printf implementation from vita3k (not yet adapted)

This commit is contained in:
georgemoralis 2023-10-06 12:46:28 +03:00
parent 825d38ef31
commit b9c6d9d395

View file

@ -0,0 +1,711 @@
///////////////////////////////////////////////////////////////////////////////
// \author (c) Marco Paland (info@paland.com)
// 2014-2018, PALANDesign Hannover, Germany
//
// \license The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// \brief Tiny printf, sprintf and snprintf implementation, optimized for speed on
// embedded systems with a very limited resources.
// Use this instead of bloated standard/newlib printf.
// These routines are thread safe and reentrant!
//
///////////////////////////////////////////////////////////////////////////////
// Vita3K emulator project
// Copyright (C) 2023 Vita3K team
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
//copied from Vita3k project at 6/10/2023 (latest update 30/06/2023)
//modifications for adapting va_args parameters
#pragma once
#include <cstdarg>
#include <cstddef>
#include <cstdbool>
#include <cstdint>
namespace utils {
// ntoa conversion buffer size, this must be big enough to hold
// one converted numeric number including padded zeros (dynamically created on stack)
// 32 byte is a good default
#define PRINTF_NTOA_BUFFER_SIZE 32U
// ftoa conversion buffer size, this must be big enough to hold
// one converted float number including padded zeros (dynamically created on stack)
// 32 byte is a good default
#define PRINTF_FTOA_BUFFER_SIZE 32U
// define this to support floating point (%f)
#define PRINTF_SUPPORT_FLOAT
// define this to support long long types (%llu or %p)
#define PRINTF_SUPPORT_LONG_LONG
// define this to support the ptrdiff_t type (%t)
// ptrdiff_t is normally defined in <stddef.h> as long or long long type
#define PRINTF_SUPPORT_PTRDIFF_T
///////////////////////////////////////////////////////////////////////////////
// internal flag definitions
#define FLAGS_ZEROPAD (1U << 0U)
#define FLAGS_LEFT (1U << 1U)
#define FLAGS_PLUS (1U << 2U)
#define FLAGS_SPACE (1U << 3U)
#define FLAGS_HASH (1U << 4U)
#define FLAGS_UPPERCASE (1U << 5U)
#define FLAGS_CHAR (1U << 6U)
#define FLAGS_SHORT (1U << 7U)
#define FLAGS_LONG (1U << 8U)
#define FLAGS_LONG_LONG (1U << 9U)
#define FLAGS_PRECISION (1U << 10U)
#define FLAGS_WIDTH (1U << 11U)
// output function type
typedef void (*out_fct_type)(char character, void* buffer, size_t idx, size_t maxlen);
// wrapper (used as buffer) for output function type
typedef struct {
void (*fct)(char character, void* arg);
void* arg;
} out_fct_wrap_type;
// internal buffer output
static inline void _out_buffer(char character, void* buffer, size_t idx, size_t maxlen)
{
if (idx < maxlen) {
((char*)buffer)[idx] = character;
}
}
// internal null output
static inline void _out_null(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)character; (void)buffer; (void)idx; (void)maxlen;
}
// internal output function wrapper
static inline void _out_fct(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)idx; (void)maxlen;
// buffer is the output fct pointer
((out_fct_wrap_type*)buffer)->fct(character, ((out_fct_wrap_type*)buffer)->arg);
}
// internal strlen
// \return The length of the string (excluding the terminating 0)
static inline unsigned int _strlen(const char* str)
{
const char* s;
for (s = str; *s; ++s);
return (unsigned int)(s - str);
}
// internal test if char is a digit (0-9)
// \return true if char is a digit
static inline bool _is_digit(char ch)
{
return (ch >= '0') && (ch <= '9');
}
// internal ASCII string to unsigned int conversion
static inline unsigned int _atoi(const char** str)
{
unsigned int i = 0U;
while (_is_digit(**str)) {
i = i * 10U + (unsigned int)(*((*str)++) - '0');
}
return i;
}
// internal itoa format
static inline size_t _ntoa_format(out_fct_type out, char* buffer, size_t idx, size_t maxlen, char* buf, size_t len, bool negative, unsigned int base, unsigned int prec, unsigned int width, unsigned int flags)
{
const size_t start_idx = idx;
// pad leading zeros
while (!(flags & FLAGS_LEFT) && (len < prec) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
while (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD) && (len < width) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
// handle hash
if (flags & FLAGS_HASH) {
if (((len == prec) || (len == width)) && (len > 0U)) {
len--;
if ((base == 16U) && (len > 0U)) {
len--;
}
}
if ((base == 16U) && !(flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'x';
}
if ((base == 16U) && (flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'X';
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
buf[len++] = '0';
}
}
// handle sign
if ((len == width) && (negative || (flags & FLAGS_PLUS) || (flags & FLAGS_SPACE))) {
len--;
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
}
else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
}
else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
// pad spaces up to given width
if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
for (size_t i = len; i < width; i++) {
out(' ', buffer, idx++, maxlen);
}
}
// reverse string
for (size_t i = 0U; i < len; i++) {
out(buf[len - i - 1U], buffer, idx++, maxlen);
}
// append pad spaces up to given width
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) {
out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
// internal itoa for 'long' type
static inline size_t _ntoa_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long value, bool negative, unsigned long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
// internal itoa for 'long long' type
#if defined(PRINTF_SUPPORT_LONG_LONG)
static inline size_t _ntoa_long_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long long value, bool negative, unsigned long long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
#endif // PRINTF_SUPPORT_LONG_LONG
#if defined(PRINTF_SUPPORT_FLOAT)
static inline size_t _ftoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_FTOA_BUFFER_SIZE];
size_t len = 0U;
double diff = 0.0;
// if input is larger than thres_max, revert to exponential
const double thres_max = (double)0x7FFFFFFF;
// powers of 10
static const double pow10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
// test for negative
bool negative = false;
if (value < 0) {
negative = true;
value = 0 - value;
}
// set default precision to 6, if not set explicitly
if (!(flags & FLAGS_PRECISION)) {
prec = 6U;
}
// limit precision to 9, cause a prec >= 10 can lead to overflow errors
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (prec > 9U)) {
buf[len++] = '0';
prec--;
}
int whole = (int)value;
double tmp = (value - whole) * pow10[prec];
unsigned long frac = (unsigned long)tmp;
diff = tmp - frac;
if (diff > 0.5) {
++frac;
// handle rollover, e.g. case 0.99 with prec 1 is 1.0
if (frac >= pow10[prec]) {
frac = 0;
++whole;
}
}
else if ((diff == 0.5) && ((frac == 0U) || (frac & 1U))) {
// if halfway, round up if odd, OR if last digit is 0
++frac;
}
// TBD: for very large numbers switch back to native sprintf for exponentials. Anyone want to write code to replace this?
// Normal printf behavior is to print EVERY whole number digit which can be 100s of characters overflowing your buffers == bad
if (value > thres_max) {
return 0U;
}
if (prec == 0U) {
diff = value - (double)whole;
if (diff > 0.5) {
// greater than 0.5, round up, e.g. 1.6 -> 2
++whole;
}
else if ((diff == 0.5) && (whole & 1)) {
// exactly 0.5 and ODD, then round up
// 1.5 -> 2, but 2.5 -> 2
++whole;
}
}
else {
unsigned int count = prec;
// now do fractional part, as an unsigned number
while (len < PRINTF_FTOA_BUFFER_SIZE) {
--count;
buf[len++] = (char)(48U + (frac % 10U));
if (!(frac /= 10U)) {
break;
}
}
// add extra 0s
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (count-- > 0U)) {
buf[len++] = '0';
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
// add decimal
buf[len++] = '.';
}
}
// do whole part, number is reversed
while (len < PRINTF_FTOA_BUFFER_SIZE) {
buf[len++] = (char)(48 + (whole % 10));
if (!(whole /= 10)) {
break;
}
}
// pad leading zeros
while (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD) && (len < width) && (len < PRINTF_FTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
// handle sign
if ((len == width) && (negative || (flags & FLAGS_PLUS) || (flags & FLAGS_SPACE))) {
len--;
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
}
else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
}
else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
// pad spaces up to given width
if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
for (size_t i = len; i < width; i++) {
out(' ', buffer, idx++, maxlen);
}
}
// reverse string
for (size_t i = 0U; i < len; i++) {
out(buf[len - i - 1U], buffer, idx++, maxlen);
}
// append pad spaces up to given width
if (flags & FLAGS_LEFT) {
while (idx < width) {
out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
#endif // PRINTF_SUPPORT_FLOAT
#if 0
// internal vsnprintf
static inline int _vsnprintf(out_fct_type out, char* buffer, const size_t maxlen, const char* format, CPUState &cpu, MemState &mem, module::vargs &va)
{
unsigned int flags, width, precision, n;
size_t idx = 0U;
if (!buffer) {
// use null output function
out = _out_null;
}
while (*format)
{
// format specifier? %[flags][width][.precision][length]
if (*format != '%') {
// no
out(*format, buffer, idx++, maxlen);
format++;
continue;
}
else {
// yes, evaluate it
format++;
}
// evaluate flags
flags = 0U;
do {
switch (*format) {
case '0': flags |= FLAGS_ZEROPAD; format++; n = 1U; break;
case '-': flags |= FLAGS_LEFT; format++; n = 1U; break;
case '+': flags |= FLAGS_PLUS; format++; n = 1U; break;
case ' ': flags |= FLAGS_SPACE; format++; n = 1U; break;
case '#': flags |= FLAGS_HASH; format++; n = 1U; break;
default : n = 0U; break;
}
} while (n);
// evaluate width field
width = 0U;
if (_is_digit(*format)) {
width = _atoi(&format);
}
else if (*format == '*') {
const int w = va.next<int>(cpu, mem);
if (w < 0) {
flags |= FLAGS_LEFT; // reverse padding
width = (unsigned int)-w;
}
else {
width = (unsigned int)w;
}
format++;
}
// evaluate precision field
precision = 0U;
if (*format == '.') {
flags |= FLAGS_PRECISION;
format++;
if (_is_digit(*format)) {
precision = _atoi(&format);
}
else if (*format == '*') {
precision = (unsigned int)va.next<int>(cpu, mem);
format++;
}
}
// evaluate length field
switch (*format) {
case 'l' :
flags |= FLAGS_LONG;
format++;
if (*format == 'l') {
flags |= FLAGS_LONG_LONG;
format++;
}
break;
case 'h' :
flags |= FLAGS_SHORT;
format++;
if (*format == 'h') {
flags |= FLAGS_CHAR;
format++;
}
break;
#if defined(PRINTF_SUPPORT_PTRDIFF_T)
case 't' :
flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
#endif
case 'j' :
flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
case 'z' :
flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
default :
break;
}
// evaluate specifier
switch (*format) {
case 'd' :
case 'i' :
case 'u' :
case 'x' :
case 'X' :
case 'o' :
case 'b' : {
// set the base
unsigned int base;
if (*format == 'x' || *format == 'X') {
base = 16U;
}
else if (*format == 'o') {
base = 8U;
}
else if (*format == 'b') {
base = 2U;
flags &= ~FLAGS_HASH; // no hash for bin format
}
else {
base = 10U;
flags &= ~FLAGS_HASH; // no hash for dec format
}
// uppercase
if (*format == 'X') {
flags |= FLAGS_UPPERCASE;
}
// no plus or space flag for u, x, X, o, b
if ((*format != 'i') && (*format != 'd')) {
flags &= ~(FLAGS_PLUS | FLAGS_SPACE);
}
// convert the integer
if ((*format == 'i') || (*format == 'd')) {
// signed
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
const long long value = va.next<long long>(cpu, mem);
idx = _ntoa_long_long(out, buffer, idx, maxlen, (unsigned long long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
#endif
}
else if (flags & FLAGS_LONG) {
const long value = va.next<long>(cpu, mem);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
}
else {
const int value = (flags & FLAGS_CHAR) ? (char)va.next<int>(cpu, mem) : (flags & FLAGS_SHORT) ? (short int)va.next<int>(cpu, mem): va.next<int>(cpu, mem);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned int)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
}
}
else {
// unsigned
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
idx = _ntoa_long_long(out, buffer, idx, maxlen, va.next<unsigned long long>(cpu, mem), false, base, precision, width, flags);
#endif
}
else if (flags & FLAGS_LONG) {
idx = _ntoa_long(out, buffer, idx, maxlen, va.next<unsigned long>(cpu, mem), false, base, precision, width, flags);
}
else {
const unsigned int value = (flags & FLAGS_CHAR) ? (unsigned char)va.next<unsigned int>(cpu, mem) : (flags & FLAGS_SHORT) ?
(unsigned short int)va.next<unsigned int>(cpu, mem) : va.next<unsigned int>(cpu, mem);
idx = _ntoa_long(out, buffer, idx, maxlen, value, false, base, precision, width, flags);
}
}
format++;
break;
}
#if defined(PRINTF_SUPPORT_FLOAT)
case 'f' :
case 'F' :
idx = _ftoa(out, buffer, idx, maxlen, va.next<double>(cpu, mem), precision, width, flags);
format++;
break;
#endif // PRINTF_SUPPORT_FLOAT
case 'c' : {
unsigned int l = 1U;
// pre padding
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// char output
out((char)va.next<int>(cpu, mem), buffer, idx++, maxlen);
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 's' : {
const char *p = va.next<Ptr<char>>(cpu, mem).get(mem);
p = p != nullptr ? p : "(null)";
unsigned int l = _strlen(p);
// pre padding
if (flags & FLAGS_PRECISION) {
l = (l < precision ? l : precision);
}
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// string output
while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision--)) {
out(*(p++), buffer, idx++, maxlen);
}
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 'p' : {
width = sizeof(void*) * 2U;
flags |= FLAGS_ZEROPAD | FLAGS_UPPERCASE;
#if defined(PRINTF_SUPPORT_LONG_LONG)
const bool is_ll = sizeof(uintptr_t) == sizeof(long long);
if (is_ll) {
idx = _ntoa_long_long(out, buffer, idx, maxlen, (uintptr_t)va.next<Ptr<void>>(cpu, mem).address(), false, 16U, precision, width, flags);
}
else {
#endif
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)((uintptr_t)va.next<Ptr<void>>(cpu, mem).address()), false, 16U, precision, width, flags);
#if defined(PRINTF_SUPPORT_LONG_LONG)
}
#endif
format++;
break;
}
case '%' :
out('%', buffer, idx++, maxlen);
format++;
break;
default :
out(*format, buffer, idx++, maxlen);
format++;
break;
}
}
// termination
out((char)0, buffer, idx < maxlen ? idx : maxlen - 1U, maxlen);
// return written chars without terminating \0
return (int)idx;
}
///////////////////////////////////////////////////////
/**
* Tiny sprintf implementation
* Due to security reasons (buffer overflow) YOU SHOULD CONSIDER USING (V)SNPRINTF INSTEAD!
* \param buffer A pointer to the buffer where to store the formatted string. MUST be big enough to store the output!
* \param format A string that specifies the format of the output
* \return The number of characters that are WRITTEN into the buffer, not counting the terminating null character
*/
inline int sprintf(char* buffer, const char* format, CPUState &cpu, MemState &mem, module::vargs &args)
{
const int ret = _vsnprintf(_out_buffer, buffer, (size_t)-1, format, cpu, mem, args);
return ret;
}
/**
* Tiny snprintf/vsnprintf implementation
* \param buffer A pointer to the buffer where to store the formatted string
* \param count The maximum number of characters to store in the buffer, including a terminating null character
* \param format A string that specifies the format of the output
* \return The number of characters that are WRITTEN into the buffer, not counting the terminating null character
* If the formatted string is truncated the buffer size (count) is returned
*/
inline int snprintf(char* buffer, size_t count, const char* format, CPUState &cpu, MemState &mem, module::vargs &args)
{
const int ret = _vsnprintf(_out_buffer, buffer, count, format, cpu, mem, args);
return ret;
}
#endif
}