shader_recompiler: Move sampling parameter resolution to tracking pass and support more derivative types. (#1290)

* shader_recompiler: Move sampling parameter resolution to tracking pass and support more derivative types.

* shader_recompiler: Only track sampler sharp on sample instructions.

* shader_recompiler: Fix Inst args size.
This commit is contained in:
squidbus 2024-10-10 09:27:34 -07:00 committed by GitHub
parent 2ce6ec1fdc
commit b7a1986827
10 changed files with 338 additions and 272 deletions

View file

@ -59,19 +59,22 @@ struct ImageOperands {
} }
} }
void AddDerivatives(EmitContext& ctx, Id derivatives) { void AddDerivatives(EmitContext& ctx, Id derivatives_dx, Id derivatives_dy) {
if (!Sirit::ValidId(derivatives)) { if (!Sirit::ValidId(derivatives_dx) || !Sirit::ValidId(derivatives_dy)) {
return; return;
} }
const Id dx{ctx.OpVectorShuffle(ctx.F32[2], derivatives, derivatives, 0, 1)}; Add(spv::ImageOperandsMask::Grad, derivatives_dx, derivatives_dy);
const Id dy{ctx.OpVectorShuffle(ctx.F32[2], derivatives, derivatives, 2, 3)};
Add(spv::ImageOperandsMask::Grad, dx, dy);
} }
spv::ImageOperandsMask mask{}; spv::ImageOperandsMask mask{};
boost::container::static_vector<Id, 4> operands; boost::container::static_vector<Id, 4> operands;
}; };
Id EmitImageSampleRaw(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address1, Id address2,
Id address3, Id address4) {
UNREACHABLE_MSG("Unreachable instruction");
}
Id EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id bias, Id EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id bias,
const IR::Value& offset) { const IR::Value& offset) {
const auto& texture = ctx.images[handle & 0xFFFF]; const auto& texture = ctx.images[handle & 0xFFFF];
@ -114,7 +117,9 @@ Id EmitImageSampleDrefImplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle,
operands.AddOffset(ctx, offset); operands.AddOffset(ctx, offset);
const Id sample = ctx.OpImageSampleDrefImplicitLod(result_type, sampled_image, coords, dref, const Id sample = ctx.OpImageSampleDrefImplicitLod(result_type, sampled_image, coords, dref,
operands.mask, operands.operands); operands.mask, operands.operands);
return texture.is_integer ? ctx.OpBitcast(ctx.F32[1], sample) : sample; const Id sample_typed = texture.is_integer ? ctx.OpBitcast(ctx.F32[1], sample) : sample;
return ctx.OpCompositeConstruct(ctx.F32[4], sample_typed, ctx.f32_zero_value,
ctx.f32_zero_value, ctx.f32_zero_value);
} }
Id EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id dref, Id EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id dref,
@ -129,7 +134,9 @@ Id EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle,
operands.Add(spv::ImageOperandsMask::Lod, lod); operands.Add(spv::ImageOperandsMask::Lod, lod);
const Id sample = ctx.OpImageSampleDrefExplicitLod(result_type, sampled_image, coords, dref, const Id sample = ctx.OpImageSampleDrefExplicitLod(result_type, sampled_image, coords, dref,
operands.mask, operands.operands); operands.mask, operands.operands);
return texture.is_integer ? ctx.OpBitcast(ctx.F32[1], sample) : sample; const Id sample_typed = texture.is_integer ? ctx.OpBitcast(ctx.F32[1], sample) : sample;
return ctx.OpCompositeConstruct(ctx.F32[4], sample_typed, ctx.f32_zero_value,
ctx.f32_zero_value, ctx.f32_zero_value);
} }
Id EmitImageGather(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id EmitImageGather(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords,
@ -212,15 +219,15 @@ Id EmitImageQueryLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords) {
return ctx.OpImageQueryLod(ctx.F32[2], sampled_image, coords); return ctx.OpImageQueryLod(ctx.F32[2], sampled_image, coords);
} }
Id EmitImageGradient(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id derivatives, Id EmitImageGradient(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id derivatives_dx,
const IR::Value& offset, Id lod_clamp) { Id derivatives_dy, const IR::Value& offset, const IR::Value& lod_clamp) {
const auto& texture = ctx.images[handle & 0xFFFF]; const auto& texture = ctx.images[handle & 0xFFFF];
const Id image = ctx.OpLoad(texture.image_type, texture.id); const Id image = ctx.OpLoad(texture.image_type, texture.id);
const Id result_type = texture.data_types->Get(4); const Id result_type = texture.data_types->Get(4);
const Id sampler = ctx.OpLoad(ctx.sampler_type, ctx.samplers[handle >> 16]); const Id sampler = ctx.OpLoad(ctx.sampler_type, ctx.samplers[handle >> 16]);
const Id sampled_image = ctx.OpSampledImage(texture.sampled_type, image, sampler); const Id sampled_image = ctx.OpSampledImage(texture.sampled_type, image, sampler);
ImageOperands operands; ImageOperands operands;
operands.AddDerivatives(ctx, derivatives); operands.AddDerivatives(ctx, derivatives_dx, derivatives_dy);
operands.AddOffset(ctx, offset); operands.AddOffset(ctx, offset);
const Id sample = ctx.OpImageSampleExplicitLod(result_type, sampled_image, coords, const Id sample = ctx.OpImageSampleExplicitLod(result_type, sampled_image, coords,
operands.mask, operands.operands); operands.mask, operands.operands);

View file

@ -368,6 +368,8 @@ Id EmitConvertF64U64(EmitContext& ctx, Id value);
Id EmitConvertU16U32(EmitContext& ctx, Id value); Id EmitConvertU16U32(EmitContext& ctx, Id value);
Id EmitConvertU32U16(EmitContext& ctx, Id value); Id EmitConvertU32U16(EmitContext& ctx, Id value);
Id EmitImageSampleRaw(EmitContext& ctx, IR::Inst* inst, u32 handle, Id address1, Id address2,
Id address3, Id address4);
Id EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id bias, Id EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id bias,
const IR::Value& offset); const IR::Value& offset);
Id EmitImageSampleExplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id lod, Id EmitImageSampleExplicitLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id lod,
@ -384,8 +386,8 @@ Id EmitImageFetch(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, const
Id lod, Id ms); Id lod, Id ms);
Id EmitImageQueryDimensions(EmitContext& ctx, IR::Inst* inst, u32 handle, Id lod, bool skip_mips); Id EmitImageQueryDimensions(EmitContext& ctx, IR::Inst* inst, u32 handle, Id lod, bool skip_mips);
Id EmitImageQueryLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords); Id EmitImageQueryLod(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords);
Id EmitImageGradient(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id derivatives, Id EmitImageGradient(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id derivatives_dx,
const IR::Value& offset, Id lod_clamp); Id derivatives_dy, const IR::Value& offset, const IR::Value& lod_clamp);
Id EmitImageRead(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords); Id EmitImageRead(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords);
void EmitImageWrite(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id color); void EmitImageWrite(EmitContext& ctx, IR::Inst* inst, u32 handle, Id coords, Id color);

View file

@ -411,7 +411,7 @@ void Translator::IMAGE_LOAD(bool has_mip, const GcnInst& inst) {
ir.GetVectorReg(addr_reg + 2), ir.GetVectorReg(addr_reg + 3)); ir.GetVectorReg(addr_reg + 2), ir.GetVectorReg(addr_reg + 3));
IR::TextureInstInfo info{}; IR::TextureInstInfo info{};
info.explicit_lod.Assign(has_mip); info.has_lod.Assign(has_mip);
const IR::Value texel = ir.ImageFetch(handle, body, {}, {}, {}, info); const IR::Value texel = ir.ImageFetch(handle, body, {}, {}, {}, info);
for (u32 i = 0; i < 4; i++) { for (u32 i = 0; i < 4; i++) {
@ -513,6 +513,76 @@ void Translator::IMAGE_ATOMIC(AtomicOp op, const GcnInst& inst) {
} }
} }
IR::Value EmitImageSample(IR::IREmitter& ir, const GcnInst& inst, const IR::ScalarReg tsharp_reg,
const IR::ScalarReg sampler_reg, const IR::VectorReg addr_reg,
bool gather) {
const auto& mimg = inst.control.mimg;
const auto flags = MimgModifierFlags(mimg.mod);
IR::TextureInstInfo info{};
info.is_depth.Assign(flags.test(MimgModifier::Pcf));
info.has_bias.Assign(flags.test(MimgModifier::LodBias));
info.has_lod_clamp.Assign(flags.test(MimgModifier::LodClamp));
info.force_level0.Assign(flags.test(MimgModifier::Level0));
info.has_offset.Assign(flags.test(MimgModifier::Offset));
info.has_lod.Assign(flags.any(MimgModifier::Lod));
info.is_array.Assign(mimg.da);
if (gather) {
info.gather_comp.Assign(std::bit_width(mimg.dmask) - 1);
info.is_gather.Assign(true);
} else {
info.has_derivatives.Assign(flags.test(MimgModifier::Derivative));
}
// Load first dword of T# and S#. We will use them as the handle that will guide resource
// tracking pass where to read the sharps. This will later also get patched to the SPIRV texture
// binding index.
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(tsharp_reg), ir.GetScalarReg(sampler_reg));
// Determine how many address registers need to be passed.
// The image type is unknown, so add all 4 possible base registers and resolve later.
int num_addr_regs = 4;
if (info.has_offset) {
++num_addr_regs;
}
if (info.has_bias) {
++num_addr_regs;
}
if (info.is_depth) {
++num_addr_regs;
}
if (info.has_derivatives) {
// The image type is unknown, so add all 6 possible derivative registers and resolve later.
num_addr_regs += 6;
}
// Fetch all the address registers to pass in the IR instruction. There can be up to 13
// registers.
const auto get_addr_reg = [&](int index) -> IR::F32 {
if (index >= num_addr_regs) {
return ir.Imm32(0.f);
}
return ir.GetVectorReg<IR::F32>(addr_reg + index);
};
const IR::Value address1 =
ir.CompositeConstruct(get_addr_reg(0), get_addr_reg(1), get_addr_reg(2), get_addr_reg(3));
const IR::Value address2 =
ir.CompositeConstruct(get_addr_reg(4), get_addr_reg(5), get_addr_reg(6), get_addr_reg(7));
const IR::Value address3 =
ir.CompositeConstruct(get_addr_reg(8), get_addr_reg(9), get_addr_reg(10), get_addr_reg(11));
const IR::Value address4 = get_addr_reg(12);
// Issue the placeholder IR instruction.
IR::Value texel = ir.ImageSampleRaw(handle, address1, address2, address3, address4, info);
if (info.is_depth && !gather) {
// For non-gather depth sampling, only return a single value.
texel = ir.CompositeExtract(texel, 0);
}
return texel;
}
void Translator::IMAGE_SAMPLE(const GcnInst& inst) { void Translator::IMAGE_SAMPLE(const GcnInst& inst) {
const auto& mimg = inst.control.mimg; const auto& mimg = inst.control.mimg;
IR::VectorReg addr_reg{inst.src[0].code}; IR::VectorReg addr_reg{inst.src[0].code};
@ -521,72 +591,7 @@ void Translator::IMAGE_SAMPLE(const GcnInst& inst) {
const IR::ScalarReg sampler_reg{inst.src[3].code * 4}; const IR::ScalarReg sampler_reg{inst.src[3].code * 4};
const auto flags = MimgModifierFlags(mimg.mod); const auto flags = MimgModifierFlags(mimg.mod);
// Load first dword of T# and S#. We will use them as the handle that will guide resource const IR::Value texel = EmitImageSample(ir, inst, tsharp_reg, sampler_reg, addr_reg, false);
// tracking pass where to read the sharps. This will later also get patched to the SPIRV texture
// binding index.
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(tsharp_reg), ir.GetScalarReg(sampler_reg));
// Load first address components as denoted in 8.2.4 VGPR Usage Sea Islands Series Instruction
// Set Architecture
const IR::U32 offset =
flags.test(MimgModifier::Offset) ? ir.GetVectorReg<IR::U32>(addr_reg++) : IR::U32{};
const IR::F32 bias =
flags.test(MimgModifier::LodBias) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::F32 dref =
flags.test(MimgModifier::Pcf) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::Value derivatives = [&] -> IR::Value {
if (!flags.test(MimgModifier::Derivative)) {
return {};
}
addr_reg = addr_reg + 4;
return ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg - 4), ir.GetVectorReg<IR::F32>(addr_reg - 3),
ir.GetVectorReg<IR::F32>(addr_reg - 2), ir.GetVectorReg<IR::F32>(addr_reg - 1));
}();
// Now we can load body components as noted in Table 8.9 Image Opcodes with Sampler
// Since these are at most 4 dwords, we load them into a single uvec4 and place them
// in coords field of the instruction. Then the resource tracking pass will patch the
// IR instruction to fill in lod_clamp field.
const IR::Value body = ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3));
// Derivatives are tricky because their number depends on the texture type which is located in
// T#. We don't have access to T# though until resource tracking pass. For now assume if
// derivatives are present, that a 2D image is bound.
const bool has_derivatives = flags.test(MimgModifier::Derivative);
const bool explicit_lod = flags.any(MimgModifier::Level0, MimgModifier::Lod);
IR::TextureInstInfo info{};
info.is_depth.Assign(flags.test(MimgModifier::Pcf));
info.has_bias.Assign(flags.test(MimgModifier::LodBias));
info.has_lod_clamp.Assign(flags.test(MimgModifier::LodClamp));
info.force_level0.Assign(flags.test(MimgModifier::Level0));
info.has_offset.Assign(flags.test(MimgModifier::Offset));
info.explicit_lod.Assign(explicit_lod);
info.has_derivatives.Assign(has_derivatives);
info.is_array.Assign(mimg.da);
// Issue IR instruction, leaving unknown fields blank to patch later.
const IR::Value texel = [&]() -> IR::Value {
if (has_derivatives) {
return ir.ImageGradient(handle, body, derivatives, offset, {}, info);
}
if (!flags.test(MimgModifier::Pcf)) {
if (explicit_lod) {
return ir.ImageSampleExplicitLod(handle, body, offset, info);
} else {
return ir.ImageSampleImplicitLod(handle, body, bias, offset, info);
}
}
if (explicit_lod) {
return ir.ImageSampleDrefExplicitLod(handle, body, dref, offset, info);
}
return ir.ImageSampleDrefImplicitLod(handle, body, dref, bias, offset, info);
}();
for (u32 i = 0; i < 4; i++) { for (u32 i = 0; i < 4; i++) {
if (((mimg.dmask >> i) & 1) == 0) { if (((mimg.dmask >> i) & 1) == 0) {
continue; continue;
@ -609,60 +614,13 @@ void Translator::IMAGE_GATHER(const GcnInst& inst) {
const IR::ScalarReg sampler_reg{inst.src[3].code * 4}; const IR::ScalarReg sampler_reg{inst.src[3].code * 4};
const auto flags = MimgModifierFlags(mimg.mod); const auto flags = MimgModifierFlags(mimg.mod);
// Load first dword of T# and S#. We will use them as the handle that will guide resource
// tracking pass where to read the sharps. This will later also get patched to the SPIRV texture
// binding index.
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(tsharp_reg), ir.GetScalarReg(sampler_reg));
// Load first address components as denoted in 8.2.4 VGPR Usage Sea Islands Series Instruction
// Set Architecture
const IR::Value offset =
flags.test(MimgModifier::Offset) ? ir.GetVectorReg(addr_reg++) : IR::Value{};
const IR::F32 bias =
flags.test(MimgModifier::LodBias) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::F32 dref =
flags.test(MimgModifier::Pcf) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
// Derivatives are tricky because their number depends on the texture type which is located in
// T#. We don't have access to T# though until resource tracking pass. For now assume no
// derivatives are present, otherwise we don't know where coordinates are placed in the address
// stream.
ASSERT_MSG(!flags.test(MimgModifier::Derivative), "Derivative image instruction");
// Now we can load body components as noted in Table 8.9 Image Opcodes with Sampler
// Since these are at most 4 dwords, we load them into a single uvec4 and place them
// in coords field of the instruction. Then the resource tracking pass will patch the
// IR instruction to fill in lod_clamp field.
const IR::Value body = ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3));
const bool explicit_lod = flags.any(MimgModifier::Level0, MimgModifier::Lod);
IR::TextureInstInfo info{};
info.is_depth.Assign(flags.test(MimgModifier::Pcf));
info.has_bias.Assign(flags.test(MimgModifier::LodBias));
info.has_lod_clamp.Assign(flags.test(MimgModifier::LodClamp));
info.force_level0.Assign(flags.test(MimgModifier::Level0));
info.has_offset.Assign(flags.test(MimgModifier::Offset));
// info.explicit_lod.Assign(explicit_lod);
info.gather_comp.Assign(std::bit_width(mimg.dmask) - 1);
info.is_array.Assign(mimg.da);
// Issue IR instruction, leaving unknown fields blank to patch later.
const IR::Value texel = [&]() -> IR::Value {
const IR::F32 lod = flags.test(MimgModifier::Level0) ? ir.Imm32(0.f) : IR::F32{};
if (!flags.test(MimgModifier::Pcf)) {
return ir.ImageGather(handle, body, offset, info);
}
ASSERT(mimg.dmask & 1); // should be always 1st (R) component
return ir.ImageGatherDref(handle, body, offset, dref, info);
}();
// For gather4 instructions dmask selects which component to read and must have // For gather4 instructions dmask selects which component to read and must have
// only one bit set to 1 // only one bit set to 1
ASSERT_MSG(std::popcount(mimg.dmask) == 1, "Unexpected bits in gather dmask"); ASSERT_MSG(std::popcount(mimg.dmask) == 1, "Unexpected bits in gather dmask");
// should be always 1st (R) component for depth
ASSERT(!flags.test(MimgModifier::Pcf) || mimg.dmask & 1);
const IR::Value texel = EmitImageSample(ir, inst, tsharp_reg, sampler_reg, addr_reg, true);
for (u32 i = 0; i < 4; i++) { for (u32 i = 0; i < 4; i++) {
const IR::F32 value = IR::F32{ir.CompositeExtract(texel, i)}; const IR::F32 value = IR::F32{ir.CompositeExtract(texel, i)};
ir.SetVectorReg(dest_reg++, value); ir.SetVectorReg(dest_reg++, value);

View file

@ -1492,27 +1492,34 @@ Value IREmitter::ImageAtomicExchange(const Value& handle, const Value& coords, c
return Inst(Opcode::ImageAtomicExchange32, Flags{info}, handle, coords, value); return Inst(Opcode::ImageAtomicExchange32, Flags{info}, handle, coords, value);
} }
Value IREmitter::ImageSampleImplicitLod(const Value& handle, const Value& body, const F32& bias, Value IREmitter::ImageSampleRaw(const Value& handle, const Value& address1, const Value& address2,
const U32& offset, TextureInstInfo info) { const Value& address3, const Value& address4,
return Inst(Opcode::ImageSampleImplicitLod, Flags{info}, handle, body, bias, offset); TextureInstInfo info) {
return Inst(Opcode::ImageSampleRaw, Flags{info}, handle, address1, address2, address3,
address4);
} }
Value IREmitter::ImageSampleExplicitLod(const Value& handle, const Value& body, const U32& offset, Value IREmitter::ImageSampleImplicitLod(const Value& handle, const Value& coords, const F32& bias,
TextureInstInfo info) { const Value& offset, TextureInstInfo info) {
return Inst(Opcode::ImageSampleExplicitLod, Flags{info}, handle, body, IR::F32{}, offset); return Inst(Opcode::ImageSampleImplicitLod, Flags{info}, handle, coords, bias, offset);
} }
F32 IREmitter::ImageSampleDrefImplicitLod(const Value& handle, const Value& body, const F32& dref, Value IREmitter::ImageSampleExplicitLod(const Value& handle, const Value& coords, const F32& lod,
const F32& bias, const U32& offset, const Value& offset, TextureInstInfo info) {
TextureInstInfo info) { return Inst(Opcode::ImageSampleExplicitLod, Flags{info}, handle, coords, lod, offset);
return Inst<F32>(Opcode::ImageSampleDrefImplicitLod, Flags{info}, handle, body, dref, bias,
offset);
} }
F32 IREmitter::ImageSampleDrefExplicitLod(const Value& handle, const Value& body, const F32& dref, Value IREmitter::ImageSampleDrefImplicitLod(const Value& handle, const Value& coords,
const U32& offset, TextureInstInfo info) { const F32& dref, const F32& bias, const Value& offset,
return Inst<F32>(Opcode::ImageSampleDrefExplicitLod, Flags{info}, handle, body, dref, IR::F32{}, TextureInstInfo info) {
offset); return Inst(Opcode::ImageSampleDrefImplicitLod, Flags{info}, handle, coords, dref, bias,
offset);
}
Value IREmitter::ImageSampleDrefExplicitLod(const Value& handle, const Value& coords,
const F32& dref, const F32& lod, const Value& offset,
TextureInstInfo info) {
return Inst(Opcode::ImageSampleDrefExplicitLod, Flags{info}, handle, coords, dref, lod, offset);
} }
Value IREmitter::ImageGather(const Value& handle, const Value& coords, const Value& offset, Value IREmitter::ImageGather(const Value& handle, const Value& coords, const Value& offset,
@ -1544,9 +1551,11 @@ Value IREmitter::ImageQueryLod(const Value& handle, const Value& coords, Texture
return Inst(Opcode::ImageQueryLod, Flags{info}, handle, coords); return Inst(Opcode::ImageQueryLod, Flags{info}, handle, coords);
} }
Value IREmitter::ImageGradient(const Value& handle, const Value& coords, const Value& derivatives, Value IREmitter::ImageGradient(const Value& handle, const Value& coords,
const Value& derivatives_dx, const Value& derivatives_dy,
const Value& offset, const F32& lod_clamp, TextureInstInfo info) { const Value& offset, const F32& lod_clamp, TextureInstInfo info) {
return Inst(Opcode::ImageGradient, Flags{info}, handle, coords, derivatives, offset, lod_clamp); return Inst(Opcode::ImageGradient, Flags{info}, handle, coords, derivatives_dx, derivatives_dy,
offset, lod_clamp);
} }
Value IREmitter::ImageRead(const Value& handle, const Value& coords, TextureInstInfo info) { Value IREmitter::ImageRead(const Value& handle, const Value& coords, TextureInstInfo info) {

View file

@ -277,20 +277,25 @@ public:
[[nodiscard]] Value ImageAtomicExchange(const Value& handle, const Value& coords, [[nodiscard]] Value ImageAtomicExchange(const Value& handle, const Value& coords,
const Value& value, TextureInstInfo info); const Value& value, TextureInstInfo info);
[[nodiscard]] Value ImageSampleRaw(const Value& handle, const Value& address1,
const Value& address2, const Value& address3,
const Value& address4, TextureInstInfo info);
[[nodiscard]] Value ImageSampleImplicitLod(const Value& handle, const Value& body, [[nodiscard]] Value ImageSampleImplicitLod(const Value& handle, const Value& body,
const F32& bias, const U32& offset, const F32& bias, const Value& offset,
TextureInstInfo info); TextureInstInfo info);
[[nodiscard]] Value ImageSampleExplicitLod(const Value& handle, const Value& body, [[nodiscard]] Value ImageSampleExplicitLod(const Value& handle, const Value& body,
const U32& offset, TextureInstInfo info); const F32& lod, const Value& offset,
TextureInstInfo info);
[[nodiscard]] F32 ImageSampleDrefImplicitLod(const Value& handle, const Value& body, [[nodiscard]] Value ImageSampleDrefImplicitLod(const Value& handle, const Value& body,
const F32& dref, const F32& bias, const F32& dref, const F32& bias,
const U32& offset, TextureInstInfo info); const Value& offset, TextureInstInfo info);
[[nodiscard]] F32 ImageSampleDrefExplicitLod(const Value& handle, const Value& body, [[nodiscard]] Value ImageSampleDrefExplicitLod(const Value& handle, const Value& body,
const F32& dref, const U32& offset, const F32& dref, const F32& lod,
TextureInstInfo info); const Value& offset, TextureInstInfo info);
[[nodiscard]] Value ImageQueryDimension(const Value& handle, const U32& lod, [[nodiscard]] Value ImageQueryDimension(const Value& handle, const U32& lod,
const U1& skip_mips); const U1& skip_mips);
@ -306,8 +311,9 @@ public:
[[nodiscard]] Value ImageFetch(const Value& handle, const Value& coords, const Value& offset, [[nodiscard]] Value ImageFetch(const Value& handle, const Value& coords, const Value& offset,
const U32& lod, const U32& multisampling, TextureInstInfo info); const U32& lod, const U32& multisampling, TextureInstInfo info);
[[nodiscard]] Value ImageGradient(const Value& handle, const Value& coords, [[nodiscard]] Value ImageGradient(const Value& handle, const Value& coords,
const Value& derivatives, const Value& offset, const Value& derivatives_dx, const Value& derivatives_dy,
const F32& lod_clamp, TextureInstInfo info); const Value& offset, const F32& lod_clamp,
TextureInstInfo info);
[[nodiscard]] Value ImageRead(const Value& handle, const Value& coords, TextureInstInfo info); [[nodiscard]] Value ImageRead(const Value& handle, const Value& coords, TextureInstInfo info);
void ImageWrite(const Value& handle, const Value& coords, const Value& color, void ImageWrite(const Value& handle, const Value& coords, const Value& color,
TextureInstInfo info); TextureInstInfo info);

View file

@ -21,7 +21,7 @@ namespace Detail {
struct OpcodeMeta { struct OpcodeMeta {
std::string_view name; std::string_view name;
Type type; Type type;
std::array<Type, 5> arg_types; std::array<Type, 6> arg_types;
}; };
// using enum Type; // using enum Type;

View file

@ -317,16 +317,17 @@ OPCODE(ConvertU16U32, U16, U32,
OPCODE(ConvertU32U16, U32, U16, ) OPCODE(ConvertU32U16, U32, U16, )
// Image operations // Image operations
OPCODE(ImageSampleImplicitLod, F32x4, Opaque, Opaque, F32, Opaque, ) OPCODE(ImageSampleRaw, F32x4, Opaque, F32x4, F32x4, F32x4, F32, )
OPCODE(ImageSampleExplicitLod, F32x4, Opaque, Opaque, U32, Opaque, ) OPCODE(ImageSampleImplicitLod, F32x4, Opaque, F32x4, F32, Opaque, )
OPCODE(ImageSampleDrefImplicitLod, F32, Opaque, Opaque, Opaque, F32, Opaque, ) OPCODE(ImageSampleExplicitLod, F32x4, Opaque, Opaque, F32, Opaque, )
OPCODE(ImageSampleDrefExplicitLod, F32, Opaque, Opaque, Opaque, U32, Opaque, ) OPCODE(ImageSampleDrefImplicitLod, F32x4, Opaque, Opaque, F32, F32, Opaque, )
OPCODE(ImageSampleDrefExplicitLod, F32x4, Opaque, Opaque, F32, F32, Opaque, )
OPCODE(ImageGather, F32x4, Opaque, Opaque, Opaque, ) OPCODE(ImageGather, F32x4, Opaque, Opaque, Opaque, )
OPCODE(ImageGatherDref, F32x4, Opaque, Opaque, Opaque, F32, ) OPCODE(ImageGatherDref, F32x4, Opaque, Opaque, Opaque, F32, )
OPCODE(ImageFetch, F32x4, Opaque, Opaque, Opaque, U32, Opaque, ) OPCODE(ImageFetch, F32x4, Opaque, Opaque, Opaque, U32, Opaque, )
OPCODE(ImageQueryDimensions, U32x4, Opaque, U32, U1, ) OPCODE(ImageQueryDimensions, U32x4, Opaque, U32, U1, )
OPCODE(ImageQueryLod, F32x4, Opaque, Opaque, ) OPCODE(ImageQueryLod, F32x4, Opaque, Opaque, )
OPCODE(ImageGradient, F32x4, Opaque, Opaque, Opaque, Opaque, Opaque, ) OPCODE(ImageGradient, F32x4, Opaque, Opaque, Opaque, Opaque, Opaque, F32, )
OPCODE(ImageRead, U32x4, Opaque, Opaque, ) OPCODE(ImageRead, U32x4, Opaque, Opaque, )
OPCODE(ImageWrite, Void, Opaque, Opaque, U32x4, ) OPCODE(ImageWrite, Void, Opaque, Opaque, U32x4, )

View file

@ -132,38 +132,16 @@ bool IsImageStorageInstruction(const IR::Inst& inst) {
bool IsImageInstruction(const IR::Inst& inst) { bool IsImageInstruction(const IR::Inst& inst) {
switch (inst.GetOpcode()) { switch (inst.GetOpcode()) {
case IR::Opcode::ImageSampleExplicitLod:
case IR::Opcode::ImageSampleImplicitLod:
case IR::Opcode::ImageSampleDrefExplicitLod:
case IR::Opcode::ImageSampleDrefImplicitLod:
case IR::Opcode::ImageFetch: case IR::Opcode::ImageFetch:
case IR::Opcode::ImageGather:
case IR::Opcode::ImageGatherDref:
case IR::Opcode::ImageQueryDimensions: case IR::Opcode::ImageQueryDimensions:
case IR::Opcode::ImageQueryLod: case IR::Opcode::ImageQueryLod:
case IR::Opcode::ImageGradient: case IR::Opcode::ImageSampleRaw:
return true; return true;
default: default:
return IsImageStorageInstruction(inst); return IsImageStorageInstruction(inst);
} }
} }
u32 ImageOffsetArgumentPosition(const IR::Inst& inst) {
switch (inst.GetOpcode()) {
case IR::Opcode::ImageGather:
case IR::Opcode::ImageGatherDref:
return 2;
case IR::Opcode::ImageSampleExplicitLod:
case IR::Opcode::ImageSampleImplicitLod:
return 3;
case IR::Opcode::ImageSampleDrefExplicitLod:
case IR::Opcode::ImageSampleDrefImplicitLod:
return 4;
default:
UNREACHABLE();
}
}
class Descriptors { class Descriptors {
public: public:
explicit Descriptors(Info& info_) explicit Descriptors(Info& info_)
@ -467,6 +445,185 @@ IR::Value PatchCubeCoord(IR::IREmitter& ir, const IR::Value& s, const IR::Value&
} }
} }
void PatchImageSampleInstruction(IR::Block& block, IR::Inst& inst, Info& info,
Descriptors& descriptors, const IR::Inst* producer,
const u32 image_binding, const AmdGpu::Image& image) {
// Read sampler sharp. This doesn't exist for IMAGE_LOAD/IMAGE_STORE instructions
const u32 sampler_binding = [&] {
ASSERT(producer->GetOpcode() == IR::Opcode::CompositeConstructU32x2);
const IR::Value& handle = producer->Arg(1);
// Inline sampler resource.
if (handle.IsImmediate()) {
LOG_WARNING(Render_Vulkan, "Inline sampler detected");
return descriptors.Add(SamplerResource{
.sgpr_base = std::numeric_limits<u32>::max(),
.dword_offset = 0,
.inline_sampler = AmdGpu::Sampler{.raw0 = handle.U32()},
});
}
// Normal sampler resource.
const auto ssharp_handle = handle.InstRecursive();
const auto& [ssharp_ud, disable_aniso] = TryDisableAnisoLod0(ssharp_handle);
const auto ssharp = TrackSharp(ssharp_ud);
return descriptors.Add(SamplerResource{
.sgpr_base = ssharp.sgpr_base,
.dword_offset = ssharp.dword_offset,
.associated_image = image_binding,
.disable_aniso = disable_aniso,
});
}();
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
const auto inst_info = inst.Flags<IR::TextureInstInfo>();
const IR::U32 handle = ir.Imm32(image_binding | sampler_binding << 16);
IR::Inst* body1 = inst.Arg(1).InstRecursive();
IR::Inst* body2 = inst.Arg(2).InstRecursive();
IR::Inst* body3 = inst.Arg(3).InstRecursive();
IR::Inst* body4 = inst.Arg(4).InstRecursive();
const auto get_addr_reg = [&](u32 index) -> IR::F32 {
if (index <= 3) {
return IR::F32{body1->Arg(index)};
}
if (index >= 4 && index <= 7) {
return IR::F32{body2->Arg(index - 4)};
}
if (index >= 8 && index <= 11) {
return IR::F32{body3->Arg(index - 8)};
}
if (index == 12) {
return IR::F32{body4};
}
UNREACHABLE();
};
u32 addr_reg = 0;
// Load first address components as denoted in 8.2.4 VGPR Usage Sea Islands Series Instruction
// Set Architecture
const IR::Value offset = [&] -> IR::Value {
if (!inst_info.has_offset) {
return IR::U32{};
}
// The offsets are six-bit signed integers: X=[5:0], Y=[13:8], and Z=[21:16].
const IR::Value arg = get_addr_reg(addr_reg++);
const auto read = [&](u32 off) -> IR::U32 {
if (arg.IsImmediate()) {
const u16 comp = (arg.U32() >> off) & 0x3F;
return ir.Imm32(s32(comp << 26) >> 26);
}
return ir.BitFieldExtract(IR::U32{arg}, ir.Imm32(off), ir.Imm32(6), true);
};
switch (image.GetType()) {
case AmdGpu::ImageType::Color1D:
case AmdGpu::ImageType::Color1DArray:
return read(0);
case AmdGpu::ImageType::Color2D:
case AmdGpu::ImageType::Color2DArray:
case AmdGpu::ImageType::Color2DMsaa:
return ir.CompositeConstruct(read(0), read(8));
case AmdGpu::ImageType::Color3D:
case AmdGpu::ImageType::Cube:
return ir.CompositeConstruct(read(0), read(8), read(16));
default:
UNREACHABLE();
}
}();
const IR::F32 bias = inst_info.has_bias ? get_addr_reg(addr_reg++) : IR::F32{};
const IR::F32 dref = inst_info.is_depth ? get_addr_reg(addr_reg++) : IR::F32{};
const auto [derivatives_dx, derivatives_dy] = [&] -> std::pair<IR::Value, IR::Value> {
if (!inst_info.has_derivatives) {
return {};
}
switch (image.GetType()) {
case AmdGpu::ImageType::Color1D:
case AmdGpu::ImageType::Color1DArray:
// du/dx, du/dy
addr_reg = addr_reg + 2;
return {get_addr_reg(addr_reg - 2), get_addr_reg(addr_reg - 1)};
case AmdGpu::ImageType::Color2D:
case AmdGpu::ImageType::Color2DArray:
case AmdGpu::ImageType::Color2DMsaa:
// (du/dx, dv/dx), (du/dy, dv/dy)
addr_reg = addr_reg + 4;
return {ir.CompositeConstruct(get_addr_reg(addr_reg - 4), get_addr_reg(addr_reg - 3)),
ir.CompositeConstruct(get_addr_reg(addr_reg - 2), get_addr_reg(addr_reg - 1))};
case AmdGpu::ImageType::Color3D:
case AmdGpu::ImageType::Cube:
// (du/dx, dv/dx, dw/dx), (du/dy, dv/dy, dw/dy)
addr_reg = addr_reg + 6;
return {ir.CompositeConstruct(get_addr_reg(addr_reg - 6), get_addr_reg(addr_reg - 5),
get_addr_reg(addr_reg - 4)),
ir.CompositeConstruct(get_addr_reg(addr_reg - 3), get_addr_reg(addr_reg - 2),
get_addr_reg(addr_reg - 1))};
default:
UNREACHABLE();
}
}();
// Now we can load body components as noted in Table 8.9 Image Opcodes with Sampler
const IR::Value coords = [&] -> IR::Value {
switch (image.GetType()) {
case AmdGpu::ImageType::Color1D: // x
addr_reg = addr_reg + 1;
return get_addr_reg(addr_reg - 1);
case AmdGpu::ImageType::Color1DArray: // x, slice
[[fallthrough]];
case AmdGpu::ImageType::Color2D: // x, y
addr_reg = addr_reg + 2;
return ir.CompositeConstruct(get_addr_reg(addr_reg - 2), get_addr_reg(addr_reg - 1));
case AmdGpu::ImageType::Color2DArray: // x, y, slice
[[fallthrough]];
case AmdGpu::ImageType::Color2DMsaa: // x, y, frag
[[fallthrough]];
case AmdGpu::ImageType::Color3D: // x, y, z
addr_reg = addr_reg + 3;
return ir.CompositeConstruct(get_addr_reg(addr_reg - 3), get_addr_reg(addr_reg - 2),
get_addr_reg(addr_reg - 1));
case AmdGpu::ImageType::Cube: // x, y, face
addr_reg = addr_reg + 3;
return PatchCubeCoord(ir, get_addr_reg(addr_reg - 3), get_addr_reg(addr_reg - 2),
get_addr_reg(addr_reg - 1), false, inst_info.is_array);
default:
UNREACHABLE();
}
}();
ASSERT(!inst_info.has_lod || !inst_info.has_lod_clamp);
const bool explicit_lod = inst_info.has_lod || inst_info.force_level0;
const IR::F32 lod = inst_info.has_lod ? get_addr_reg(addr_reg++)
: inst_info.force_level0 ? ir.Imm32(0.0f)
: IR::F32{};
const IR::F32 lod_clamp = inst_info.has_lod_clamp ? get_addr_reg(addr_reg++) : IR::F32{};
const auto new_inst = [&] -> IR::Value {
if (inst_info.is_gather) {
if (inst_info.is_depth) {
return ir.ImageGatherDref(handle, coords, offset, dref, inst_info);
}
return ir.ImageGather(handle, coords, offset, inst_info);
}
if (inst_info.has_derivatives) {
return ir.ImageGradient(handle, coords, derivatives_dx, derivatives_dy, offset,
lod_clamp, inst_info);
}
if (inst_info.is_depth) {
if (explicit_lod) {
return ir.ImageSampleDrefExplicitLod(handle, coords, dref, lod, offset, inst_info);
}
return ir.ImageSampleDrefImplicitLod(handle, coords, dref, bias, offset, inst_info);
}
if (explicit_lod) {
return ir.ImageSampleExplicitLod(handle, coords, lod, offset, inst_info);
}
return ir.ImageSampleImplicitLod(handle, coords, bias, offset, inst_info);
}();
inst.ReplaceUsesWith(new_inst);
}
void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descriptors& descriptors) { void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descriptors& descriptors) {
const auto pred = [](const IR::Inst* inst) -> std::optional<const IR::Inst*> { const auto pred = [](const IR::Inst* inst) -> std::optional<const IR::Inst*> {
const auto opcode = inst->GetOpcode(); const auto opcode = inst->GetOpcode();
@ -498,40 +655,18 @@ void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descrip
.sgpr_base = tsharp.sgpr_base, .sgpr_base = tsharp.sgpr_base,
.dword_offset = tsharp.dword_offset, .dword_offset = tsharp.dword_offset,
.type = type, .type = type,
.nfmt = static_cast<AmdGpu::NumberFormat>(image.GetNumberFmt()), .nfmt = image.GetNumberFmt(),
.is_storage = is_storage, .is_storage = is_storage,
.is_depth = bool(inst_info.is_depth), .is_depth = bool(inst_info.is_depth),
.is_atomic = IsImageAtomicInstruction(inst), .is_atomic = IsImageAtomicInstruction(inst),
.is_array = bool(inst_info.is_array), .is_array = bool(inst_info.is_array),
}); });
// Read sampler sharp. This doesn't exist for IMAGE_LOAD/IMAGE_STORE instructions // Sample instructions must be resolved into a new instruction using address register data.
const u32 sampler_binding = [&] { if (inst.GetOpcode() == IR::Opcode::ImageSampleRaw) {
if (!has_sampler) { PatchImageSampleInstruction(block, inst, info, descriptors, producer, image_binding, image);
return 0U; return;
} }
const IR::Value& handle = producer->Arg(1);
// Inline sampler resource.
if (handle.IsImmediate()) {
LOG_WARNING(Render_Vulkan, "Inline sampler detected");
return descriptors.Add(SamplerResource{
.sgpr_base = std::numeric_limits<u32>::max(),
.dword_offset = 0,
.inline_sampler = AmdGpu::Sampler{.raw0 = handle.U32()},
});
}
// Normal sampler resource.
const auto ssharp_handle = handle.InstRecursive();
const auto& [ssharp_ud, disable_aniso] = TryDisableAnisoLod0(ssharp_handle);
const auto ssharp = TrackSharp(ssharp_ud);
return descriptors.Add(SamplerResource{
.sgpr_base = ssharp.sgpr_base,
.dword_offset = ssharp.dword_offset,
.associated_image = image_binding,
.disable_aniso = disable_aniso,
});
}();
image_binding |= (sampler_binding << 16);
// Patch image handle // Patch image handle
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)}; IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
@ -568,62 +703,9 @@ void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descrip
}(); }();
inst.SetArg(1, coords); inst.SetArg(1, coords);
if (inst_info.has_offset) { if (inst_info.has_lod) {
// The offsets are six-bit signed integers: X=[5:0], Y=[13:8], and Z=[21:16]. ASSERT(inst.GetOpcode() == IR::Opcode::ImageFetch);
const u32 arg_pos = ImageOffsetArgumentPosition(inst); inst.SetArg(3, arg);
const IR::Value arg = inst.Arg(arg_pos);
ASSERT_MSG(arg.Type() == IR::Type::U32, "Unexpected offset type");
const auto read = [&](u32 offset) -> IR::U32 {
if (arg.IsImmediate()) {
const u16 comp = (arg.U32() >> offset) & 0x3F;
return ir.Imm32(s32(comp << 26) >> 26);
}
return ir.BitFieldExtract(IR::U32{arg}, ir.Imm32(offset), ir.Imm32(6), true);
};
switch (image.GetType()) {
case AmdGpu::ImageType::Color1D:
case AmdGpu::ImageType::Color1DArray:
inst.SetArg(arg_pos, read(0));
break;
case AmdGpu::ImageType::Color2D:
case AmdGpu::ImageType::Color2DArray:
inst.SetArg(arg_pos, ir.CompositeConstruct(read(0), read(8)));
break;
case AmdGpu::ImageType::Color3D:
inst.SetArg(arg_pos, ir.CompositeConstruct(read(0), read(8), read(16)));
break;
default:
UNREACHABLE();
}
}
if (inst_info.has_derivatives) {
ASSERT_MSG(image.GetType() == AmdGpu::ImageType::Color2D ||
image.GetType() == AmdGpu::ImageType::Color2DArray,
"User derivatives only supported for 2D images");
}
if (inst_info.has_lod_clamp) {
const u32 arg_pos = [&]() -> u32 {
switch (inst.GetOpcode()) {
case IR::Opcode::ImageSampleImplicitLod:
return 2;
case IR::Opcode::ImageSampleDrefImplicitLod:
return 3;
default:
break;
}
return inst_info.is_depth ? 5 : 4;
}();
inst.SetArg(arg_pos, arg);
}
if (inst_info.explicit_lod) {
ASSERT(inst.GetOpcode() == IR::Opcode::ImageFetch ||
inst.GetOpcode() == IR::Opcode::ImageSampleExplicitLod ||
inst.GetOpcode() == IR::Opcode::ImageSampleDrefExplicitLod);
const u32 pos = inst.GetOpcode() == IR::Opcode::ImageSampleExplicitLod ? 2 : 3;
const IR::Value value = inst_info.force_level0 ? ir.Imm32(0.f) : arg;
inst.SetArg(pos, value);
} }
} }

View file

@ -33,11 +33,12 @@ union TextureInstInfo {
BitField<1, 1, u32> has_bias; BitField<1, 1, u32> has_bias;
BitField<2, 1, u32> has_lod_clamp; BitField<2, 1, u32> has_lod_clamp;
BitField<3, 1, u32> force_level0; BitField<3, 1, u32> force_level0;
BitField<4, 1, u32> explicit_lod; BitField<4, 1, u32> has_lod;
BitField<5, 1, u32> has_offset; BitField<5, 1, u32> has_offset;
BitField<6, 2, u32> gather_comp; BitField<6, 2, u32> gather_comp;
BitField<8, 1, u32> has_derivatives; BitField<8, 1, u32> has_derivatives;
BitField<9, 1, u32> is_array; BitField<9, 1, u32> is_array;
BitField<10, 1, u32> is_gather;
}; };
union BufferInstInfo { union BufferInstInfo {

View file

@ -209,7 +209,7 @@ private:
union { union {
NonTriviallyDummy dummy{}; NonTriviallyDummy dummy{};
boost::container::small_vector<std::pair<Block*, Value>, 2> phi_args; boost::container::small_vector<std::pair<Block*, Value>, 2> phi_args;
std::array<Value, 5> args; std::array<Value, 6> args;
}; };
}; };
static_assert(sizeof(Inst) <= 128, "Inst size unintentionally increased"); static_assert(sizeof(Inst) <= 128, "Inst size unintentionally increased");