64> atc;
BitField<60, 4, ImageType> type;
};
union {
BitField<0, 13, u64> depth;
BitField<13, 14, u64> pitch;
BitField<32, 13, u64> base_array;
BitField<45, 13, u64> last_array;
};
u64 base_address : 38;
u64 mtype_l2 : 2;
u64 min_lod : 12;
u64 data_format : 6;
u64 num_format : 4;
u64 mtype : 2;
u64 width : 14;
u64 height : 14;
u64 perf_modulation : 3;
u64 interlaced : 1;
u64 dst_sel_x : 3;
u64 dst_sel_y : 3;
u64 dst_sel_z : 3;
u64 dst_sel_w : 3;
u64 base_level : 4;
u64 last_level : 4;
u64 tiling_index : 5;
u64 pow2pad : 1;
u64 mtype2 : 1;
u64 atc : 1;
u64 type : 4;
u64 depth : 13;
u64 pitch : 14;
u64 : 5;
u64 base_array : 13;
u64 last_array : 13;
u64 : 6;
u64 min_lod_warn : 12;
u64 counter_bank_id : 8;
u64 lod_hw_cnt_en : 1;
u64 : 43;
VAddr Address() const {
return base_address << 8;
@ -148,8 +151,8 @@ struct Image {
}
u32 NumLayers() const {
u32 slices = type == ImageType::Color3D ? 1 : depth.Value() + 1;
if (type == ImageType::Cube) {
u32 slices = GetType() == ImageType::Color3D ? 1 : depth + 1;
if (GetType() == ImageType::Cube) {
slices *= 6;
}
if (pow2pad) {
@ -159,33 +162,38 @@ struct Image {
}
u32 NumLevels() const {
if (type == ImageType::Color2DMsaa || type == ImageType::Color2DMsaaArray) {
if (GetType() == ImageType::Color2DMsaa || GetType() == ImageType::Color2DMsaaArray) {
return 1;
}
return last_level + 1;
}
ImageType GetType() const noexcept {
return static_cast<ImageType>(type);
}
DataFormat GetDataFmt() const noexcept {
return static_cast<DataFormat>(data_format.Value());
return static_cast<DataFormat>(data_format);
}
NumberFormat GetNumberFmt() const noexcept {
return static_cast<NumberFormat>(num_format.Value());
return static_cast<NumberFormat>(num_format);
}
[[nodiscard]] TilingMode GetTilingMode() const {
return static_cast<TilingMode>(tiling_index.Value());
TilingMode GetTilingMode() const {
return static_cast<TilingMode>(tiling_index);
}
[[nodiscard]] bool IsTiled() const {
bool IsTiled() const {
return GetTilingMode() != TilingMode::Display_Linear;
}
[[nodiscard]] size_t GetSizeAligned() const {
size_t GetSizeAligned() const {
// TODO: Derive this properly from tiling params
return (width + 1) * (height + 1) * NumComponents(GetDataFmt());
return Pitch() * (height + 1) * NumComponents(GetDataFmt());
}
};
static_assert(sizeof(Image) == 32); // 256bits
// 8.2.7. Image Sampler [RDNA 2 Instruction Set Architecture]
enum class ClampMode : u64 {

View file

@ -53,7 +53,9 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
bindings.push_back({
.binding = input.binding,
.stride = buffer.GetStride(),
.inputRate = vk::VertexInputRate::eVertex,
.inputRate = input.instance_step_rate == Shader::Info::VsInput::None
? vk::VertexInputRate::eVertex
: vk::VertexInputRate::eInstance,
});
}
@ -402,8 +404,11 @@ void GraphicsPipeline::BindVertexBuffers(StreamBuffer& staging) const {
// Calculate buffers memory overlaps
boost::container::static_vector<BufferRange, MaxVertexBufferCount> ranges{};
for (const auto& input : vs_info.vs_inputs) {
const auto& buffer = guest_buffers.emplace_back(
vs_info.ReadUd<AmdGpu::Buffer>(input.sgpr_base, input.dword_offset));
const auto& buffer = vs_info.ReadUd<AmdGpu::Buffer>(input.sgpr_base, input.dword_offset);
if (buffer.GetSize() == 0) {
continue;
}
guest_buffers.emplace_back(buffer);
ranges.emplace_back(buffer.base_address.Value(),
buffer.base_address.Value() + buffer.GetSize());
}

View file

@ -116,11 +116,13 @@ static vk::ImageType ConvertImageType(AmdGpu::ImageType type) noexcept {
ImageInfo::ImageInfo(const Libraries::VideoOut::BufferAttributeGroup& group) noexcept {
const auto& attrib = group.attrib;
is_tiled = attrib.tiling_mode == TilingMode::Tile;
tiling_mode =
is_tiled ? AmdGpu::TilingMode::Display_MacroTiled : AmdGpu::TilingMode::Display_Linear;
pixel_format = ConvertPixelFormat(attrib.pixel_format);
type = vk::ImageType::e2D;
size.width = attrib.width;
size.height = attrib.height;
pitch = attrib.tiling_mode == TilingMode::Linear ? size.width : (size.width + 127) >> 7;
pitch = attrib.tiling_mode == TilingMode::Linear ? size.width : (size.width + 127) & (~127);
const bool is_32bpp = attrib.pixel_format != VideoOutFormat::A16R16G16B16Float;
ASSERT(is_32bpp);
if (!is_tiled) {
@ -128,11 +130,11 @@ ImageInfo::ImageInfo(const Libraries::VideoOut::BufferAttributeGroup& group) noe
return;
}
if (Config::isNeoMode()) {
guest_size_bytes = pitch * 128 * ((size.height + 127) & (~127)) * 4;
guest_size_bytes = pitch * ((size.height + 127) & (~127)) * 4;
} else {
guest_size_bytes = pitch * 128 * ((size.height + 63) & (~63)) * 4;
guest_size_bytes = pitch * ((size.height + 63) & (~63)) * 4;
}
is_vo_surface = true;
usage.vo_buffer = true;
}
ImageInfo::ImageInfo(const AmdGpu::Liverpool::ColorBuffer& buffer,
@ -140,12 +142,14 @@ ImageInfo::ImageInfo(const AmdGpu::Liverpool::ColorBuffer& buffer,
is_tiled = buffer.IsTiled();
tiling_mode = buffer.GetTilingMode();
pixel_format = LiverpoolToVK::SurfaceFormat(buffer.info.format, buffer.NumFormat());
num_samples = 1 << buffer.attrib.num_fragments_log2;
type = vk::ImageType::e2D;
size.width = hint.Valid() ? hint.width : buffer.Pitch();
size.height = hint.Valid() ? hint.height : buffer.Height();
size.depth = 1;
pitch = size.width;
guest_size_bytes = buffer.GetSizeAligned();
usage.render_target = true;
}
ImageInfo::ImageInfo(const AmdGpu::Liverpool::DepthBuffer& buffer,
@ -153,18 +157,20 @@ ImageInfo::ImageInfo(const AmdGpu::Liverpool::DepthBuffer& buffer,
is_tiled = false;
pixel_format = LiverpoolToVK::DepthFormat(buffer.z_info.format, buffer.stencil_info.format);
type = vk::ImageType::e2D;
num_samples = 1 << buffer.z_info.num_samples; // spec doesn't say it is a log2
size.width = hint.Valid() ? hint.width : buffer.Pitch();
size.height = hint.Valid() ? hint.height : buffer.Height();
size.depth = 1;
pitch = size.width;
guest_size_bytes = buffer.GetSizeAligned();
usage.depth_target = true;
}
ImageInfo::ImageInfo(const AmdGpu::Image& image) noexcept {
is_tiled = image.IsTiled();
tiling_mode = image.GetTilingMode();
pixel_format = LiverpoolToVK::SurfaceFormat(image.GetDataFmt(), image.GetNumberFmt());
type = ConvertImageType(image.type);
type = ConvertImageType(image.GetType());
size.width = image.width + 1;
size.height = image.height + 1;
size.depth = 1;
@ -222,7 +228,7 @@ Image::Image(const Vulkan::Instance& instance_, Vulkan::Scheduler& scheduler_,
}
}
info.usage = ImageUsageFlags(info);
usage = ImageUsageFlags(info);
if (info.pixel_format == vk::Format::eD32Sfloat) {
aspect_mask = vk::ImageAspectFlagBits::eDepth;
@ -243,7 +249,7 @@ Image::Image(const Vulkan::Instance& instance_, Vulkan::Scheduler& scheduler_,
.mipLevels = static_cast<u32>(info.resources.levels),
.arrayLayers = static_cast<u32>(info.resources.layers),
.tiling = vk::ImageTiling::eOptimal,
.usage = info.usage,
.usage = usage,
.initialLayout = vk::ImageLayout::eUndefined,
};
@ -296,6 +302,31 @@ void Image::Transit(vk::ImageLayout dst_layout, vk::Flags<vk::AccessFlagBits> ds
pl_stage = dst_pl_stage;
}
void Image::Upload(vk::Buffer buffer, u64 offset) {
Transit(vk::ImageLayout::eTransferDstOptimal, vk::AccessFlagBits::eTransferWrite);
// Copy to the image.
const vk::BufferImageCopy image_copy = {
.bufferOffset = offset,
.bufferRowLength = info.pitch,
.bufferImageHeight = info.size.height,
.imageSubresource{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
},
.imageOffset = {0, 0, 0},
.imageExtent = {info.size.width, info.size.height, 1},
};
const auto cmdbuf = scheduler->CommandBuffer();
cmdbuf.copyBufferToImage(buffer, image, vk::ImageLayout::eTransferDstOptimal, image_copy);
Transit(vk::ImageLayout::eGeneral,
vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eTransferRead);
}
Image::~Image() = default;
} // namespace VideoCore

View file

@ -42,18 +42,28 @@ struct ImageInfo {
const AmdGpu::Liverpool::CbDbExtent& hint = {}) noexcept;
explicit ImageInfo(const AmdGpu::Image& image) noexcept;
bool IsTiled() const {
return tiling_mode != AmdGpu::TilingMode::Display_Linear;
}
bool IsBlockCoded() const;
bool IsPacked() const;
bool IsDepthStencil() const;
struct {
u32 texture : 1;
u32 storage : 1;
u32 render_target : 1;
u32 depth_target : 1;
u32 vo_buffer : 1;
} usage; // Usage data tracked during image lifetime
bool is_tiled = false;
bool is_storage = false;
bool is_vo_surface = false;
vk::Format pixel_format = vk::Format::eUndefined;
vk::ImageType type = vk::ImageType::e1D;
vk::ImageUsageFlags usage;
SubresourceExtent resources;
Extent3D size{1, 1, 1};
u32 num_samples = 1;
u32 pitch = 0;
u32 guest_size_bytes = 0;
AmdGpu::TilingMode tiling_mode{AmdGpu::TilingMode::Display_Linear};
@ -117,6 +127,7 @@ struct Image {
}
void Transit(vk::ImageLayout dst_layout, vk::Flags<vk::AccessFlagBits> dst_mask);
void Upload(vk::Buffer buffer, u64 offset);
const Vulkan::Instance* instance;
Vulkan::Scheduler* scheduler;
@ -131,6 +142,7 @@ struct Image {
std::optional<ImageView> view_for_detiler;
// Resource state tracking
vk::ImageUsageFlags usage;
vk::Flags<vk::PipelineStageFlagBits> pl_stage = vk::PipelineStageFlagBits::eAllCommands;
vk::Flags<vk::AccessFlagBits> access_mask = vk::AccessFlagBits::eNone;
vk::ImageLayout layout = vk::ImageLayout::eUndefined;

View file

@ -48,7 +48,7 @@ vk::ComponentSwizzle ConvertComponentSwizzle(u32 dst_sel) {
ImageViewInfo::ImageViewInfo(const AmdGpu::Image& image, bool is_storage) noexcept
: is_storage{is_storage} {
type = ConvertImageViewType(image.type);
type = ConvertImageViewType(image.GetType());
format = Vulkan::LiverpoolToVK::SurfaceFormat(image.GetDataFmt(), image.GetNumberFmt());
range.base.level = 0;
range.base.layer = 0;

View file

@ -151,7 +151,7 @@ ImageView& TextureCache::RegisterImageView(Image& image, const ImageViewInfo& vi
// temporary remove its storage bit.
std::optional<vk::ImageUsageFlags> usage_override;
if (!image.info.is_storage) {
usage_override = image.info.usage & ~vk::ImageUsageFlagBits::eStorage;
usage_override = image.usage & ~vk::ImageUsageFlagBits::eStorage;
}
const ImageViewId view_id = slot_image_views.insert(instance, view_info, image, usage_override);
@ -183,7 +183,7 @@ ImageView& TextureCache::RenderTarget(const AmdGpu::Liverpool::ColorBuffer& buff
vk::AccessFlagBits::eColorAttachmentWrite |
vk::AccessFlagBits::eColorAttachmentRead);
ImageViewInfo view_info{buffer, image.info.is_vo_surface};
ImageViewInfo view_info{buffer, !!image.info.usage.vo_buffer};
return RegisterImageView(image, view_info);
}
@ -210,26 +210,8 @@ void TextureCache::RefreshImage(Image& image) {
if (!tile_manager.TryDetile(image)) {
// Upload data to the staging buffer.
const auto offset = staging.Copy(image.cpu_addr, image.info.guest_size_bytes, 4);
image.Transit(vk::ImageLayout::eTransferDstOptimal, vk::AccessFlagBits::eTransferWrite);
// Copy to the image.
const vk::BufferImageCopy image_copy = {
.bufferOffset = offset,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
},
.imageOffset = {0, 0, 0},
.imageExtent = {image.info.size.width, image.info.size.height, 1},
};
const auto cmdbuf = scheduler.CommandBuffer();
cmdbuf.copyBufferToImage(staging.Handle(), image.image,
vk::ImageLayout::eTransferDstOptimal, image_copy);
image.Upload(staging.Handle(), offset);
}
image.Transit(vk::ImageLayout::eGeneral,

View file

@ -15,7 +15,6 @@
#include <boost/container/static_vector.hpp>
#include <magic_enum.hpp>
#include <vulkan/vulkan_to_string.hpp>
namespace VideoCore {