core: Properly implement TLS (#164)

* core: Split module code from linker

* linker: Properly implement thread local storage

* kernel: Fix a few memory functions

* kernel: Implement module loading

* Now it's easy to do anyway with new module rework
This commit is contained in:
TheTurtle 2024-06-05 22:08:18 +03:00 committed by GitHub
parent 67b3dc9e5c
commit 4779381eec
26 changed files with 1047 additions and 823 deletions

View file

@ -287,8 +287,9 @@ set(CORE src/core/aerolib/stubs.cpp
src/core/linker.h src/core/linker.h
src/core/memory.cpp src/core/memory.cpp
src/core/memory.h src/core/memory.h
src/core/module.cpp
src/core/module.h
src/core/platform.h src/core/platform.h
src/core/memory.h
src/core/tls.cpp src/core/tls.cpp
src/core/tls.h src/core/tls.h
src/core/virtual_memory.cpp src/core/virtual_memory.cpp

View file

@ -9,7 +9,7 @@
namespace Common { namespace Common {
template <typename T> template <typename T>
[[nodiscard]] constexpr T alignUp(T value, std::size_t size) { [[nodiscard]] constexpr T AlignUp(T value, std::size_t size) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value."); static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
auto mod{static_cast<T>(value % size)}; auto mod{static_cast<T>(value % size)};
value -= mod; value -= mod;
@ -17,14 +17,14 @@ template <typename T>
} }
template <typename T> template <typename T>
[[nodiscard]] constexpr T alignDown(T value, std::size_t size) { [[nodiscard]] constexpr T AlignDown(T value, std::size_t size) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value."); static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return static_cast<T>(value - value % size); return static_cast<T>(value - value % size);
} }
template <typename T> template <typename T>
requires std::is_integral_v<T> requires std::is_integral_v<T>
[[nodiscard]] constexpr bool is16KBAligned(T value) { [[nodiscard]] constexpr bool Is16KBAligned(T value) {
return (value & 0x3FFF) == 0; return (value & 0x3FFF) == 0;
} }

View file

@ -102,14 +102,14 @@ struct AddressSpace::Impl {
// Perform the map. // Perform the map.
void* ptr = nullptr; void* ptr = nullptr;
if (phys_addr) { if (phys_addr != -1) {
ptr = MapViewOfFile3(backing_handle, process, reinterpret_cast<PVOID>(virtual_addr), ptr = MapViewOfFile3(backing_handle, process, reinterpret_cast<PVOID>(virtual_addr),
phys_addr, size, MEM_REPLACE_PLACEHOLDER, prot, nullptr, 0); phys_addr, size, MEM_REPLACE_PLACEHOLDER, prot, nullptr, 0);
} else { } else {
ptr = VirtualAlloc2(process, reinterpret_cast<PVOID>(virtual_addr), size, ptr = VirtualAlloc2(process, reinterpret_cast<PVOID>(virtual_addr), size,
MEM_REPLACE_PLACEHOLDER, prot, nullptr, 0); MEM_REPLACE_PLACEHOLDER, prot, nullptr, 0);
} }
ASSERT(ptr); ASSERT_MSG(ptr, "{}", Common::GetLastErrorMsg());
return ptr; return ptr;
} }
@ -121,7 +121,7 @@ struct AddressSpace::Impl {
// (virtual_addr == 0 ? reinterpret_cast<PVOID>(SYSTEM_MANAGED_MIN) // (virtual_addr == 0 ? reinterpret_cast<PVOID>(SYSTEM_MANAGED_MIN)
// : reinterpret_cast<PVOID>(virtual_addr)); // : reinterpret_cast<PVOID>(virtual_addr));
req.HighestEndingAddress = reinterpret_cast<PVOID>(SYSTEM_MANAGED_MAX); req.HighestEndingAddress = reinterpret_cast<PVOID>(SYSTEM_MANAGED_MAX);
req.Alignment = alignment; req.Alignment = alignment < 64_KB ? 0 : alignment;
param.Type = MemExtendedParameterAddressRequirements; param.Type = MemExtendedParameterAddressRequirements;
param.Pointer = &req; param.Pointer = &req;
ULONG alloc_type = MEM_COMMIT | MEM_RESERVE | (alignment > 2_MB ? MEM_LARGE_PAGES : 0); ULONG alloc_type = MEM_COMMIT | MEM_RESERVE | (alignment > 2_MB ? MEM_LARGE_PAGES : 0);

View file

@ -42,7 +42,7 @@ public:
* If zero is provided the mapping is considered as private. * If zero is provided the mapping is considered as private.
* @return A pointer to the mapped memory. * @return A pointer to the mapped memory.
*/ */
void* Map(VAddr virtual_addr, size_t size, u64 alignment = 0, PAddr phys_addr = 0); void* Map(VAddr virtual_addr, size_t size, u64 alignment = 0, PAddr phys_addr = -1);
/// Unmaps specified virtual memory area. /// Unmaps specified virtual memory area.
void Unmap(VAddr virtual_addr, size_t size); void Unmap(VAddr virtual_addr, size_t size);

View file

@ -6,6 +6,7 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/singleton.h" #include "common/singleton.h"
#include "core/file_sys/fs.h"
#include "core/libraries/error_codes.h" #include "core/libraries/error_codes.h"
#include "core/libraries/kernel/cpu_management.h" #include "core/libraries/kernel/cpu_management.h"
#include "core/libraries/kernel/event_flag/event_flag.h" #include "core/libraries/kernel/event_flag/event_flag.h"
@ -199,11 +200,48 @@ s64 PS4_SYSV_ABI ps4__read(int d, void* buf, u64 nbytes) {
strlen(std::fgets(static_cast<char*>(buf), static_cast<int>(nbytes), stdin))); strlen(std::fgets(static_cast<char*>(buf), static_cast<int>(nbytes), stdin)));
} }
s32 PS4_SYSV_ABI sceKernelLoadStartModule(const char* moduleFileName, size_t args, const void* argp,
u32 flags, const void* pOpt, int* pRes) {
LOG_INFO(Lib_Kernel, "called filename = {}, args = {}", moduleFileName, args);
if (flags != 0) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
auto* mnt = Common::Singleton<Core::FileSys::MntPoints>::Instance();
const auto path = mnt->GetHostFile(moduleFileName);
// Load PRX module.
auto* linker = Common::Singleton<Core::Linker>::Instance();
u32 handle = linker->LoadModule(path);
auto* module = linker->GetModule(handle);
linker->Relocate(module);
// Retrieve and verify proc param according to libkernel.
u64* param = module->GetProcParam<u64*>();
ASSERT_MSG(!param || param[0] >= 0x18, "Invalid module param size: {}", param[0]);
module->Start(args, argp, param);
return handle;
}
s32 PS4_SYSV_ABI sceKernelDlsym(s32 handle, const char* symbol, void** addrp) {
auto* linker = Common::Singleton<Core::Linker>::Instance();
auto* module = linker->GetModule(handle);
*addrp = module->FindByName(symbol);
if (*addrp == nullptr) {
return ORBIS_KERNEL_ERROR_ESRCH;
}
return ORBIS_OK;
}
void LibKernel_Register(Core::Loader::SymbolsResolver* sym) { void LibKernel_Register(Core::Loader::SymbolsResolver* sym) {
// obj // obj
LIB_OBJ("f7uOxY9mM1U", "libkernel", 1, "libkernel", 1, 1, &g_stack_chk_guard); LIB_OBJ("f7uOxY9mM1U", "libkernel", 1, "libkernel", 1, 1, &g_stack_chk_guard);
// memory // memory
LIB_FUNCTION("rTXw65xmLIA", "libkernel", 1, "libkernel", 1, 1, sceKernelAllocateDirectMemory); LIB_FUNCTION("rTXw65xmLIA", "libkernel", 1, "libkernel", 1, 1, sceKernelAllocateDirectMemory);
LIB_FUNCTION("B+vc2AO2Zrc", "libkernel", 1, "libkernel", 1, 1,
sceKernelAllocateMainDirectMemory);
LIB_FUNCTION("pO96TwzOm5E", "libkernel", 1, "libkernel", 1, 1, sceKernelGetDirectMemorySize); LIB_FUNCTION("pO96TwzOm5E", "libkernel", 1, "libkernel", 1, 1, sceKernelGetDirectMemorySize);
LIB_FUNCTION("L-Q3LEjIbgA", "libkernel", 1, "libkernel", 1, 1, sceKernelMapDirectMemory); LIB_FUNCTION("L-Q3LEjIbgA", "libkernel", 1, "libkernel", 1, 1, sceKernelMapDirectMemory);
LIB_FUNCTION("WFcfL2lzido", "libkernel", 1, "libkernel", 1, 1, sceKernelQueryMemoryProtection); LIB_FUNCTION("WFcfL2lzido", "libkernel", 1, "libkernel", 1, 1, sceKernelQueryMemoryProtection);
@ -212,6 +250,11 @@ void LibKernel_Register(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("cQke9UuBQOk", "libkernel", 1, "libkernel", 1, 1, sceKernelMunmap); LIB_FUNCTION("cQke9UuBQOk", "libkernel", 1, "libkernel", 1, 1, sceKernelMunmap);
LIB_FUNCTION("mL8NDH86iQI", "libkernel", 1, "libkernel", 1, 1, sceKernelMapNamedFlexibleMemory); LIB_FUNCTION("mL8NDH86iQI", "libkernel", 1, "libkernel", 1, 1, sceKernelMapNamedFlexibleMemory);
LIB_FUNCTION("IWIBBdTHit4", "libkernel", 1, "libkernel", 1, 1, sceKernelMapFlexibleMemory); LIB_FUNCTION("IWIBBdTHit4", "libkernel", 1, "libkernel", 1, 1, sceKernelMapFlexibleMemory);
LIB_FUNCTION("p5EcQeEeJAE", "libkernel", 1, "libkernel", 1, 1,
_sceKernelRtldSetApplicationHeapAPI);
LIB_FUNCTION("wzvqT4UqKX8", "libkernel", 1, "libkernel", 1, 1, sceKernelLoadStartModule);
LIB_FUNCTION("LwG8g3niqwA", "libkernel", 1, "libkernel", 1, 1, sceKernelDlsym);
// equeue // equeue
LIB_FUNCTION("D0OdFMjp46I", "libkernel", 1, "libkernel", 1, 1, sceKernelCreateEqueue); LIB_FUNCTION("D0OdFMjp46I", "libkernel", 1, "libkernel", 1, 1, sceKernelCreateEqueue);
LIB_FUNCTION("jpFjmgAC5AE", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteEqueue); LIB_FUNCTION("jpFjmgAC5AE", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteEqueue);

View file

@ -7,6 +7,7 @@
#include "common/singleton.h" #include "common/singleton.h"
#include "core/libraries/error_codes.h" #include "core/libraries/error_codes.h"
#include "core/libraries/kernel/memory_management.h" #include "core/libraries/kernel/memory_management.h"
#include "core/linker.h"
#include "core/memory.h" #include "core/memory.h"
namespace Libraries::Kernel { namespace Libraries::Kernel {
@ -22,12 +23,12 @@ int PS4_SYSV_ABI sceKernelAllocateDirectMemory(s64 searchStart, s64 searchEnd, u
LOG_ERROR(Kernel_Vmm, "Provided address range is invalid!"); LOG_ERROR(Kernel_Vmm, "Provided address range is invalid!");
return SCE_KERNEL_ERROR_EINVAL; return SCE_KERNEL_ERROR_EINVAL;
} }
const bool is_in_range = (searchStart < len && searchEnd > len); const bool is_in_range = searchEnd - searchStart >= len;
if (len <= 0 || !Common::is16KBAligned(len) || !is_in_range) { if (len <= 0 || !Common::Is16KBAligned(len) || !is_in_range) {
LOG_ERROR(Kernel_Vmm, "Provided address range is invalid!"); LOG_ERROR(Kernel_Vmm, "Provided address range is invalid!");
return SCE_KERNEL_ERROR_EINVAL; return SCE_KERNEL_ERROR_EINVAL;
} }
if ((alignment != 0 || Common::is16KBAligned(alignment)) && !std::has_single_bit(alignment)) { if (alignment != 0 && !Common::Is16KBAligned(alignment)) {
LOG_ERROR(Kernel_Vmm, "Alignment value is invalid!"); LOG_ERROR(Kernel_Vmm, "Alignment value is invalid!");
return SCE_KERNEL_ERROR_EINVAL; return SCE_KERNEL_ERROR_EINVAL;
} }
@ -48,6 +49,12 @@ int PS4_SYSV_ABI sceKernelAllocateDirectMemory(s64 searchStart, s64 searchEnd, u
return SCE_OK; return SCE_OK;
} }
s32 PS4_SYSV_ABI sceKernelAllocateMainDirectMemory(size_t len, size_t alignment, int memoryType,
s64* physAddrOut) {
return sceKernelAllocateDirectMemory(0, SCE_KERNEL_MAIN_DMEM_SIZE, len, alignment, memoryType,
physAddrOut);
}
int PS4_SYSV_ABI sceKernelMapDirectMemory(void** addr, u64 len, int prot, int flags, int PS4_SYSV_ABI sceKernelMapDirectMemory(void** addr, u64 len, int prot, int flags,
s64 directMemoryStart, u64 alignment) { s64 directMemoryStart, u64 alignment) {
LOG_INFO( LOG_INFO(
@ -55,16 +62,16 @@ int PS4_SYSV_ABI sceKernelMapDirectMemory(void** addr, u64 len, int prot, int fl
"len = {:#x}, prot = {:#x}, flags = {:#x}, directMemoryStart = {:#x}, alignment = {:#x}", "len = {:#x}, prot = {:#x}, flags = {:#x}, directMemoryStart = {:#x}, alignment = {:#x}",
len, prot, flags, directMemoryStart, alignment); len, prot, flags, directMemoryStart, alignment);
if (len == 0 || !Common::is16KBAligned(len)) { if (len == 0 || !Common::Is16KBAligned(len)) {
LOG_ERROR(Kernel_Vmm, "Map size is either zero or not 16KB aligned!"); LOG_ERROR(Kernel_Vmm, "Map size is either zero or not 16KB aligned!");
return SCE_KERNEL_ERROR_EINVAL; return SCE_KERNEL_ERROR_EINVAL;
} }
if (!Common::is16KBAligned(directMemoryStart)) { if (!Common::Is16KBAligned(directMemoryStart)) {
LOG_ERROR(Kernel_Vmm, "Start address is not 16KB aligned!"); LOG_ERROR(Kernel_Vmm, "Start address is not 16KB aligned!");
return SCE_KERNEL_ERROR_EINVAL; return SCE_KERNEL_ERROR_EINVAL;
} }
if (alignment != 0) { if (alignment != 0) {
if ((!std::has_single_bit(alignment) && !Common::is16KBAligned(alignment))) { if ((!std::has_single_bit(alignment) && !Common::Is16KBAligned(alignment))) {
LOG_ERROR(Kernel_Vmm, "Alignment value is invalid!"); LOG_ERROR(Kernel_Vmm, "Alignment value is invalid!");
return SCE_KERNEL_ERROR_EINVAL; return SCE_KERNEL_ERROR_EINVAL;
} }
@ -81,7 +88,7 @@ int PS4_SYSV_ABI sceKernelMapDirectMemory(void** addr, u64 len, int prot, int fl
s32 PS4_SYSV_ABI sceKernelMapNamedFlexibleMemory(void** addr_in_out, std::size_t len, int prot, s32 PS4_SYSV_ABI sceKernelMapNamedFlexibleMemory(void** addr_in_out, std::size_t len, int prot,
int flags, const char* name) { int flags, const char* name) {
if (len == 0 || !Common::is16KBAligned(len)) { if (len == 0 || !Common::Is16KBAligned(len)) {
LOG_ERROR(Kernel_Vmm, "len is 0 or not 16kb multiple"); LOG_ERROR(Kernel_Vmm, "len is 0 or not 16kb multiple");
return ORBIS_KERNEL_ERROR_EINVAL; return ORBIS_KERNEL_ERROR_EINVAL;
} }
@ -127,4 +134,9 @@ int PS4_SYSV_ABI sceKernelDirectMemoryQuery(u64 offset, int flags, OrbisQueryInf
return memory->DirectMemoryQuery(offset, flags == 1, query_info); return memory->DirectMemoryQuery(offset, flags == 1, query_info);
} }
void PS4_SYSV_ABI _sceKernelRtldSetApplicationHeapAPI(void* func) {
auto* linker = Common::Singleton<Core::Linker>::Instance();
linker->SetHeapApiFunc(func);
}
} // namespace Libraries::Kernel } // namespace Libraries::Kernel

View file

@ -41,6 +41,8 @@ int PS4_SYSV_ABI sceKernelAllocateDirectMemory(s64 searchStart, s64 searchEnd, u
u64 alignment, int memoryType, s64* physAddrOut); u64 alignment, int memoryType, s64* physAddrOut);
int PS4_SYSV_ABI sceKernelMapDirectMemory(void** addr, u64 len, int prot, int flags, int PS4_SYSV_ABI sceKernelMapDirectMemory(void** addr, u64 len, int prot, int flags,
s64 directMemoryStart, u64 alignment); s64 directMemoryStart, u64 alignment);
s32 PS4_SYSV_ABI sceKernelAllocateMainDirectMemory(size_t len, size_t alignment, int memoryType,
s64* physAddrOut);
s32 PS4_SYSV_ABI sceKernelMapNamedFlexibleMemory(void** addrInOut, std::size_t len, int prot, s32 PS4_SYSV_ABI sceKernelMapNamedFlexibleMemory(void** addrInOut, std::size_t len, int prot,
int flags, const char* name); int flags, const char* name);
s32 PS4_SYSV_ABI sceKernelMapFlexibleMemory(void** addr_in_out, std::size_t len, int prot, s32 PS4_SYSV_ABI sceKernelMapFlexibleMemory(void** addr_in_out, std::size_t len, int prot,
@ -49,5 +51,6 @@ int PS4_SYSV_ABI sceKernelQueryMemoryProtection(void* addr, void** start, void**
int PS4_SYSV_ABI sceKernelDirectMemoryQuery(u64 offset, int flags, OrbisQueryInfo* query_info, int PS4_SYSV_ABI sceKernelDirectMemoryQuery(u64 offset, int flags, OrbisQueryInfo* query_info,
size_t infoSize); size_t infoSize);
void PS4_SYSV_ABI _sceKernelRtldSetApplicationHeapAPI(void* func);
} // namespace Libraries::Kernel } // namespace Libraries::Kernel

View file

@ -20,7 +20,7 @@ bool PhysicalMemory::Alloc(u64 searchStart, u64 searchEnd, u64 len, u64 alignmen
} }
// Align free position // Align free position
find_free_pos = Common::alignUp(find_free_pos, alignment); find_free_pos = Common::AlignUp(find_free_pos, alignment);
// If the new position is between searchStart - searchEnd , allocate a new block // If the new position is between searchStart - searchEnd , allocate a new block
if (find_free_pos >= searchStart && find_free_pos + len <= searchEnd) { if (find_free_pos >= searchStart && find_free_pos + len <= searchEnd) {

View file

@ -5,10 +5,12 @@
#include <thread> #include <thread>
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/singleton.h"
#include "common/thread.h" #include "common/thread.h"
#include "core/libraries/error_codes.h" #include "core/libraries/error_codes.h"
#include "core/libraries/kernel/thread_management.h" #include "core/libraries/kernel/thread_management.h"
#include "core/libraries/libs.h" #include "core/libraries/libs.h"
#include "core/linker.h"
#ifdef _WIN64 #ifdef _WIN64
#include <windows.h> #include <windows.h>
#endif #endif
@ -829,6 +831,8 @@ static void cleanup_thread(void* arg) {
static void* run_thread(void* arg) { static void* run_thread(void* arg) {
auto* thread = static_cast<ScePthread>(arg); auto* thread = static_cast<ScePthread>(arg);
Common::SetCurrentThreadName(thread->name.c_str()); Common::SetCurrentThreadName(thread->name.c_str());
auto* linker = Common::Singleton<Core::Linker>::Instance();
linker->InitTlsForThread(false);
void* ret = nullptr; void* ret = nullptr;
g_pthread_self = thread; g_pthread_self = thread;
pthread_cleanup_push(cleanup_thread, thread); pthread_cleanup_push(cleanup_thread, thread);
@ -1022,6 +1026,16 @@ int PS4_SYSV_ABI scePthreadEqual(ScePthread thread1, ScePthread thread2) {
return (thread1 == thread2 ? 1 : 0); return (thread1 == thread2 ? 1 : 0);
} }
struct TlsIndex {
u64 ti_module;
u64 ti_offset;
};
void* PS4_SYSV_ABI __tls_get_addr(TlsIndex* index) {
auto* linker = Common::Singleton<Core::Linker>::Instance();
return linker->TlsGetAddr(index->ti_module, index->ti_offset);
}
void pthreadSymbolsRegister(Core::Loader::SymbolsResolver* sym) { void pthreadSymbolsRegister(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("4+h9EzwKF4I", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrSetschedpolicy); LIB_FUNCTION("4+h9EzwKF4I", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrSetschedpolicy);
LIB_FUNCTION("-Wreprtu0Qs", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrSetdetachstate); LIB_FUNCTION("-Wreprtu0Qs", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrSetdetachstate);
@ -1038,6 +1052,7 @@ void pthreadSymbolsRegister(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("8+s5BzZjxSg", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrGetaffinity); LIB_FUNCTION("8+s5BzZjxSg", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrGetaffinity);
LIB_FUNCTION("x1X76arYMxU", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrGet); LIB_FUNCTION("x1X76arYMxU", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrGet);
LIB_FUNCTION("UTXzJbWhhTE", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrSetstacksize); LIB_FUNCTION("UTXzJbWhhTE", "libkernel", 1, "libkernel", 1, 1, scePthreadAttrSetstacksize);
LIB_FUNCTION("vNe1w4diLCs", "libkernel", 1, "libkernel", 1, 1, __tls_get_addr);
LIB_FUNCTION("bt3CTBKmGyI", "libkernel", 1, "libkernel", 1, 1, scePthreadSetaffinity); LIB_FUNCTION("bt3CTBKmGyI", "libkernel", 1, "libkernel", 1, 1, scePthreadSetaffinity);
LIB_FUNCTION("6UgtwV+0zb4", "libkernel", 1, "libkernel", 1, 1, scePthreadCreate); LIB_FUNCTION("6UgtwV+0zb4", "libkernel", 1, "libkernel", 1, 1, scePthreadCreate);

View file

@ -1,9 +1,8 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project // SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#include <Zydis/Zydis.h> #include "common/alignment.h"
#include <common/assert.h> #include "common/assert.h"
#include <xbyak/xbyak.h>
#include "common/config.h" #include "common/config.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/path_util.h" #include "common/path_util.h"
@ -11,6 +10,7 @@
#include "common/thread.h" #include "common/thread.h"
#include "core/aerolib/aerolib.h" #include "core/aerolib/aerolib.h"
#include "core/aerolib/stubs.h" #include "core/aerolib/stubs.h"
#include "core/libraries/kernel/memory_management.h"
#include "core/libraries/kernel/thread_management.h" #include "core/libraries/kernel/thread_management.h"
#include "core/linker.h" #include "core/linker.h"
#include "core/tls.h" #include "core/tls.h"
@ -18,641 +18,15 @@
namespace Core { namespace Core {
static u64 LoadAddress = SYSTEM_RESERVED + CODE_BASE_OFFSET; using ExitFunc = PS4_SYSV_ABI void (*)();
static constexpr u64 CODE_BASE_INCR = 0x010000000u;
static u64 GetAlignedSize(const elf_program_header& phdr) {
return (phdr.p_align != 0 ? (phdr.p_memsz + (phdr.p_align - 1)) & ~(phdr.p_align - 1)
: phdr.p_memsz);
}
static u64 CalculateBaseSize(const elf_header& ehdr, std::span<const elf_program_header> phdr) {
u64 base_size = 0;
for (u16 i = 0; i < ehdr.e_phnum; i++) {
if (phdr[i].p_memsz != 0 && (phdr[i].p_type == PT_LOAD || phdr[i].p_type == PT_SCE_RELRO)) {
u64 last_addr = phdr[i].p_vaddr + GetAlignedSize(phdr[i]);
if (last_addr > base_size) {
base_size = last_addr;
}
}
}
return base_size;
}
static std::string EncodeId(u64 nVal) {
std::string enc;
const char pCodes[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+-";
if (nVal < 0x40u) {
enc += pCodes[nVal];
} else {
if (nVal < 0x1000u) {
enc += pCodes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += pCodes[nVal & 0x3fu];
} else {
enc += pCodes[static_cast<u16>(nVal >> 12u) & 0x3fu];
enc += pCodes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += pCodes[nVal & 0x3fu];
}
}
return enc;
}
Linker::Linker() = default;
Linker::~Linker() = default;
Module* Linker::LoadModule(const std::filesystem::path& elf_name) {
std::scoped_lock lock{m_mutex};
if (!std::filesystem::exists(elf_name)) {
LOG_ERROR(Core_Linker, "Provided module {} does not exist", elf_name.string());
return nullptr;
}
auto& m = m_modules.emplace_back();
m = std::make_unique<Module>();
m->elf.Open(elf_name);
m->file_name = std::filesystem::path(elf_name).filename().string();
if (m->elf.IsElfFile()) {
LoadModuleToMemory(m.get());
LoadDynamicInfo(m.get());
LoadSymbols(m.get());
} else {
m_modules.pop_back();
return nullptr; // It is not a valid elf file //TODO check it why!
}
return m.get();
}
void Linker::LoadModuleToMemory(Module* m) {
// get elf header, program header
const auto elf_header = m->elf.GetElfHeader();
const auto elf_pheader = m->elf.GetProgramHeader();
u64 base_size = CalculateBaseSize(elf_header, elf_pheader);
m->aligned_base_size = (base_size & ~(static_cast<u64>(0x1000) - 1)) +
0x1000; // align base size to 0x1000 block size (TODO is that the default
// block size or it can be changed?
static constexpr u64 TrampolineSize = 8_MB;
m->base_virtual_addr =
VirtualMemory::memory_alloc(LoadAddress, m->aligned_base_size + TrampolineSize,
VirtualMemory::MemoryMode::ExecuteReadWrite);
LoadAddress += CODE_BASE_INCR * (1 + m->aligned_base_size / CODE_BASE_INCR);
void* trampoline_addr = reinterpret_cast<void*>(m->base_virtual_addr + m->aligned_base_size);
Xbyak::CodeGenerator c(TrampolineSize, trampoline_addr);
LOG_INFO(Core_Linker, "======== Load Module to Memory ========");
LOG_INFO(Core_Linker, "base_virtual_addr ......: {:#018x}", m->base_virtual_addr);
LOG_INFO(Core_Linker, "base_size ..............: {:#018x}", base_size);
LOG_INFO(Core_Linker, "aligned_base_size ......: {:#018x}", m->aligned_base_size);
for (u16 i = 0; i < elf_header.e_phnum; i++) {
switch (elf_pheader[i].p_type) {
case PT_LOAD:
case PT_SCE_RELRO:
if (elf_pheader[i].p_memsz != 0) {
u64 segment_addr = elf_pheader[i].p_vaddr + m->base_virtual_addr;
u64 segment_file_size = elf_pheader[i].p_filesz;
u64 segment_memory_size = GetAlignedSize(elf_pheader[i]);
auto segment_mode = m->elf.ElfPheaderFlagsStr(elf_pheader[i].p_flags);
LOG_INFO(Core_Linker, "program header = [{}] type = {}", i,
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
LOG_INFO(Core_Linker, "segment_addr ..........: {:#018x}", segment_addr);
LOG_INFO(Core_Linker, "segment_file_size .....: {}", segment_file_size);
LOG_INFO(Core_Linker, "segment_memory_size ...: {}", segment_memory_size);
LOG_INFO(Core_Linker, "segment_mode ..........: {}", segment_mode);
m->elf.LoadSegment(segment_addr, elf_pheader[i].p_offset, segment_file_size);
if (elf_pheader[i].p_flags & PF_EXEC) {
PatchTLS(segment_addr, segment_file_size, c);
}
} else {
LOG_ERROR(Core_Linker, "p_memsz==0 in type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
break;
case PT_DYNAMIC:
if (elf_pheader[i].p_filesz != 0) {
m->m_dynamic.resize(elf_pheader[i].p_filesz);
m->elf.LoadSegment(reinterpret_cast<u64>(m->m_dynamic.data()),
elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
break;
case PT_SCE_DYNLIBDATA:
if (elf_pheader[i].p_filesz != 0) {
m->m_dynamic_data.resize(elf_pheader[i].p_filesz);
m->elf.LoadSegment(reinterpret_cast<u64>(m->m_dynamic_data.data()),
elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
break;
case PT_TLS:
m->tls.image_virtual_addr = elf_pheader[i].p_vaddr + m->base_virtual_addr;
m->tls.image_size = GetAlignedSize(elf_pheader[i]);
LOG_INFO(Core_Linker, "TLS virtual address = {:#x}", m->tls.image_virtual_addr);
LOG_INFO(Core_Linker, "TLS image size = {}", m->tls.image_size);
break;
case PT_SCE_PROCPARAM:
m->proc_param_virtual_addr = elf_pheader[i].p_vaddr + m->base_virtual_addr;
break;
default:
LOG_ERROR(Core_Linker, "Unimplemented type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
}
LOG_INFO(Core_Linker, "program entry addr ..........: {:#018x}",
m->elf.GetElfEntry() + m->base_virtual_addr);
}
void Linker::LoadDynamicInfo(Module* m) {
for (const auto* dyn = reinterpret_cast<elf_dynamic*>(m->m_dynamic.data());
dyn->d_tag != DT_NULL; dyn++) {
switch (dyn->d_tag) {
case DT_SCE_HASH: // Offset of the hash table.
m->dynamic_info.hash_table =
reinterpret_cast<void*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_HASHSZ: // Size of the hash table
m->dynamic_info.hash_table_size = dyn->d_un.d_val;
break;
case DT_SCE_STRTAB: // Offset of the string table.
m->dynamic_info.str_table =
reinterpret_cast<char*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_STRSZ: // Size of the string table.
m->dynamic_info.str_table_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMTAB: // Offset of the symbol table.
m->dynamic_info.symbol_table =
reinterpret_cast<elf_symbol*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_SYMTABSZ: // Size of the symbol table.
m->dynamic_info.symbol_table_total_size = dyn->d_un.d_val;
break;
case DT_INIT:
m->dynamic_info.init_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI:
m->dynamic_info.fini_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_PLTGOT: // Offset of the global offset table.
m->dynamic_info.pltgot_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_JMPREL: // Offset of the table containing jump slots.
m->dynamic_info.jmp_relocation_table =
reinterpret_cast<elf_relocation*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_PLTRELSZ: // Size of the global offset table.
m->dynamic_info.jmp_relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_PLTREL: // The type of relocations in the relocation table. Should be DT_RELA
m->dynamic_info.jmp_relocation_type = dyn->d_un.d_val;
if (m->dynamic_info.jmp_relocation_type != DT_RELA) {
LOG_WARNING(Core_Linker, "DT_SCE_PLTREL is NOT DT_RELA should check!");
}
break;
case DT_SCE_RELA: // Offset of the relocation table.
m->dynamic_info.relocation_table =
reinterpret_cast<elf_relocation*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_RELASZ: // Size of the relocation table.
m->dynamic_info.relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_RELAENT: // The size of relocation table entries.
m->dynamic_info.relocation_table_entries_size = dyn->d_un.d_val;
if (m->dynamic_info.relocation_table_entries_size !=
0x18) // this value should always be 0x18
{
LOG_WARNING(Core_Linker, "DT_SCE_RELAENT is NOT 0x18 should check!");
}
break;
case DT_INIT_ARRAY: // Address of the array of pointers to initialization functions
m->dynamic_info.init_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI_ARRAY: // Address of the array of pointers to termination functions
m->dynamic_info.fini_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_INIT_ARRAYSZ: // Size in bytes of the array of initialization functions
m->dynamic_info.init_array_size = dyn->d_un.d_val;
break;
case DT_FINI_ARRAYSZ: // Size in bytes of the array of terminationfunctions
m->dynamic_info.fini_array_size = dyn->d_un.d_val;
break;
case DT_PREINIT_ARRAY: // Address of the array of pointers to pre - initialization functions
m->dynamic_info.preinit_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_PREINIT_ARRAYSZ: // Size in bytes of the array of pre - initialization functions
m->dynamic_info.preinit_array_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMENT: // The size of symbol table entries
m->dynamic_info.symbol_table_entries_size = dyn->d_un.d_val;
if (m->dynamic_info.symbol_table_entries_size !=
0x18) // this value should always be 0x18
{
LOG_WARNING(Core_Linker, "DT_SCE_SYMENT is NOT 0x18 should check!");
}
break;
case DT_DEBUG:
m->dynamic_info.debug = dyn->d_un.d_val;
break;
case DT_TEXTREL:
m->dynamic_info.textrel = dyn->d_un.d_val;
break;
case DT_FLAGS:
m->dynamic_info.flags = dyn->d_un.d_val;
if (m->dynamic_info.flags != 0x04) // this value should always be DF_TEXTREL (0x04)
{
LOG_WARNING(Core_Linker, "DT_FLAGS is NOT 0x04 should check!");
}
break;
case DT_NEEDED: // Offset of the library string in the string table to be linked in.
if (m->dynamic_info.str_table !=
nullptr) // in theory this should already be filled from about just make a test case
{
m->dynamic_info.needed.push_back(m->dynamic_info.str_table + dyn->d_un.d_val);
} else {
LOG_ERROR(Core_Linker, "DT_NEEDED str table is not loaded should check!");
}
break;
case DT_SCE_NEEDED_MODULE: {
ModuleInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.import_modules.push_back(info);
} break;
case DT_SCE_IMPORT_LIB: {
LibraryInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.import_libs.push_back(info);
} break;
case DT_SCE_FINGERPRINT:
// The fingerprint is a 24 byte (0x18) size buffer that contains a unique identifier for
// the given app. How exactly this is generated isn't known, however it is not necessary
// to have a valid fingerprint. While an invalid fingerprint will cause a warning to be
// printed to the kernel log, the ELF will still load and run.
LOG_INFO(Core_Linker, "unsupported DT_SCE_FINGERPRINT value = ..........: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_IMPORT_LIB_ATTR:
// The upper 32-bits should contain the module index multiplied by 0x10000. The lower
// 32-bits should be a constant 0x9.
LOG_INFO(Core_Linker, "unsupported DT_SCE_IMPORT_LIB_ATTR value = ......: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_ORIGINAL_FILENAME:
m->dynamic_info.filename = m->dynamic_info.str_table + dyn->d_un.d_val;
break;
case DT_SCE_MODULE_INFO: // probably only useable in shared modules
{
ModuleInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.export_modules.push_back(info);
} break;
case DT_SCE_MODULE_ATTR:
// TODO?
LOG_INFO(Core_Linker, "unsupported DT_SCE_MODULE_ATTR value = ..........: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_EXPORT_LIB: {
LibraryInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.export_libs.push_back(info);
} break;
default:
LOG_INFO(Core_Linker, "unsupported dynamic tag ..........: {:#018x}", dyn->d_tag);
}
}
}
const ModuleInfo* Linker::FindModule(const Module& m, const std::string& id) {
const auto& import_modules = m.dynamic_info.import_modules;
int index = 0;
for (const auto& mod : import_modules) {
if (mod.enc_id.compare(id) == 0) {
return &import_modules.at(index);
}
index++;
}
const auto& export_modules = m.dynamic_info.export_modules;
index = 0;
for (const auto& mod : export_modules) {
if (mod.enc_id.compare(id) == 0) {
return &export_modules.at(index);
}
index++;
}
return nullptr;
}
const LibraryInfo* Linker::FindLibrary(const Module& m, const std::string& id) {
const auto& import_libs = m.dynamic_info.import_libs;
int index = 0;
for (const auto& lib : import_libs) {
if (lib.enc_id.compare(id) == 0) {
return &import_libs.at(index);
}
index++;
}
const auto& export_libs = m.dynamic_info.export_libs;
index = 0;
for (const auto& lib : export_libs) {
if (lib.enc_id.compare(id) == 0) {
return &export_libs.at(index);
}
index++;
}
return nullptr;
}
void Linker::LoadSymbols(Module* m) {
const auto symbol_database = [this](Module* m, Loader::SymbolsResolver* symbol,
bool export_func) {
if (m->dynamic_info.symbol_table == nullptr || m->dynamic_info.str_table == nullptr ||
m->dynamic_info.symbol_table_total_size == 0) {
LOG_INFO(Core_Linker, "Symbol table not found!");
return;
}
for (auto* sym = m->dynamic_info.symbol_table;
reinterpret_cast<u8*>(sym) < reinterpret_cast<u8*>(m->dynamic_info.symbol_table) +
m->dynamic_info.symbol_table_total_size;
sym++) {
std::string id = std::string(m->dynamic_info.str_table + sym->st_name);
auto bind = sym->GetBind();
auto type = sym->GetType();
auto visibility = sym->GetVisibility();
const auto ids = Common::SplitString(id, '#');
if (ids.size() == 3) {
const auto* library = FindLibrary(*m, ids.at(1));
const auto* module = FindModule(*m, ids.at(2));
ASSERT_MSG(library && module, "Unable to find library and module");
if ((bind == STB_GLOBAL || bind == STB_WEAK) &&
(type == STT_FUN || type == STT_OBJECT) &&
export_func == (sym->st_value != 0)) {
std::string nidName = "";
auto aeronid = AeroLib::FindByNid(ids.at(0).c_str());
if (aeronid != nullptr) {
nidName = aeronid->name;
} else {
nidName = "UNK";
}
Loader::SymbolResolver sym_r{};
sym_r.name = ids.at(0);
sym_r.nidName = nidName;
sym_r.library = library->name;
sym_r.library_version = library->version;
sym_r.module = module->name;
sym_r.module_version_major = module->version_major;
sym_r.module_version_minor = module->version_minor;
switch (type) {
case STT_NOTYPE:
sym_r.type = Loader::SymbolType::NoType;
break;
case STT_FUN:
sym_r.type = Loader::SymbolType::Function;
break;
case STT_OBJECT:
sym_r.type = Loader::SymbolType::Object;
break;
default:
sym_r.type = Loader::SymbolType::Unknown;
break;
}
symbol->AddSymbol(sym_r,
(export_func ? sym->st_value + m->base_virtual_addr : 0));
}
}
}
};
symbol_database(m, &m->export_sym, true);
symbol_database(m, &m->import_sym, false);
}
void Linker::Relocate(Module* m) {
const auto relocate = [this](u32 idx, elf_relocation* rel, Module* m, bool isJmpRel) {
auto type = rel->GetType();
auto symbol = rel->GetSymbol();
auto addend = rel->rel_addend;
auto* symbolsTlb = m->dynamic_info.symbol_table;
auto* namesTlb = m->dynamic_info.str_table;
u64 rel_value = 0;
u64 rel_base_virtual_addr = m->base_virtual_addr;
u64 rel_virtual_addr = m->base_virtual_addr + rel->rel_offset;
bool rel_isResolved = false;
Loader::SymbolType rel_sym_type = Loader::SymbolType::Unknown;
std::string rel_name;
switch (type) {
case R_X86_64_RELATIVE:
rel_value = rel_base_virtual_addr + addend;
rel_isResolved = true;
break;
case R_X86_64_DTPMOD64:
rel_value = reinterpret_cast<uint64_t>(m);
rel_isResolved = true;
rel_sym_type = Loader::SymbolType::Tls;
break;
case R_X86_64_GLOB_DAT:
case R_X86_64_JUMP_SLOT:
addend = 0;
case R_X86_64_64: {
auto sym = symbolsTlb[symbol];
auto sym_bind = sym.GetBind();
auto sym_type = sym.GetType();
auto sym_visibility = sym.GetVisibility();
u64 symbol_vitrual_addr = 0;
Loader::SymbolRecord symrec{};
switch (sym_type) {
case STT_FUN:
rel_sym_type = Loader::SymbolType::Function;
break;
case STT_OBJECT:
rel_sym_type = Loader::SymbolType::Object;
break;
case STT_NOTYPE:
rel_sym_type = Loader::SymbolType::NoType;
break;
default:
ASSERT_MSG(0, "unknown symbol type {}", sym_type);
}
if (sym_visibility != 0) // should be zero log if else
{
LOG_INFO(Core_Linker, "symbol visilibity !=0");
}
switch (sym_bind) {
case STB_LOCAL:
symbol_vitrual_addr = rel_base_virtual_addr + sym.st_value;
break;
case STB_GLOBAL:
case STB_WEAK: {
rel_name = namesTlb + sym.st_name;
Resolve(rel_name, rel_sym_type, m, &symrec);
symbol_vitrual_addr = symrec.virtual_address;
} break;
default:
ASSERT_MSG(0, "unknown bind type {}", sym_bind);
}
rel_isResolved = (symbol_vitrual_addr != 0);
rel_value = (rel_isResolved ? symbol_vitrual_addr + addend : 0);
rel_name = symrec.name;
} break;
default:
LOG_INFO(Core_Linker, "UNK type {:#010x} rel symbol : {:#010x}", type, symbol);
}
if (rel_isResolved) {
VirtualMemory::memory_patch(rel_virtual_addr, rel_value);
} else {
LOG_INFO(Core_Linker, "function not patched! {}", rel_name);
}
};
u32 idx = 0;
for (auto* rel = m->dynamic_info.relocation_table;
reinterpret_cast<u8*>(rel) < reinterpret_cast<u8*>(m->dynamic_info.relocation_table) +
m->dynamic_info.relocation_table_size;
rel++, idx++) {
relocate(idx, rel, m, false);
}
idx = 0;
for (auto* rel = m->dynamic_info.jmp_relocation_table;
reinterpret_cast<u8*>(rel) < reinterpret_cast<u8*>(m->dynamic_info.jmp_relocation_table) +
m->dynamic_info.jmp_relocation_table_size;
rel++, idx++) {
relocate(idx, rel, m, true);
}
}
template <typename T>
bool contains(const std::vector<T>& vecObj, const T& element) {
auto it = std::find(vecObj.begin(), vecObj.end(), element);
return it != vecObj.end();
}
Module* Linker::FindExportedModule(const ModuleInfo& module, const LibraryInfo& library) {
// std::scoped_lock lock{m_mutex};
for (auto& m : m_modules) {
const auto& export_libs = m->dynamic_info.export_libs;
const auto& export_modules = m->dynamic_info.export_modules;
if (contains(export_libs, library) && contains(export_modules, module)) {
return m.get();
}
}
return nullptr;
}
void Linker::Resolve(const std::string& name, Loader::SymbolType sym_type, Module* m,
Loader::SymbolRecord* return_info) {
// std::scoped_lock lock{m_mutex};
const auto ids = Common::SplitString(name, '#');
if (ids.size() == 3) {
const auto* library = FindLibrary(*m, ids.at(1));
const auto* module = FindModule(*m, ids.at(2));
ASSERT_MSG(library && module, "Unable to find library and module");
Loader::SymbolResolver sr{};
sr.name = ids.at(0);
sr.library = library->name;
sr.library_version = library->version;
sr.module = module->name;
sr.module_version_major = module->version_major;
sr.module_version_minor = module->version_minor;
sr.type = sym_type;
const Loader::SymbolRecord* rec = nullptr;
rec = m_hle_symbols.FindSymbol(sr);
if (rec == nullptr) {
// check if it an export function
if (auto* p = FindExportedModule(*module, *library);
p != nullptr && p->export_sym.GetSize() > 0) {
rec = p->export_sym.FindSymbol(sr);
}
}
if (rec != nullptr) {
*return_info = *rec;
} else {
auto aeronid = AeroLib::FindByNid(sr.name.c_str());
if (aeronid) {
return_info->name = aeronid->name;
return_info->virtual_address = AeroLib::GetStub(aeronid->nid);
} else {
return_info->virtual_address = AeroLib::GetStub(sr.name.c_str());
return_info->name = "Unknown !!!";
}
LOG_ERROR(Core_Linker, "Linker: Stub resolved {} as {} (lib: {}, mod: {})", sr.name,
return_info->name, library->name, module->name);
}
} else {
return_info->virtual_address = 0;
return_info->name = name;
LOG_ERROR(Core_Linker, "Not Resolved {}", name);
}
}
u64 Linker::GetProcParam() {
// std::scoped_lock lock{m_mutex};
for (auto& m : m_modules) {
if (!m->elf.IsSharedLib()) {
return m->proc_param_virtual_addr;
}
}
return 0;
}
using exit_func_t = PS4_SYSV_ABI void (*)();
using entry_func_t = PS4_SYSV_ABI void (*)(EntryParams* params, exit_func_t atexit_func);
using module_ini_func_t = PS4_SYSV_ABI int (*)(size_t args, const void* argp, module_func_t func);
static PS4_SYSV_ABI int run_module(uint64_t addr, size_t args, const void* argp,
module_func_t func) {
return reinterpret_cast<module_ini_func_t>(addr)(args, argp, func);
}
int Linker::StartModule(Module* m, size_t args, const void* argp, module_func_t func) {
LOG_INFO(Core_Linker, "Module started : {}", m->file_name);
return run_module(m->dynamic_info.init_virtual_addr + m->base_virtual_addr, args, argp, func);
}
void Linker::StartAllModules() {
std::scoped_lock lock{m_mutex};
for (auto& m : m_modules) {
if (m->elf.IsSharedLib()) {
StartModule(m.get(), 0, nullptr, nullptr);
}
}
}
static PS4_SYSV_ABI void ProgramExitFunc() { static PS4_SYSV_ABI void ProgramExitFunc() {
fmt::print("exit function called\n"); fmt::print("exit function called\n");
} }
static void RunMainEntry(u64 addr, EntryParams* params, exit_func_t exit_func) { static void RunMainEntry(VAddr addr, EntryParams* params, ExitFunc exit_func) {
// reinterpret_cast<entry_func_t>(addr)(params, exit_func); // can't be used, stack has to have // reinterpret_cast<entry_func_t>(addr)(params, exit_func); // can't be used, stack has to have
// a specific layout // a specific layout
asm volatile("andq $-16, %%rsp\n" // Align to 16 bytes asm volatile("andq $-16, %%rsp\n" // Align to 16 bytes
"subq $8, %%rsp\n" // videoout_basic expects the stack to be misaligned "subq $8, %%rsp\n" // videoout_basic expects the stack to be misaligned
@ -672,42 +46,283 @@ static void RunMainEntry(u64 addr, EntryParams* params, exit_func_t exit_func) {
: "rax", "rsi", "rdi"); : "rax", "rsi", "rdi");
} }
Linker::Linker() = default;
Linker::~Linker() = default;
void Linker::Execute() { void Linker::Execute() {
if (Config::debugDump()) { if (Config::debugDump()) {
DebugDump(); DebugDump();
} }
Common::SetCurrentThreadName("GAME_MainThread"); // Calculate static TLS size.
for (const auto& module : m_modules) {
if (module->tls.image_size != 0) {
module->tls.modid = ++max_tls_index;
}
static_tls_size += module->tls.image_size;
module->tls.offset = static_tls_size;
}
Libraries::Kernel::pthreadInitSelfMainThread();
// Relocate all modules // Relocate all modules
for (const auto& m : m_modules) { for (const auto& m : m_modules) {
Relocate(m.get()); Relocate(m.get());
} }
StartAllModules();
// Init primary thread.
Common::SetCurrentThreadName("GAME_MainThread");
Libraries::Kernel::pthreadInitSelfMainThread();
InitTlsForThread(true);
// Start shared library modules
for (auto& m : m_modules) {
if (m->IsSharedLib()) {
m->Start(0, nullptr, nullptr);
}
}
// Start main module.
EntryParams p{}; EntryParams p{};
p.argc = 1; p.argc = 1;
p.argv[0] = "eboot.bin"; // hmm should be ok? p.argv[0] = "eboot.bin";
for (auto& m : m_modules) { for (auto& m : m_modules) {
if (m->elf.IsSharedLib()) { if (!m->IsSharedLib()) {
continue; RunMainEntry(m->GetEntryAddress(), &p, ProgramExitFunc);
} }
if (m->tls.image_virtual_addr != 0) {
SetTLSStorage(m->tls.image_virtual_addr);
}
RunMainEntry(m->elf.GetElfEntry() + m->base_virtual_addr, &p, ProgramExitFunc);
} }
} }
s32 Linker::LoadModule(const std::filesystem::path& elf_name) {
std::scoped_lock lk{mutex};
if (!std::filesystem::exists(elf_name)) {
LOG_ERROR(Core_Linker, "Provided file {} does not exist", elf_name.string());
return -1;
}
auto module = std::make_unique<Module>(elf_name);
if (!module->IsValid()) {
LOG_ERROR(Core_Linker, "Provided file {} is not valid ELF file", elf_name.string());
return -1;
}
m_modules.emplace_back(std::move(module));
return m_modules.size() - 1;
}
void Linker::Relocate(Module* module) {
module->ForEachRelocation([&](elf_relocation* rel, bool isJmpRel) {
auto type = rel->GetType();
auto symbol = rel->GetSymbol();
auto addend = rel->rel_addend;
auto* symbol_table = module->dynamic_info.symbol_table;
auto* namesTlb = module->dynamic_info.str_table;
const VAddr rel_base_virtual_addr = module->GetBaseAddress();
const VAddr rel_virtual_addr = rel_base_virtual_addr + rel->rel_offset;
bool rel_is_resolved = false;
u64 rel_value = 0;
Loader::SymbolType rel_sym_type = Loader::SymbolType::Unknown;
std::string rel_name;
switch (type) {
case R_X86_64_RELATIVE:
rel_value = rel_base_virtual_addr + addend;
rel_is_resolved = true;
break;
case R_X86_64_DTPMOD64:
rel_value = static_cast<u64>(module->tls.modid);
rel_is_resolved = true;
rel_sym_type = Loader::SymbolType::Tls;
break;
case R_X86_64_GLOB_DAT:
case R_X86_64_JUMP_SLOT:
addend = 0;
case R_X86_64_64: {
auto sym = symbol_table[symbol];
auto sym_bind = sym.GetBind();
auto sym_type = sym.GetType();
auto sym_visibility = sym.GetVisibility();
u64 symbol_vitrual_addr = 0;
Loader::SymbolRecord symrec{};
switch (sym_type) {
case STT_FUN:
rel_sym_type = Loader::SymbolType::Function;
break;
case STT_OBJECT:
rel_sym_type = Loader::SymbolType::Object;
break;
case STT_NOTYPE:
rel_sym_type = Loader::SymbolType::NoType;
break;
default:
ASSERT_MSG(0, "unknown symbol type {}", sym_type);
}
if (sym_visibility != 0) {
LOG_INFO(Core_Linker, "symbol visilibity !=0");
}
switch (sym_bind) {
case STB_LOCAL:
symbol_vitrual_addr = rel_base_virtual_addr + sym.st_value;
break;
case STB_GLOBAL:
case STB_WEAK: {
rel_name = namesTlb + sym.st_name;
Resolve(rel_name, rel_sym_type, module, &symrec);
symbol_vitrual_addr = symrec.virtual_address;
break;
}
default:
ASSERT_MSG(0, "unknown bind type {}", sym_bind);
}
rel_is_resolved = (symbol_vitrual_addr != 0);
rel_value = (rel_is_resolved ? symbol_vitrual_addr + addend : 0);
rel_name = symrec.name;
break;
}
default:
LOG_INFO(Core_Linker, "UNK type {:#010x} rel symbol : {:#010x}", type, symbol);
}
if (rel_is_resolved) {
VirtualMemory::memory_patch(rel_virtual_addr, rel_value);
} else {
LOG_INFO(Core_Linker, "function not patched! {}", rel_name);
}
});
}
const Module* Linker::FindExportedModule(const ModuleInfo& module, const LibraryInfo& library) {
const auto it = std::ranges::find_if(m_modules, [&](const auto& m) {
return std::ranges::contains(m->GetExportLibs(), library) &&
std::ranges::contains(m->GetExportModules(), module);
});
return it == m_modules.end() ? nullptr : it->get();
}
void Linker::Resolve(const std::string& name, Loader::SymbolType sym_type, Module* m,
Loader::SymbolRecord* return_info) {
const auto ids = Common::SplitString(name, '#');
if (ids.size() != 3) {
return_info->virtual_address = 0;
return_info->name = name;
LOG_ERROR(Core_Linker, "Not Resolved {}", name);
return;
}
const LibraryInfo* library = m->FindLibrary(ids[1]);
const ModuleInfo* module = m->FindModule(ids[2]);
ASSERT_MSG(library && module, "Unable to find library and module");
Loader::SymbolResolver sr{};
sr.name = ids.at(0);
sr.library = library->name;
sr.library_version = library->version;
sr.module = module->name;
sr.module_version_major = module->version_major;
sr.module_version_minor = module->version_minor;
sr.type = sym_type;
const auto* record = m_hle_symbols.FindSymbol(sr);
if (!record) {
// Check if it an export function
const auto* p = FindExportedModule(*module, *library);
if (p && p->export_sym.GetSize() > 0) {
record = p->export_sym.FindSymbol(sr);
}
}
if (record) {
*return_info = *record;
return;
}
const auto aeronid = AeroLib::FindByNid(sr.name.c_str());
if (aeronid) {
return_info->name = aeronid->name;
return_info->virtual_address = AeroLib::GetStub(aeronid->nid);
} else {
return_info->virtual_address = AeroLib::GetStub(sr.name.c_str());
return_info->name = "Unknown !!!";
}
LOG_ERROR(Core_Linker, "Linker: Stub resolved {} as {} (lib: {}, mod: {})", sr.name,
return_info->name, library->name, module->name);
}
void* Linker::TlsGetAddr(u64 module_index, u64 offset) {
std::scoped_lock lk{mutex};
DtvEntry* dtv_table = GetTcbBase()->tcb_dtv;
ASSERT_MSG(dtv_table[0].counter == dtv_generation_counter,
"Reallocation of DTV table is not supported");
void* module = (u8*)dtv_table[module_index + 1].pointer + offset;
ASSERT_MSG(module, "DTV allocation is not supported");
return module;
}
void Linker::InitTlsForThread(bool is_primary) {
static constexpr size_t TcbSize = 0x40;
static constexpr size_t TlsAllocAlign = 0x20;
const size_t total_tls_size = Common::AlignUp(static_tls_size, TlsAllocAlign) + TcbSize;
// The kernel module has a few different paths for TLS allocation.
// For SDK < 1.7 it allocates both main and secondary thread blocks using libc mspace/malloc.
// In games compiled with newer SDK, the main thread gets mapped from flexible memory,
// with addr = 0, so system managed area. Here we will only implement the latter.
void* addr_out{};
if (is_primary) {
const size_t tls_aligned = Common::AlignUp(total_tls_size, 16_KB);
const int ret = Libraries::Kernel::sceKernelMapNamedFlexibleMemory(
&addr_out, tls_aligned, 3, 0, "SceKernelPrimaryTcbTls");
ASSERT_MSG(ret == 0, "Unable to allocate TLS+TCB for the primary thread");
} else {
if (heap_api_func) {
addr_out = heap_api_func(total_tls_size);
} else {
addr_out = std::malloc(total_tls_size);
}
}
// Initialize allocated memory and allocate DTV table.
const u32 num_dtvs = max_tls_index;
std::memset(addr_out, 0, total_tls_size);
DtvEntry* dtv_table = new DtvEntry[num_dtvs + 2];
// Initialize thread control block
u8* addr = reinterpret_cast<u8*>(addr_out);
Tcb* tcb = reinterpret_cast<Tcb*>(addr + static_tls_size);
tcb->tcb_self = tcb;
tcb->tcb_dtv = dtv_table;
// Dtv[0] is the generation counter. libkernel puts their number into dtv[1] (why?)
dtv_table[0].counter = dtv_generation_counter;
dtv_table[1].counter = num_dtvs;
// Copy init images to TLS thread blocks and map them to DTV slots.
for (const auto& module : m_modules) {
if (module->tls.image_size == 0) {
continue;
}
u8* dest = reinterpret_cast<u8*>(addr + static_tls_size - module->tls.offset);
const u8* src = reinterpret_cast<const u8*>(module->tls.image_virtual_addr);
std::memcpy(dest, src, module->tls.init_image_size);
tcb->tcb_dtv[module->tls.modid + 1].pointer = dest;
}
// Set pointer to FS base
SetTcbBase(tcb);
}
void Linker::DebugDump() { void Linker::DebugDump() {
std::scoped_lock lock{m_mutex};
const auto& log_dir = Common::FS::GetUserPath(Common::FS::PathType::LogDir); const auto& log_dir = Common::FS::GetUserPath(Common::FS::PathType::LogDir);
const std::filesystem::path debug(log_dir / "debugdump"); const std::filesystem::path debug(log_dir / "debugdump");
std::filesystem::create_directory(debug); std::filesystem::create_directory(debug);
for (const auto& m : m_modules) { for (const auto& m : m_modules) {
// TODO make a folder with game id for being more unique? // TODO make a folder with game id for being more unique?
const std::filesystem::path filepath(debug / m.get()->file_name); const std::filesystem::path filepath(debug / m.get()->file.stem());
std::filesystem::create_directory(filepath); std::filesystem::create_directory(filepath);
m.get()->import_sym.DebugDump(filepath / "imports.txt"); m.get()->import_sym.DebugDump(filepath / "imports.txt");
m.get()->export_sym.DebugDump(filepath / "exports.txt"); m.get()->export_sym.DebugDump(filepath / "exports.txt");

View file

@ -5,11 +5,10 @@
#include <mutex> #include <mutex>
#include <vector> #include <vector>
#include "core/loader/elf.h" #include "core/module.h"
#include "core/loader/symbols_resolver.h"
namespace Core { namespace Core {
using module_func_t = int (*)(size_t args, const void* argp);
struct DynamicModuleInfo; struct DynamicModuleInfo;
class Linker; class Linker;
@ -19,136 +18,50 @@ struct EntryParams {
const char* argv[3]; const char* argv[3];
}; };
struct ModuleInfo { using HeapApiFunc = PS4_SYSV_ABI void* (*)(size_t);
bool operator==(const ModuleInfo& other) const {
return version_major == other.version_major && version_minor == other.version_minor &&
name == other.name;
}
std::string name;
union {
u64 value;
struct {
u32 name_offset;
u8 version_minor;
u8 version_major;
u16 id;
};
};
std::string enc_id;
};
struct LibraryInfo {
bool operator==(const LibraryInfo& other) const {
return version == other.version && name == other.name;
}
std::string name;
union {
u64 value;
struct {
u32 name_offset;
u16 version;
u16 id;
};
};
std::string enc_id;
};
struct PS4ThreadLocal {
u64 image_virtual_addr = 0;
u64 image_size = 0;
u64 handler_virtual_addr = 0;
};
struct DynamicModuleInfo {
void* hash_table = nullptr;
u64 hash_table_size = 0;
char* str_table = nullptr;
u64 str_table_size = 0;
elf_symbol* symbol_table = nullptr;
u64 symbol_table_total_size = 0;
u64 symbol_table_entries_size = 0;
u64 init_virtual_addr = 0;
u64 fini_virtual_addr = 0;
u64 pltgot_virtual_addr = 0;
u64 init_array_virtual_addr = 0;
u64 fini_array_virtual_addr = 0;
u64 preinit_array_virtual_addr = 0;
u64 init_array_size = 0;
u64 fini_array_size = 0;
u64 preinit_array_size = 0;
elf_relocation* jmp_relocation_table = nullptr;
u64 jmp_relocation_table_size = 0;
s64 jmp_relocation_type = 0;
elf_relocation* relocation_table = nullptr;
u64 relocation_table_size = 0;
u64 relocation_table_entries_size = 0;
u64 debug = 0;
u64 textrel = 0;
u64 flags = 0;
std::vector<const char*> needed;
std::vector<ModuleInfo> import_modules;
std::vector<ModuleInfo> export_modules;
std::vector<LibraryInfo> import_libs;
std::vector<LibraryInfo> export_libs;
std::string filename; // Filename with absolute path
};
// This struct keeps neccesary info about loaded modules. Main executeable is included too as well
struct Module {
Loader::Elf elf;
u64 aligned_base_size = 0;
u64 base_virtual_addr = 0;
u64 proc_param_virtual_addr = 0;
std::string file_name;
std::vector<u8> m_dynamic;
std::vector<u8> m_dynamic_data;
DynamicModuleInfo dynamic_info{};
Loader::SymbolsResolver export_sym;
Loader::SymbolsResolver import_sym;
PS4ThreadLocal tls;
};
class Linker { class Linker {
public: public:
Linker(); explicit Linker();
virtual ~Linker(); ~Linker();
Module* LoadModule(const std::filesystem::path& elf_name); Loader::SymbolsResolver& GetHLESymbols() {
void LoadModuleToMemory(Module* m);
void LoadDynamicInfo(Module* m);
void LoadSymbols(Module* m);
Loader::SymbolsResolver& getHLESymbols() {
return m_hle_symbols; return m_hle_symbols;
} }
void Relocate(Module* m);
void Resolve(const std::string& name, Loader::SymbolType Symtype, Module* m, VAddr GetProcParam() const {
return m_modules[0]->GetProcParam();
}
Module* GetModule(s32 index) const {
return m_modules.at(index).get();
}
void SetHeapApiFunc(void* func) {
heap_api_func = *reinterpret_cast<HeapApiFunc*>(func);
}
void* TlsGetAddr(u64 module_index, u64 offset);
void InitTlsForThread(bool is_primary = false);
s32 LoadModule(const std::filesystem::path& elf_name);
void Relocate(Module* module);
void Resolve(const std::string& name, Loader::SymbolType type, Module* module,
Loader::SymbolRecord* return_info); Loader::SymbolRecord* return_info);
void Execute(); void Execute();
void DebugDump(); void DebugDump();
u64 GetProcParam();
private: private:
const ModuleInfo* FindModule(const Module& m, const std::string& id); const Module* FindExportedModule(const ModuleInfo& m, const LibraryInfo& l);
const LibraryInfo* FindLibrary(const Module& program, const std::string& id);
Module* FindExportedModule(const ModuleInfo& m, const LibraryInfo& l);
int StartModule(Module* m, size_t args, const void* argp, module_func_t func);
void StartAllModules();
std::mutex mutex;
u32 dtv_generation_counter{1};
size_t static_tls_size{};
size_t max_tls_index{};
HeapApiFunc heap_api_func{};
std::vector<std::unique_ptr<Module>> m_modules; std::vector<std::unique_ptr<Module>> m_modules;
Loader::SymbolsResolver m_hle_symbols{}; Loader::SymbolsResolver m_hle_symbols{};
std::mutex m_mutex;
}; };
} // namespace Core } // namespace Core

View file

@ -445,7 +445,7 @@ std::string Elf::ElfHeaderStr() {
return header; return header;
} }
std::string Elf::ElfPheaderTypeStr(u32 type) { std::string_view Elf::ElfPheaderTypeStr(u32 type) {
switch (type) { switch (type) {
case PT_NULL: case PT_NULL:
return "Null"; return "Null";

View file

@ -3,7 +3,6 @@
#pragma once #pragma once
#include <cinttypes>
#include <span> #include <span>
#include <string> #include <string>
#include <vector> #include <vector>
@ -482,11 +481,15 @@ public:
return m_elf_header.e_entry; return m_elf_header.e_entry;
} }
[[nodiscard]] bool IsSharedLib() const {
return m_elf_header.e_type == ET_SCE_DYNAMIC;
}
std::string SElfHeaderStr(); std::string SElfHeaderStr();
std::string SELFSegHeader(u16 no); std::string SELFSegHeader(u16 no);
std::string ElfHeaderStr(); std::string ElfHeaderStr();
std::string ElfPHeaderStr(u16 no); std::string ElfPHeaderStr(u16 no);
std::string ElfPheaderTypeStr(u32 type); std::string_view ElfPheaderTypeStr(u32 type);
std::string ElfPheaderFlagsStr(u32 flags); std::string ElfPheaderFlagsStr(u32 flags);
void LoadSegment(u64 virtual_addr, u64 file_offset, u64 size); void LoadSegment(u64 virtual_addr, u64 file_offset, u64 size);

View file

@ -1,8 +1,8 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project // SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#include <fmt/format.h>
#include "common/io_file.h" #include "common/io_file.h"
#include "common/logging/log.h"
#include "common/string_util.h" #include "common/string_util.h"
#include "common/types.h" #include "common/types.h"
#include "core/aerolib/aerolib.h" #include "core/aerolib/aerolib.h"
@ -11,9 +11,7 @@
namespace Core::Loader { namespace Core::Loader {
void SymbolsResolver::AddSymbol(const SymbolResolver& s, u64 virtual_addr) { void SymbolsResolver::AddSymbol(const SymbolResolver& s, u64 virtual_addr) {
SymbolRecord& r = m_symbols.emplace_back(); m_symbols.emplace_back(GenerateName(s), s.nidName, virtual_addr);
r.name = GenerateName(s);
r.virtual_address = virtual_addr;
} }
std::string SymbolsResolver::GenerateName(const SymbolResolver& s) { std::string SymbolsResolver::GenerateName(const SymbolResolver& s) {
@ -38,22 +36,13 @@ void SymbolsResolver::DebugDump(const std::filesystem::path& file_name) {
Common::FS::FileType::TextFile}; Common::FS::FileType::TextFile};
for (const auto& symbol : m_symbols) { for (const auto& symbol : m_symbols) {
const auto ids = Common::SplitString(symbol.name, '#'); const auto ids = Common::SplitString(symbol.name, '#');
std::string nidName = ""; const auto aeronid = AeroLib::FindByNid(ids.at(0).c_str());
auto aeronid = AeroLib::FindByNid(ids.at(0).c_str()); const auto nid_name = aeronid ? aeronid->name : "UNK";
if (aeronid != nullptr) {
nidName = aeronid->name;
} else {
nidName = "UNK";
}
f.WriteString( f.WriteString(
fmt::format("0x{:<20x} {:<16} {:<60} {:<30} {:<2} {:<30} {:<2} {:<2} {:<10}\n", fmt::format("0x{:<20x} {:<16} {:<60} {:<30} {:<2} {:<30} {:<2} {:<2} {:<10}\n",
symbol.virtual_address, ids.at(0), nidName, ids.at(1), ids.at(2), ids.at(3), symbol.virtual_address, ids.at(0), nid_name, ids.at(1), ids.at(2),
ids.at(4), ids.at(5), ids.at(6))); ids.at(3), ids.at(4), ids.at(5), ids.at(6)));
} }
} }
int SymbolsResolver::GetSize() {
return m_symbols.size();
}
} // namespace Core::Loader } // namespace Core::Loader

View file

@ -3,8 +3,9 @@
#pragma once #pragma once
#include <filesystem>
#include <span>
#include <string> #include <string>
#include <unordered_map>
#include <vector> #include <vector>
#include "common/types.h" #include "common/types.h"
@ -20,6 +21,7 @@ enum class SymbolType {
struct SymbolRecord { struct SymbolRecord {
std::string name; std::string name;
std::string nid_name;
u64 virtual_address; u64 virtual_address;
}; };
@ -42,6 +44,16 @@ public:
void AddSymbol(const SymbolResolver& s, u64 virtual_addr); void AddSymbol(const SymbolResolver& s, u64 virtual_addr);
const SymbolRecord* FindSymbol(const SymbolResolver& s) const; const SymbolRecord* FindSymbol(const SymbolResolver& s) const;
void DebugDump(const std::filesystem::path& file_name);
std::span<const SymbolRecord> GetSymbols() const {
return m_symbols;
}
size_t GetSize() const noexcept {
return m_symbols.size();
}
static std::string GenerateName(const SymbolResolver& s); static std::string GenerateName(const SymbolResolver& s);
static std::string_view SymbolTypeToS(SymbolType sym_type) { static std::string_view SymbolTypeToS(SymbolType sym_type) {
@ -59,9 +71,6 @@ public:
} }
} }
void DebugDump(const std::filesystem::path& file_name);
int GetSize();
private: private:
std::vector<SymbolRecord> m_symbols; std::vector<SymbolRecord> m_symbols;
}; };

View file

@ -26,7 +26,7 @@ MemoryManager::~MemoryManager() = default;
PAddr MemoryManager::Allocate(PAddr search_start, PAddr search_end, size_t size, u64 alignment, PAddr MemoryManager::Allocate(PAddr search_start, PAddr search_end, size_t size, u64 alignment,
int memory_type) { int memory_type) {
PAddr free_addr = 0; PAddr free_addr = search_start;
// Iterate through allocated blocked and find the next free position // Iterate through allocated blocked and find the next free position
for (const auto& block : allocations) { for (const auto& block : allocations) {
@ -35,7 +35,7 @@ PAddr MemoryManager::Allocate(PAddr search_start, PAddr search_end, size_t size,
} }
// Align free position // Align free position
free_addr = Common::alignUp(free_addr, alignment); free_addr = Common::AlignUp(free_addr, alignment);
ASSERT(free_addr >= search_start && free_addr + size <= search_end); ASSERT(free_addr >= search_start && free_addr + size <= search_end);
// Add the allocated region to the list and commit its pages. // Add the allocated region to the list and commit its pages.
@ -56,7 +56,7 @@ void MemoryManager::Free(PAddr phys_addr, size_t size) {
int MemoryManager::MapMemory(void** out_addr, VAddr virtual_addr, size_t size, MemoryProt prot, int MemoryManager::MapMemory(void** out_addr, VAddr virtual_addr, size_t size, MemoryProt prot,
MemoryMapFlags flags, VMAType type, std::string_view name, MemoryMapFlags flags, VMAType type, std::string_view name,
PAddr phys_addr, u64 alignment) { PAddr phys_addr, u64 alignment) {
VAddr mapped_addr = alignment > 0 ? Common::alignUp(virtual_addr, alignment) : virtual_addr; VAddr mapped_addr = alignment > 0 ? Common::AlignUp(virtual_addr, alignment) : virtual_addr;
SCOPE_EXIT { SCOPE_EXIT {
auto& new_vma = AddMapping(mapped_addr, size); auto& new_vma = AddMapping(mapped_addr, size);
new_vma.disallow_merge = True(flags & MemoryMapFlags::NoCoalesce); new_vma.disallow_merge = True(flags & MemoryMapFlags::NoCoalesce);
@ -99,7 +99,7 @@ int MemoryManager::MapMemory(void** out_addr, VAddr virtual_addr, size_t size, M
} }
// Perform the mapping. // Perform the mapping.
*out_addr = impl.Map(mapped_addr, size); *out_addr = impl.Map(mapped_addr, size, alignment, phys_addr);
return ORBIS_OK; return ORBIS_OK;
} }

View file

@ -107,7 +107,7 @@ public:
int MapMemory(void** out_addr, VAddr virtual_addr, size_t size, MemoryProt prot, int MapMemory(void** out_addr, VAddr virtual_addr, size_t size, MemoryProt prot,
MemoryMapFlags flags, VMAType type, std::string_view name = "", MemoryMapFlags flags, VMAType type, std::string_view name = "",
PAddr phys_addr = 0, u64 alignment = 0); PAddr phys_addr = -1, u64 alignment = 0);
void UnmapMemory(VAddr virtual_addr, size_t size); void UnmapMemory(VAddr virtual_addr, size_t size);
@ -121,7 +121,7 @@ private:
VMAHandle FindVMA(VAddr target) { VMAHandle FindVMA(VAddr target) {
// Return first the VMA with base >= target. // Return first the VMA with base >= target.
const auto it = vma_map.lower_bound(target); const auto it = vma_map.lower_bound(target);
if (it->first == target) { if (it != vma_map.end() && it->first == target) {
return it; return it;
} }
return std::prev(it); return std::prev(it);

419
src/core/module.cpp Normal file
View file

@ -0,0 +1,419 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <xbyak/xbyak.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/aerolib/aerolib.h"
#include "core/module.h"
#include "core/tls.h"
#include "core/virtual_memory.h"
namespace Core {
using EntryFunc = PS4_SYSV_ABI int (*)(size_t args, const void* argp, void* param);
static u64 LoadAddress = SYSTEM_RESERVED + CODE_BASE_OFFSET;
static constexpr u64 CODE_BASE_INCR = 0x010000000u;
static u64 GetAlignedSize(const elf_program_header& phdr) {
return (phdr.p_align != 0 ? (phdr.p_memsz + (phdr.p_align - 1)) & ~(phdr.p_align - 1)
: phdr.p_memsz);
}
static u64 CalculateBaseSize(const elf_header& ehdr, std::span<const elf_program_header> phdr) {
u64 base_size = 0;
for (u16 i = 0; i < ehdr.e_phnum; i++) {
if (phdr[i].p_memsz != 0 && (phdr[i].p_type == PT_LOAD || phdr[i].p_type == PT_SCE_RELRO)) {
const u64 last_addr = phdr[i].p_vaddr + GetAlignedSize(phdr[i]);
base_size = std::max(last_addr, base_size);
}
}
return base_size;
}
static std::string EncodeId(u64 nVal) {
std::string enc;
static constexpr std::string_view codes =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+-";
if (nVal < 0x40u) {
enc += codes[nVal];
} else {
if (nVal < 0x1000u) {
enc += codes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += codes[nVal & 0x3fu];
} else {
enc += codes[static_cast<u16>(nVal >> 12u) & 0x3fu];
enc += codes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += codes[nVal & 0x3fu];
}
}
return enc;
}
Module::Module(const std::filesystem::path& file_) : file{file_} {
elf.Open(file);
if (elf.IsElfFile()) {
LoadModuleToMemory();
LoadDynamicInfo();
LoadSymbols();
}
}
Module::~Module() = default;
void Module::Start(size_t args, const void* argp, void* param) {
LOG_INFO(Core_Linker, "Module started : {}", file.filename().string());
const VAddr addr = dynamic_info.init_virtual_addr + GetBaseAddress();
reinterpret_cast<EntryFunc>(addr)(args, argp, param);
}
void Module::LoadModuleToMemory() {
static constexpr size_t BlockAlign = 0x1000;
static constexpr u64 TrampolineSize = 8_MB;
// Retrieve elf header and program header
const auto elf_header = elf.GetElfHeader();
const auto elf_pheader = elf.GetProgramHeader();
const u64 base_size = CalculateBaseSize(elf_header, elf_pheader);
aligned_base_size = Common::AlignUp(base_size, BlockAlign);
// Map module segments (and possible TLS trampolines)
base_virtual_addr = VirtualMemory::memory_alloc(LoadAddress, aligned_base_size + TrampolineSize,
VirtualMemory::MemoryMode::ExecuteReadWrite);
LoadAddress += CODE_BASE_INCR * (1 + aligned_base_size / CODE_BASE_INCR);
// Initialize trampoline generator.
void* trampoline_addr = std::bit_cast<void*>(base_virtual_addr + aligned_base_size);
Xbyak::CodeGenerator c(TrampolineSize, trampoline_addr);
LOG_INFO(Core_Linker, "======== Load Module to Memory ========");
LOG_INFO(Core_Linker, "base_virtual_addr ......: {:#018x}", base_virtual_addr);
LOG_INFO(Core_Linker, "base_size ..............: {:#018x}", base_size);
LOG_INFO(Core_Linker, "aligned_base_size ......: {:#018x}", aligned_base_size);
for (u16 i = 0; i < elf_header.e_phnum; i++) {
const auto header_type = elf.ElfPheaderTypeStr(elf_pheader[i].p_type);
switch (elf_pheader[i].p_type) {
case PT_LOAD:
case PT_SCE_RELRO: {
if (elf_pheader[i].p_memsz == 0) {
LOG_ERROR(Core_Linker, "p_memsz==0 in type {}", header_type);
continue;
}
const u64 segment_addr = elf_pheader[i].p_vaddr + base_virtual_addr;
const u64 segment_file_size = elf_pheader[i].p_filesz;
const u64 segment_memory_size = GetAlignedSize(elf_pheader[i]);
const auto segment_mode = elf.ElfPheaderFlagsStr(elf_pheader[i].p_flags);
LOG_INFO(Core_Linker, "program header = [{}] type = {}", i, header_type);
LOG_INFO(Core_Linker, "segment_addr ..........: {:#018x}", segment_addr);
LOG_INFO(Core_Linker, "segment_file_size .....: {}", segment_file_size);
LOG_INFO(Core_Linker, "segment_memory_size ...: {}", segment_memory_size);
LOG_INFO(Core_Linker, "segment_mode ..........: {}", segment_mode);
elf.LoadSegment(segment_addr, elf_pheader[i].p_offset, segment_file_size);
if (elf_pheader[i].p_flags & PF_EXEC) {
PatchTLS(segment_addr, segment_memory_size, c);
}
break;
}
case PT_DYNAMIC:
if (elf_pheader[i].p_filesz != 0) {
m_dynamic.resize(elf_pheader[i].p_filesz);
const VAddr segment_addr = std::bit_cast<VAddr>(m_dynamic.data());
elf.LoadSegment(segment_addr, elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}", header_type);
}
break;
case PT_SCE_DYNLIBDATA:
if (elf_pheader[i].p_filesz != 0) {
m_dynamic_data.resize(elf_pheader[i].p_filesz);
const VAddr segment_addr = std::bit_cast<VAddr>(m_dynamic_data.data());
elf.LoadSegment(segment_addr, elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}", header_type);
}
break;
case PT_TLS:
tls.init_image_size = elf_pheader[i].p_filesz;
tls.align = elf_pheader[i].p_align;
tls.image_virtual_addr = elf_pheader[i].p_vaddr + base_virtual_addr;
tls.image_size = GetAlignedSize(elf_pheader[i]);
LOG_INFO(Core_Linker, "TLS virtual address = {:#x}", tls.image_virtual_addr);
LOG_INFO(Core_Linker, "TLS image size = {}", tls.image_size);
break;
case PT_SCE_PROCPARAM:
proc_param_virtual_addr = elf_pheader[i].p_vaddr + base_virtual_addr;
break;
default:
LOG_ERROR(Core_Linker, "Unimplemented type {}", header_type);
}
}
const VAddr entry_addr = base_virtual_addr + elf.GetElfEntry();
LOG_INFO(Core_Linker, "program entry addr ..........: {:#018x}", entry_addr);
}
void Module::LoadDynamicInfo() {
for (const auto* dyn = reinterpret_cast<elf_dynamic*>(m_dynamic.data()); dyn->d_tag != DT_NULL;
dyn++) {
switch (dyn->d_tag) {
case DT_SCE_HASH: // Offset of the hash table.
dynamic_info.hash_table =
reinterpret_cast<void*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_HASHSZ: // Size of the hash table
dynamic_info.hash_table_size = dyn->d_un.d_val;
break;
case DT_SCE_STRTAB: // Offset of the string table.
dynamic_info.str_table =
reinterpret_cast<char*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_STRSZ: // Size of the string table.
dynamic_info.str_table_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMTAB: // Offset of the symbol table.
dynamic_info.symbol_table =
reinterpret_cast<elf_symbol*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_SYMTABSZ: // Size of the symbol table.
dynamic_info.symbol_table_total_size = dyn->d_un.d_val;
break;
case DT_INIT:
dynamic_info.init_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI:
dynamic_info.fini_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_PLTGOT: // Offset of the global offset table.
dynamic_info.pltgot_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_JMPREL: // Offset of the table containing jump slots.
dynamic_info.jmp_relocation_table =
reinterpret_cast<elf_relocation*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_PLTRELSZ: // Size of the global offset table.
dynamic_info.jmp_relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_PLTREL: // The type of relocations in the relocation table. Should be DT_RELA
dynamic_info.jmp_relocation_type = dyn->d_un.d_val;
if (dynamic_info.jmp_relocation_type != DT_RELA) {
LOG_WARNING(Core_Linker, "DT_SCE_PLTREL is NOT DT_RELA should check!");
}
break;
case DT_SCE_RELA: // Offset of the relocation table.
dynamic_info.relocation_table =
reinterpret_cast<elf_relocation*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_RELASZ: // Size of the relocation table.
dynamic_info.relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_RELAENT: // The size of relocation table entries.
dynamic_info.relocation_table_entries_size = dyn->d_un.d_val;
if (dynamic_info.relocation_table_entries_size != 0x18) {
LOG_WARNING(Core_Linker, "DT_SCE_RELAENT is NOT 0x18 should check!");
}
break;
case DT_INIT_ARRAY: // Address of the array of pointers to initialization functions
dynamic_info.init_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI_ARRAY: // Address of the array of pointers to termination functions
dynamic_info.fini_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_INIT_ARRAYSZ: // Size in bytes of the array of initialization functions
dynamic_info.init_array_size = dyn->d_un.d_val;
break;
case DT_FINI_ARRAYSZ: // Size in bytes of the array of terminationfunctions
dynamic_info.fini_array_size = dyn->d_un.d_val;
break;
case DT_PREINIT_ARRAY: // Address of the array of pointers to pre - initialization functions
dynamic_info.preinit_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_PREINIT_ARRAYSZ: // Size in bytes of the array of pre - initialization functions
dynamic_info.preinit_array_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMENT: // The size of symbol table entries
dynamic_info.symbol_table_entries_size = dyn->d_un.d_val;
if (dynamic_info.symbol_table_entries_size != 0x18) {
LOG_WARNING(Core_Linker, "DT_SCE_SYMENT is NOT 0x18 should check!");
}
break;
case DT_DEBUG:
dynamic_info.debug = dyn->d_un.d_val;
break;
case DT_TEXTREL:
dynamic_info.textrel = dyn->d_un.d_val;
break;
case DT_FLAGS:
dynamic_info.flags = dyn->d_un.d_val;
// This value should always be DF_TEXTREL (0x04)
if (dynamic_info.flags != 0x04) {
LOG_WARNING(Core_Linker, "DT_FLAGS is NOT 0x04 should check!");
}
break;
case DT_NEEDED:
// Offset of the library string in the string table to be linked in.
// In theory this should already be filled from about just make a test case
if (dynamic_info.str_table) {
dynamic_info.needed.push_back(dynamic_info.str_table + dyn->d_un.d_val);
} else {
LOG_ERROR(Core_Linker, "DT_NEEDED str table is not loaded should check!");
}
break;
case DT_SCE_NEEDED_MODULE: {
ModuleInfo& info = dynamic_info.import_modules.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
break;
}
case DT_SCE_IMPORT_LIB: {
LibraryInfo& info = dynamic_info.import_libs.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
break;
}
case DT_SCE_FINGERPRINT:
// The fingerprint is a 24 byte (0x18) size buffer that contains a unique identifier for
// the given app. How exactly this is generated isn't known, however it is not necessary
// to have a valid fingerprint. While an invalid fingerprint will cause a warning to be
// printed to the kernel log, the ELF will still load and run.
LOG_INFO(Core_Linker, "unsupported DT_SCE_FINGERPRINT value = ..........: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_IMPORT_LIB_ATTR:
// The upper 32-bits should contain the module index multiplied by 0x10000. The lower
// 32-bits should be a constant 0x9.
LOG_INFO(Core_Linker, "unsupported DT_SCE_IMPORT_LIB_ATTR value = ......: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_ORIGINAL_FILENAME:
dynamic_info.filename = dynamic_info.str_table + dyn->d_un.d_val;
break;
case DT_SCE_MODULE_INFO: {
ModuleInfo& info = dynamic_info.export_modules.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
break;
};
case DT_SCE_MODULE_ATTR:
LOG_INFO(Core_Linker, "unsupported DT_SCE_MODULE_ATTR value = ..........: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_EXPORT_LIB: {
LibraryInfo& info = dynamic_info.export_libs.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
break;
}
default:
LOG_INFO(Core_Linker, "unsupported dynamic tag ..........: {:#018x}", dyn->d_tag);
}
}
}
void Module::LoadSymbols() {
const auto symbol_database = [this](Loader::SymbolsResolver& symbol, bool export_func) {
if (!dynamic_info.symbol_table || !dynamic_info.str_table ||
dynamic_info.symbol_table_total_size == 0) {
LOG_INFO(Core_Linker, "Symbol table not found!");
return;
}
for (auto* sym = dynamic_info.symbol_table;
reinterpret_cast<u8*>(sym) < reinterpret_cast<u8*>(dynamic_info.symbol_table) +
dynamic_info.symbol_table_total_size;
sym++) {
const u8 bind = sym->GetBind();
const u8 type = sym->GetType();
const u8 visibility = sym->GetVisibility();
const auto id = std::string(dynamic_info.str_table + sym->st_name);
const auto ids = Common::SplitString(id, '#');
if (ids.size() != 3) {
continue;
}
const auto* library = FindLibrary(ids[1]);
const auto* module = FindModule(ids[2]);
ASSERT_MSG(library && module, "Unable to find library and module");
if ((bind != STB_GLOBAL && bind != STB_WEAK) ||
(type != STT_FUN && type != STT_OBJECT) || export_func != (sym->st_value != 0)) {
continue;
}
const auto aeronid = AeroLib::FindByNid(ids.at(0).c_str());
const auto nid_name = aeronid ? aeronid->name : "UNK";
Loader::SymbolResolver sym_r{};
sym_r.name = ids.at(0);
sym_r.nidName = nid_name;
sym_r.library = library->name;
sym_r.library_version = library->version;
sym_r.module = module->name;
sym_r.module_version_major = module->version_major;
sym_r.module_version_minor = module->version_minor;
switch (type) {
case STT_NOTYPE:
sym_r.type = Loader::SymbolType::NoType;
break;
case STT_FUN:
sym_r.type = Loader::SymbolType::Function;
break;
case STT_OBJECT:
sym_r.type = Loader::SymbolType::Object;
break;
default:
sym_r.type = Loader::SymbolType::Unknown;
break;
}
const VAddr sym_addr = export_func ? sym->st_value + base_virtual_addr : 0;
symbol.AddSymbol(sym_r, sym_addr);
}
};
symbol_database(export_sym, true);
symbol_database(import_sym, false);
}
const ModuleInfo* Module::FindModule(std::string_view id) {
const auto& import_modules = dynamic_info.import_modules;
for (u32 i = 0; const auto& mod : import_modules) {
if (mod.enc_id == id) {
return &import_modules[i];
}
i++;
}
const auto& export_modules = dynamic_info.export_modules;
for (u32 i = 0; const auto& mod : export_modules) {
if (mod.enc_id == id) {
return &export_modules[i];
}
i++;
}
return nullptr;
}
const LibraryInfo* Module::FindLibrary(std::string_view id) {
const auto& import_libs = dynamic_info.import_libs;
for (u32 i = 0; const auto& lib : import_libs) {
if (lib.enc_id == id) {
return &import_libs[i];
}
i++;
}
const auto& export_libs = dynamic_info.export_libs;
for (u32 i = 0; const auto& lib : export_libs) {
if (lib.enc_id == id) {
return &export_libs[i];
}
i++;
}
return nullptr;
}
} // namespace Core

183
src/core/module.h Normal file
View file

@ -0,0 +1,183 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <vector>
#include "common/types.h"
#include "core/loader/elf.h"
#include "core/loader/symbols_resolver.h"
namespace Core {
struct ModuleInfo {
bool operator==(const ModuleInfo& other) const {
return version_major == other.version_major && version_minor == other.version_minor &&
name == other.name;
}
std::string name;
union {
u64 value;
struct {
u32 name_offset;
u8 version_minor;
u8 version_major;
u16 id;
};
};
std::string enc_id;
};
struct LibraryInfo {
bool operator==(const LibraryInfo& other) const {
return version == other.version && name == other.name;
}
std::string name;
union {
u64 value;
struct {
u32 name_offset;
u16 version;
u16 id;
};
};
std::string enc_id;
};
struct ThreadLocalImage {
u64 align;
u64 image_size;
u64 offset;
u32 modid;
VAddr image_virtual_addr;
u64 init_image_size;
};
struct DynamicModuleInfo {
void* hash_table = nullptr;
u64 hash_table_size = 0;
char* str_table = nullptr;
u64 str_table_size = 0;
elf_symbol* symbol_table = nullptr;
u64 symbol_table_total_size = 0;
u64 symbol_table_entries_size = 0;
u64 init_virtual_addr = 0;
u64 fini_virtual_addr = 0;
u64 pltgot_virtual_addr = 0;
u64 init_array_virtual_addr = 0;
u64 fini_array_virtual_addr = 0;
u64 preinit_array_virtual_addr = 0;
u64 init_array_size = 0;
u64 fini_array_size = 0;
u64 preinit_array_size = 0;
elf_relocation* jmp_relocation_table = nullptr;
u64 jmp_relocation_table_size = 0;
s64 jmp_relocation_type = 0;
elf_relocation* relocation_table = nullptr;
u64 relocation_table_size = 0;
u64 relocation_table_entries_size = 0;
u64 debug = 0;
u64 textrel = 0;
u64 flags = 0;
std::vector<const char*> needed;
std::vector<ModuleInfo> import_modules;
std::vector<ModuleInfo> export_modules;
std::vector<LibraryInfo> import_libs;
std::vector<LibraryInfo> export_libs;
std::string filename;
};
using ModuleFunc = int (*)(size_t, const void*);
class Module {
public:
explicit Module(const std::filesystem::path& file);
~Module();
VAddr GetBaseAddress() const noexcept {
return base_virtual_addr;
}
VAddr GetEntryAddress() const noexcept {
return base_virtual_addr + elf.GetElfEntry();
}
bool IsValid() const noexcept {
return base_virtual_addr != 0;
}
bool IsSharedLib() const noexcept {
return elf.IsSharedLib();
}
void* FindByName(std::string_view name) {
const auto symbols = export_sym.GetSymbols();
const auto it = std::ranges::find(symbols, name, &Loader::SymbolRecord::nid_name);
if (it != symbols.end()) {
return reinterpret_cast<void*>(it->virtual_address);
}
return nullptr;
}
template <typename T = VAddr>
T GetProcParam() const noexcept {
return reinterpret_cast<T>(proc_param_virtual_addr);
}
std::span<const ModuleInfo> GetImportModules() const {
return dynamic_info.import_modules;
}
std::span<const ModuleInfo> GetExportModules() const {
return dynamic_info.export_modules;
}
std::span<const LibraryInfo> GetImportLibs() const {
return dynamic_info.import_libs;
}
std::span<const LibraryInfo> GetExportLibs() const {
return dynamic_info.export_libs;
}
void ForEachRelocation(auto&& func) {
for (u32 i = 0; i < dynamic_info.relocation_table_size / sizeof(elf_relocation); i++) {
func(&dynamic_info.relocation_table[i], false);
}
for (u32 i = 0; i < dynamic_info.jmp_relocation_table_size / sizeof(elf_relocation); i++) {
func(&dynamic_info.jmp_relocation_table[i], true);
}
}
void Start(size_t args, const void* argp, void* param);
void LoadModuleToMemory();
void LoadDynamicInfo();
void LoadSymbols();
const ModuleInfo* FindModule(std::string_view id);
const LibraryInfo* FindLibrary(std::string_view id);
public:
std::filesystem::path file;
Loader::Elf elf;
u64 aligned_base_size{};
VAddr base_virtual_addr{};
VAddr proc_param_virtual_addr{};
DynamicModuleInfo dynamic_info{};
std::vector<u8> m_dynamic;
std::vector<u8> m_dynamic_data;
Loader::SymbolsResolver export_sym;
Loader::SymbolsResolver import_sym;
ThreadLocalImage tls{};
};
} // namespace Core

View file

@ -44,13 +44,15 @@ constexpr static TLSPattern TlsPatterns[] = {
#ifdef _WIN32 #ifdef _WIN32
static DWORD slot = 0; static DWORD slot = 0;
void SetTLSStorage(u64 image_address) { void SetTcbBase(void* image_address) {
// Guest apps will use both positive and negative offsets to the TLS pointer. const BOOL result = TlsSetValue(slot, image_address);
// User data at probably in negative offsets, while pthread data at positive offset.
const BOOL result = TlsSetValue(slot, reinterpret_cast<LPVOID>(image_address));
ASSERT(result != 0); ASSERT(result != 0);
} }
Tcb* GetTcbBase() {
return reinterpret_cast<Tcb*>(TlsGetValue(slot));
}
void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c) { void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c) {
using namespace Xbyak::util; using namespace Xbyak::util;
@ -81,6 +83,7 @@ void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c) {
std::memcpy(&offset, code + tls_pattern.pattern_size, sizeof(u64)); std::memcpy(&offset, code + tls_pattern.pattern_size, sizeof(u64));
LOG_INFO(Core_Linker, "PATTERN64 FOUND at {}, reg: {} offset: {:#x}", LOG_INFO(Core_Linker, "PATTERN64 FOUND at {}, reg: {} offset: {:#x}",
fmt::ptr(code), tls_pattern.target_reg, offset); fmt::ptr(code), tls_pattern.target_reg, offset);
continue;
} }
ASSERT(offset == 0); ASSERT(offset == 0);
@ -132,7 +135,11 @@ void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c) {
#else #else
void SetTLSStorage(u64 image_address) { void SetTcbBase(void* image_address) {
UNREACHABLE_MSG("Thread local storage is unimplemented on posix platforms!");
}
Tcb* GetTcbBase() {
UNREACHABLE_MSG("Thread local storage is unimplemented on posix platforms!"); UNREACHABLE_MSG("Thread local storage is unimplemented on posix platforms!");
} }

View file

@ -11,8 +11,22 @@ class CodeGenerator;
namespace Core { namespace Core {
/// Sets the data pointer that contains the TLS image. union DtvEntry {
void SetTLSStorage(u64 image_address); size_t counter;
void* pointer;
};
struct Tcb {
Tcb* tcb_self;
DtvEntry* tcb_dtv;
void* tcb_thread;
};
/// Sets the data pointer to the TCB block.
void SetTcbBase(void* image_address);
/// Retrieves Tcb structure for the calling thread.
Tcb* GetTcbBase();
/// Patches any instructions that access guest TLS to use provided storage. /// Patches any instructions that access guest TLS to use provided storage.
void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c); void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c);

View file

@ -76,7 +76,7 @@ int main(int argc, char* argv[]) {
} }
auto linker = Common::Singleton<Core::Linker>::Instance(); auto linker = Common::Singleton<Core::Linker>::Instance();
Libraries::InitHLELibs(&linker->getHLESymbols()); Libraries::InitHLELibs(&linker->GetHLESymbols());
linker->LoadModule(path); linker->LoadModule(path);
// check if we have system modules to load // check if we have system modules to load
@ -103,7 +103,7 @@ int main(int argc, char* argv[]) {
} }
} }
if (!found) { if (!found) {
Libraries::LibC::libcSymbolsRegister(&linker->getHLESymbols()); Libraries::LibC::libcSymbolsRegister(&linker->GetHLESymbols());
} }
std::thread mainthread([linker]() { linker->Execute(); }); std::thread mainthread([linker]() { linker->Execute(); });
Discord::RPC discordRPC; Discord::RPC discordRPC;

View file

@ -85,7 +85,6 @@ void Rasterizer::Draw(bool is_indexed) {
} }
void Rasterizer::DispatchDirect() { void Rasterizer::DispatchDirect() {
compute_done = true;
return; return;
const auto cmdbuf = scheduler.CommandBuffer(); const auto cmdbuf = scheduler.CommandBuffer();
const auto& cs_program = liverpool->regs.cs_program; const auto& cs_program = liverpool->regs.cs_program;

View file

@ -49,7 +49,6 @@ private:
Core::MemoryManager* memory; Core::MemoryManager* memory;
PipelineCache pipeline_cache; PipelineCache pipeline_cache;
StreamBuffer vertex_index_buffer; StreamBuffer vertex_index_buffer;
bool compute_done{};
}; };
} // namespace Vulkan } // namespace Vulkan

View file

@ -92,14 +92,14 @@ StreamBuffer::~StreamBuffer() {
std::tuple<u8*, u64, bool> StreamBuffer::Map(u64 size, u64 alignment) { std::tuple<u8*, u64, bool> StreamBuffer::Map(u64 size, u64 alignment) {
if (!is_coherent && type == BufferType::Stream) { if (!is_coherent && type == BufferType::Stream) {
size = Common::alignUp(size, instance.NonCoherentAtomSize()); size = Common::AlignUp(size, instance.NonCoherentAtomSize());
} }
ASSERT(size <= stream_buffer_size); ASSERT(size <= stream_buffer_size);
mapped_size = size; mapped_size = size;
if (alignment > 0) { if (alignment > 0) {
offset = Common::alignUp(offset, alignment); offset = Common::AlignUp(offset, alignment);
} }
bool invalidate{false}; bool invalidate{false};
@ -124,7 +124,7 @@ std::tuple<u8*, u64, bool> StreamBuffer::Map(u64 size, u64 alignment) {
void StreamBuffer::Commit(u64 size) { void StreamBuffer::Commit(u64 size) {
if (!is_coherent && type == BufferType::Stream) { if (!is_coherent && type == BufferType::Stream) {
size = Common::alignUp(size, instance.NonCoherentAtomSize()); size = Common::AlignUp(size, instance.NonCoherentAtomSize());
} }
ASSERT_MSG(size <= mapped_size, "Reserved size {} is too small compared to {}", mapped_size, ASSERT_MSG(size <= mapped_size, "Reserved size {} is too small compared to {}", mapped_size,

View file

@ -59,7 +59,7 @@ LONG WINAPI GuestFaultSignalHandler(EXCEPTION_POINTERS* pExp) noexcept {
} }
#endif #endif
static constexpr u64 StreamBufferSize = 128_MB; static constexpr u64 StreamBufferSize = 512_MB;
static constexpr u64 PageShift = 12; static constexpr u64 PageShift = 12;
TextureCache::TextureCache(const Vulkan::Instance& instance_, Vulkan::Scheduler& scheduler_) TextureCache::TextureCache(const Vulkan::Instance& instance_, Vulkan::Scheduler& scheduler_)