renderer_vulkan: Implement rectlist emulation with tessellation (#1857)

* renderer_vulkan: Implement rectlist emulation with tessellation

* clang format

* renderer_vulkan: Use tessellation for quad primitive as well

* vk_rasterizer: Handle viewport enable flags

* review

* shader_recompiler: Fix quad/rect list FS passthrough semantics.

* spirv: Bump to 1.5

* remove pragma

---------

Co-authored-by: squidbus <175574877+squidbus@users.noreply.github.com>
This commit is contained in:
TheTurtle 2024-12-24 13:28:47 +02:00 committed by GitHub
parent c2e9c877dd
commit 092d42e981
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 426 additions and 123 deletions

View file

@ -630,6 +630,8 @@ set(SHADER_RECOMPILER src/shader_recompiler/exception.h
src/shader_recompiler/backend/spirv/emit_spirv_instructions.h
src/shader_recompiler/backend/spirv/emit_spirv_integer.cpp
src/shader_recompiler/backend/spirv/emit_spirv_logical.cpp
src/shader_recompiler/backend/spirv/emit_spirv_quad_rect.cpp
src/shader_recompiler/backend/spirv/emit_spirv_quad_rect.h
src/shader_recompiler/backend/spirv/emit_spirv_select.cpp
src/shader_recompiler/backend/spirv/emit_spirv_shared_memory.cpp
src/shader_recompiler/backend/spirv/emit_spirv_special.cpp

View file

@ -207,7 +207,7 @@ public:
return WriteSpan(string);
}
static size_t WriteBytes(const std::filesystem::path path, std::span<const u8> data) {
static size_t WriteBytes(const std::filesystem::path path, const auto& data) {
IOFile out(path, FileAccessMode::Write);
return out.Write(data);
}

View file

@ -1,5 +1,6 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <span>
#include <type_traits>
#include <utility>

View file

@ -0,0 +1,329 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <sirit/sirit.h>
#include "shader_recompiler/backend/spirv/emit_spirv_quad_rect.h"
#include "shader_recompiler/runtime_info.h"
namespace Shader::Backend::SPIRV {
using Sirit::Id;
constexpr u32 SPIRV_VERSION_1_5 = 0x00010500;
struct QuadRectListEmitter : public Sirit::Module {
explicit QuadRectListEmitter(const FragmentRuntimeInfo& fs_info_)
: Sirit::Module{SPIRV_VERSION_1_5}, fs_info{fs_info_}, inputs{fs_info_.num_inputs},
outputs{fs_info_.num_inputs} {
void_id = TypeVoid();
bool_id = TypeBool();
float_id = TypeFloat(32);
uint_id = TypeUInt(32U);
int_id = TypeInt(32U, true);
bvec2_id = TypeVector(bool_id, 2);
vec2_id = TypeVector(float_id, 2);
vec3_id = TypeVector(float_id, 3);
vec4_id = TypeVector(float_id, 4);
float_one = Constant(float_id, 1.0f);
float_min_one = Constant(float_id, -1.0f);
int_zero = Constant(int_id, 0);
const Id float_arr{TypeArray(float_id, Constant(uint_id, 1U))};
gl_per_vertex_type = TypeStruct(vec4_id, float_id, float_arr, float_arr);
Decorate(gl_per_vertex_type, spv::Decoration::Block);
MemberDecorate(gl_per_vertex_type, 0U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::Position));
MemberDecorate(gl_per_vertex_type, 1U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::PointSize));
MemberDecorate(gl_per_vertex_type, 2U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::ClipDistance));
MemberDecorate(gl_per_vertex_type, 3U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::CullDistance));
}
/// Emits tessellation control shader for interpolating the 4th vertex of rectange primitive
void EmitRectListTCS() {
DefineEntry(spv::ExecutionModel::TessellationControl);
// Set passthrough tessellation factors
const Id output_float_id{TypePointer(spv::StorageClass::Output, float_id)};
for (int i = 0; i < 4; i++) {
const Id ptr{OpAccessChain(output_float_id, gl_tess_level_outer, Int(i))};
OpStore(ptr, float_one);
}
for (int i = 0; i < 2; i++) {
const Id ptr{OpAccessChain(output_float_id, gl_tess_level_inner, Int(i))};
OpStore(ptr, float_one);
}
const Id input_vec4{TypePointer(spv::StorageClass::Input, vec4_id)};
const Id output_vec4{TypePointer(spv::StorageClass::Output, vec4_id)};
// Emit interpolation block of the 4th vertex in rect.
// Load positions
std::array<Id, 3> pos;
for (int i = 0; i < 3; i++) {
pos[i] = OpLoad(vec4_id, OpAccessChain(input_vec4, gl_in, Int(i), int_zero));
}
std::array<Id, 3> point_coord_equal;
for (int i = 0; i < 3; i++) {
// point_coord_equal[i] = equal(gl_in[i].gl_Position.xy, gl_in[(i + 1) %
// 3].gl_Position.xy);
const Id pos_l_xy{OpVectorShuffle(vec2_id, pos[i], pos[i], 0, 1)};
const Id pos_r_xy{OpVectorShuffle(vec2_id, pos[(i + 1) % 3], pos[(i + 1) % 3], 0, 1)};
point_coord_equal[i] = OpFOrdEqual(bvec2_id, pos_l_xy, pos_r_xy);
}
std::array<Id, 3> bary_coord;
std::array<Id, 3> is_edge_vertex;
for (int i = 0; i < 3; i++) {
// bool xy_equal = point_coord_equal[i].x && point_coord_equal[(i + 2) % 3].y;
const Id xy_equal{
OpLogicalAnd(bool_id, OpCompositeExtract(bool_id, point_coord_equal[i], 0),
OpCompositeExtract(bool_id, point_coord_equal[(i + 2) % 3], 1))};
// bool yx_equal = point_coord_equal[i].y && point_coord_equal[(i + 2) % 3].x;
const Id yx_equal{
OpLogicalAnd(bool_id, OpCompositeExtract(bool_id, point_coord_equal[i], 1),
OpCompositeExtract(bool_id, point_coord_equal[(i + 2) % 3], 0))};
// bary_coord[i] = (xy_equal || yx_equal) ? -1.f : 1.f;
is_edge_vertex[i] = OpLogicalOr(bool_id, xy_equal, yx_equal);
bary_coord[i] = OpSelect(float_id, is_edge_vertex[i], float_min_one, float_one);
}
const auto interpolate = [&](Id v0, Id v1, Id v2) {
// return v0 * bary_coord.x + v1 * bary_coord.y + v2 * bary_coord.z;
const Id p0{OpVectorTimesScalar(vec4_id, v0, bary_coord[0])};
const Id p1{OpVectorTimesScalar(vec4_id, v1, bary_coord[1])};
const Id p2{OpVectorTimesScalar(vec4_id, v2, bary_coord[2])};
return OpFAdd(vec4_id, p0, OpFAdd(vec4_id, p1, p2));
};
// int vertex_index_id = is_edge_vertex[1] ? 1 : (is_edge_vertex[2] ? 2 : 0);
Id vertex_index{OpSelect(int_id, is_edge_vertex[2], Int(2), Int(0))};
vertex_index = OpSelect(int_id, is_edge_vertex[1], Int(1), vertex_index);
// int index = (vertex_index_id + gl_InvocationID) % 3;
const Id invocation_id{OpLoad(int_id, gl_invocation_id)};
const Id invocation_3{OpIEqual(bool_id, invocation_id, Int(3))};
const Id index{OpSMod(int_id, OpIAdd(int_id, vertex_index, invocation_id), Int(3))};
// gl_out[gl_InvocationID].gl_Position = gl_InvocationID == 3 ? pos3 :
// gl_in[index].gl_Position;
const Id pos3{interpolate(pos[0], pos[1], pos[2])};
const Id in_ptr{OpAccessChain(input_vec4, gl_in, index, Int(0))};
const Id position{OpSelect(vec4_id, invocation_3, pos3, OpLoad(vec4_id, in_ptr))};
OpStore(OpAccessChain(output_vec4, gl_out, invocation_id, Int(0)), position);
// Set attributes
for (int i = 0; i < inputs.size(); i++) {
// vec4 in_paramN3 = interpolate(bary_coord, in_paramN[0], in_paramN[1], in_paramN[2]);
const Id v0{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], Int(0)))};
const Id v1{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], Int(1)))};
const Id v2{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], Int(2)))};
const Id in_param3{interpolate(v0, v1, v2)};
// out_paramN[gl_InvocationID] = gl_InvocationID == 3 ? in_paramN3 : in_paramN[index];
const Id in_param{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], index))};
const Id out_param{OpSelect(vec4_id, invocation_3, in_param3, in_param)};
OpStore(OpAccessChain(output_vec4, outputs[i], invocation_id), out_param);
}
OpReturn();
OpFunctionEnd();
}
/// Emits a passthrough quad tessellation control shader that outputs 4 control points.
void EmitQuadListTCS() {
DefineEntry(spv::ExecutionModel::TessellationControl);
const Id array_type{TypeArray(int_id, Int(4))};
const Id values{ConstantComposite(array_type, Int(1), Int(2), Int(0), Int(3))};
const Id indices{AddLocalVariable(TypePointer(spv::StorageClass::Function, array_type),
spv::StorageClass::Function, values)};
// Set passthrough tessellation factors
const Id output_float{TypePointer(spv::StorageClass::Output, float_id)};
for (int i = 0; i < 4; i++) {
const Id ptr{OpAccessChain(output_float, gl_tess_level_outer, Int(i))};
OpStore(ptr, float_one);
}
for (int i = 0; i < 2; i++) {
const Id ptr{OpAccessChain(output_float, gl_tess_level_inner, Int(i))};
OpStore(ptr, float_one);
}
const Id input_vec4{TypePointer(spv::StorageClass::Input, vec4_id)};
const Id output_vec4{TypePointer(spv::StorageClass::Output, vec4_id)};
const Id func_int{TypePointer(spv::StorageClass::Function, int_id)};
const Id invocation_id{OpLoad(int_id, gl_invocation_id)};
const Id index{OpLoad(int_id, OpAccessChain(func_int, indices, invocation_id))};
// gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
const Id in_position{OpLoad(vec4_id, OpAccessChain(input_vec4, gl_in, index, Int(0)))};
OpStore(OpAccessChain(output_vec4, gl_out, invocation_id, Int(0)), in_position);
for (int i = 0; i < inputs.size(); i++) {
// out_paramN[gl_InvocationID] = in_paramN[gl_InvocationID];
const Id in_param{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], index))};
OpStore(OpAccessChain(output_vec4, outputs[i], invocation_id), in_param);
}
OpReturn();
OpFunctionEnd();
}
/// Emits a passthrough quad tessellation evaluation shader that outputs 4 control points.
void EmitPassthroughTES() {
DefineEntry(spv::ExecutionModel::TessellationEvaluation);
// const int index = int(gl_TessCoord.y) * 2 + int(gl_TessCoord.x);
const Id input_float{TypePointer(spv::StorageClass::Input, float_id)};
const Id tess_coord_x{OpLoad(float_id, OpAccessChain(input_float, gl_tess_coord, Int(0)))};
const Id tess_coord_y{OpLoad(float_id, OpAccessChain(input_float, gl_tess_coord, Int(1)))};
const Id index{OpIAdd(int_id, OpIMul(int_id, OpConvertFToS(int_id, tess_coord_y), Int(2)),
OpConvertFToS(int_id, tess_coord_x))};
// gl_Position = gl_in[index].gl_Position;
const Id input_vec4{TypePointer(spv::StorageClass::Input, vec4_id)};
const Id output_vec4{TypePointer(spv::StorageClass::Output, vec4_id)};
const Id position{OpLoad(vec4_id, OpAccessChain(input_vec4, gl_in, index, Int(0)))};
OpStore(OpAccessChain(output_vec4, gl_per_vertex, Int(0)), position);
// out_paramN = in_paramN[index];
for (int i = 0; i < inputs.size(); i++) {
const Id param{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], index))};
OpStore(outputs[i], param);
}
OpReturn();
OpFunctionEnd();
}
private:
Id Int(s32 value) {
return Constant(int_id, value);
}
Id AddInput(Id type) {
const Id input{AddGlobalVariable(TypePointer(spv::StorageClass::Input, type),
spv::StorageClass::Input)};
interfaces.push_back(input);
return input;
}
Id AddOutput(Id type) {
const Id output{AddGlobalVariable(TypePointer(spv::StorageClass::Output, type),
spv::StorageClass::Output)};
interfaces.push_back(output);
return output;
}
void DefineEntry(spv::ExecutionModel model) {
AddCapability(spv::Capability::Shader);
AddCapability(spv::Capability::Tessellation);
const Id void_function{TypeFunction(void_id)};
main = OpFunction(void_id, spv::FunctionControlMask::MaskNone, void_function);
if (model == spv::ExecutionModel::TessellationControl) {
AddExecutionMode(main, spv::ExecutionMode::OutputVertices, 4U);
} else {
AddExecutionMode(main, spv::ExecutionMode::Quads);
AddExecutionMode(main, spv::ExecutionMode::SpacingEqual);
AddExecutionMode(main, spv::ExecutionMode::VertexOrderCw);
}
DefineInputs(model);
DefineOutputs(model);
AddEntryPoint(model, main, "main", interfaces);
AddLabel(OpLabel());
}
void DefineOutputs(spv::ExecutionModel model) {
if (model == spv::ExecutionModel::TessellationControl) {
const Id gl_per_vertex_array{TypeArray(gl_per_vertex_type, Constant(uint_id, 4U))};
gl_out = AddOutput(gl_per_vertex_array);
const Id arr2_id{TypeArray(float_id, Constant(uint_id, 2U))};
gl_tess_level_inner = AddOutput(arr2_id);
Decorate(gl_tess_level_inner, spv::Decoration::BuiltIn, spv::BuiltIn::TessLevelInner);
Decorate(gl_tess_level_inner, spv::Decoration::Patch);
const Id arr4_id{TypeArray(float_id, Constant(uint_id, 4U))};
gl_tess_level_outer = AddOutput(arr4_id);
Decorate(gl_tess_level_outer, spv::Decoration::BuiltIn, spv::BuiltIn::TessLevelOuter);
Decorate(gl_tess_level_outer, spv::Decoration::Patch);
} else {
gl_per_vertex = AddOutput(gl_per_vertex_type);
}
for (int i = 0; i < fs_info.num_inputs; i++) {
outputs[i] = AddOutput(model == spv::ExecutionModel::TessellationControl
? TypeArray(vec4_id, Int(4))
: vec4_id);
Decorate(outputs[i], spv::Decoration::Location, fs_info.inputs[i].param_index);
}
}
void DefineInputs(spv::ExecutionModel model) {
if (model == spv::ExecutionModel::TessellationEvaluation) {
gl_tess_coord = AddInput(vec3_id);
Decorate(gl_tess_coord, spv::Decoration::BuiltIn, spv::BuiltIn::TessCoord);
} else {
gl_invocation_id = AddInput(int_id);
Decorate(gl_invocation_id, spv::Decoration::BuiltIn, spv::BuiltIn::InvocationId);
}
const Id gl_per_vertex_array{TypeArray(gl_per_vertex_type, Constant(uint_id, 32U))};
gl_in = AddInput(gl_per_vertex_array);
const Id float_arr{TypeArray(vec4_id, Int(32))};
for (int i = 0; i < fs_info.num_inputs; i++) {
inputs[i] = AddInput(float_arr);
Decorate(inputs[i], spv::Decoration::Location, fs_info.inputs[i].param_index);
}
}
private:
FragmentRuntimeInfo fs_info;
Id main;
Id void_id;
Id bool_id;
Id float_id;
Id uint_id;
Id int_id;
Id bvec2_id;
Id vec2_id;
Id vec3_id;
Id vec4_id;
Id float_one;
Id float_min_one;
Id int_zero;
Id gl_per_vertex_type;
Id gl_in;
union {
Id gl_out;
Id gl_per_vertex;
};
Id gl_tess_level_inner;
Id gl_tess_level_outer;
union {
Id gl_tess_coord;
Id gl_invocation_id;
};
std::vector<Id> inputs;
std::vector<Id> outputs;
std::vector<Id> interfaces;
};
std::vector<u32> EmitAuxilaryTessShader(AuxShaderType type, const FragmentRuntimeInfo& fs_info) {
QuadRectListEmitter ctx{fs_info};
switch (type) {
case AuxShaderType::RectListTCS:
ctx.EmitRectListTCS();
break;
case AuxShaderType::QuadListTCS:
ctx.EmitQuadListTCS();
break;
case AuxShaderType::PassthroughTES:
ctx.EmitPassthroughTES();
break;
}
return ctx.Assemble();
}
} // namespace Shader::Backend::SPIRV

View file

@ -0,0 +1,24 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <vector>
#include "common/types.h"
namespace Shader {
struct FragmentRuntimeInfo;
}
namespace Shader::Backend::SPIRV {
enum class AuxShaderType : u32 {
RectListTCS,
QuadListTCS,
PassthroughTES,
};
[[nodiscard]] std::vector<u32> EmitAuxilaryTessShader(AuxShaderType type,
const FragmentRuntimeInfo& fs_info);
} // namespace Shader::Backend::SPIRV

View file

@ -227,7 +227,7 @@ struct RuntimeInfo {
ComputeRuntimeInfo cs_info;
};
RuntimeInfo(Stage stage_) {
void Initialize(Stage stage_) {
memset(this, 0, sizeof(*this));
stage = stage_;
}

View file

@ -238,32 +238,14 @@ u32 BufferCache::BindIndexBuffer(bool& is_indexed, u32 index_offset) {
// Emulate QuadList and Polygon primitive types with CPU made index buffer.
const auto& regs = liverpool->regs;
if (!is_indexed) {
bool needs_index_buffer = false;
if (regs.primitive_type == AmdGpu::PrimitiveType::QuadList ||
regs.primitive_type == AmdGpu::PrimitiveType::Polygon) {
needs_index_buffer = true;
}
if (!needs_index_buffer) {
if (regs.primitive_type != AmdGpu::PrimitiveType::Polygon) {
return regs.num_indices;
}
// Emit indices.
const u32 index_size = 3 * regs.num_indices;
const auto [data, offset] = stream_buffer.Map(index_size);
switch (regs.primitive_type) {
case AmdGpu::PrimitiveType::QuadList:
Vulkan::LiverpoolToVK::EmitQuadToTriangleListIndices(data, regs.num_indices);
break;
case AmdGpu::PrimitiveType::Polygon:
Vulkan::LiverpoolToVK::EmitPolygonToTriangleListIndices(data, regs.num_indices);
break;
default:
UNREACHABLE();
break;
}
Vulkan::LiverpoolToVK::EmitPolygonToTriangleListIndices(data, regs.num_indices);
stream_buffer.Commit();
// Bind index buffer.
@ -282,31 +264,6 @@ u32 BufferCache::BindIndexBuffer(bool& is_indexed, u32 index_offset) {
VAddr index_address = regs.index_base_address.Address<VAddr>();
index_address += index_offset * index_size;
if (regs.primitive_type == AmdGpu::PrimitiveType::QuadList) {
// Convert indices.
const u32 new_index_size = regs.num_indices * index_size * 6 / 4;
const auto [data, offset] = stream_buffer.Map(new_index_size);
const auto index_ptr = reinterpret_cast<u8*>(index_address);
switch (index_type) {
case vk::IndexType::eUint16:
Vulkan::LiverpoolToVK::ConvertQuadToTriangleListIndices<u16>(data, index_ptr,
regs.num_indices);
break;
case vk::IndexType::eUint32:
Vulkan::LiverpoolToVK::ConvertQuadToTriangleListIndices<u32>(data, index_ptr,
regs.num_indices);
break;
default:
UNREACHABLE_MSG("Unsupported QuadList index type {}", vk::to_string(index_type));
break;
}
stream_buffer.Commit();
// Bind index buffer.
const auto cmdbuf = scheduler.CommandBuffer();
cmdbuf.bindIndexBuffer(stream_buffer.Handle(), offset, index_type);
return new_index_size / index_size;
}
if (regs.primitive_type == AmdGpu::PrimitiveType::Polygon) {
UNREACHABLE();
}

View file

@ -116,12 +116,12 @@ vk::PrimitiveTopology PrimitiveType(AmdGpu::PrimitiveType type) {
return vk::PrimitiveTopology::eTriangleStripWithAdjacency;
case AmdGpu::PrimitiveType::PatchPrimitive:
return vk::PrimitiveTopology::ePatchList;
case AmdGpu::PrimitiveType::QuadList:
case AmdGpu::PrimitiveType::Polygon:
// Needs to generate index buffer on the fly.
return vk::PrimitiveTopology::eTriangleList;
case AmdGpu::PrimitiveType::QuadList:
case AmdGpu::PrimitiveType::RectList:
return vk::PrimitiveTopology::eTriangleStrip;
return vk::PrimitiveTopology::ePatchList;
default:
UNREACHABLE();
return vk::PrimitiveTopology::eTriangleList;

View file

@ -70,34 +70,6 @@ vk::ClearValue ColorBufferClearValue(const AmdGpu::Liverpool::ColorBuffer& color
vk::SampleCountFlagBits NumSamples(u32 num_samples, vk::SampleCountFlags supported_flags);
static constexpr u16 NumVerticesPerQuad = 4;
inline void EmitQuadToTriangleListIndices(u8* out_ptr, u32 num_vertices) {
u16* out_data = reinterpret_cast<u16*>(out_ptr);
for (u16 i = 0; i < num_vertices; i += NumVerticesPerQuad) {
*out_data++ = i;
*out_data++ = i + 1;
*out_data++ = i + 2;
*out_data++ = i;
*out_data++ = i + 2;
*out_data++ = i + 3;
}
}
template <typename T>
void ConvertQuadToTriangleListIndices(u8* out_ptr, const u8* in_ptr, u32 num_vertices) {
T* out_data = reinterpret_cast<T*>(out_ptr);
const T* in_data = reinterpret_cast<const T*>(in_ptr);
for (u16 i = 0; i < num_vertices; i += NumVerticesPerQuad) {
*out_data++ = in_data[i];
*out_data++ = in_data[i + 1];
*out_data++ = in_data[i + 2];
*out_data++ = in_data[i];
*out_data++ = in_data[i + 2];
*out_data++ = in_data[i + 3];
}
}
inline void EmitPolygonToTriangleListIndices(u8* out_ptr, u32 num_vertices) {
u16* out_data = reinterpret_cast<u16*>(out_ptr);
for (u16 i = 1; i < num_vertices - 1; i++) {

View file

@ -7,25 +7,30 @@
#include <boost/container/static_vector.hpp>
#include "common/assert.h"
#include "common/io_file.h"
#include "common/scope_exit.h"
#include "shader_recompiler/backend/spirv/emit_spirv_quad_rect.h"
#include "shader_recompiler/frontend/fetch_shader.h"
#include "shader_recompiler/runtime_info.h"
#include "video_core/amdgpu/resource.h"
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
#include "shader_recompiler/frontend/fetch_shader.h"
#include "video_core/renderer_vulkan/vk_instance.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_shader_util.h"
#include "video_core/texture_cache/texture_cache.h"
namespace Vulkan {
GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& scheduler_,
DescriptorHeap& desc_heap_, const GraphicsPipelineKey& key_,
vk::PipelineCache pipeline_cache,
std::span<const Shader::Info*, MaxShaderStages> infos,
std::optional<const Shader::Gcn::FetchShaderData> fetch_shader_,
std::span<const vk::ShaderModule> modules)
using Shader::Backend::SPIRV::AuxShaderType;
GraphicsPipeline::GraphicsPipeline(
const Instance& instance_, Scheduler& scheduler_, DescriptorHeap& desc_heap_,
const GraphicsPipelineKey& key_, vk::PipelineCache pipeline_cache,
std::span<const Shader::Info*, MaxShaderStages> infos,
std::span<const Shader::RuntimeInfo, MaxShaderStages> runtime_infos,
std::optional<const Shader::Gcn::FetchShaderData> fetch_shader_,
std::span<const vk::ShaderModule> modules)
: Pipeline{instance_, scheduler_, desc_heap_, pipeline_cache}, key{key_},
fetch_shader{std::move(fetch_shader_)} {
const vk::Device device = instance.GetDevice();
@ -88,11 +93,6 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.pVertexAttributeDescriptions = vertex_attributes.data(),
};
if (key.prim_type == AmdGpu::PrimitiveType::RectList && !IsEmbeddedVs()) {
LOG_WARNING(Render_Vulkan,
"Rectangle List primitive type is only supported for embedded VS");
}
auto prim_restart = key.enable_primitive_restart != 0;
if (prim_restart && IsPrimitiveListTopology() && !instance.IsListRestartSupported()) {
LOG_WARNING(Render_Vulkan,
@ -106,9 +106,11 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
ASSERT_MSG(!prim_restart || key.primitive_restart_index == 0xFFFF ||
key.primitive_restart_index == 0xFFFFFFFF,
"Primitive restart index other than -1 is not supported yet");
const bool is_rect_list = key.prim_type == AmdGpu::PrimitiveType::RectList;
const bool is_quad_list = key.prim_type == AmdGpu::PrimitiveType::QuadList;
const auto& fs_info = runtime_infos[u32(Shader::LogicalStage::Fragment)].fs_info;
const vk::PipelineTessellationStateCreateInfo tessellation_state = {
.patchControlPoints = key.patch_control_points,
.patchControlPoints = is_rect_list ? 3U : (is_quad_list ? 4U : key.patch_control_points),
};
const vk::PipelineRasterizationStateCreateInfo raster_state = {
@ -232,6 +234,14 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.module = modules[stage],
.pName = "main",
});
} else if (is_rect_list || is_quad_list) {
const auto type = is_quad_list ? AuxShaderType::QuadListTCS : AuxShaderType::RectListTCS;
auto tcs = Shader::Backend::SPIRV::EmitAuxilaryTessShader(type, fs_info);
shader_stages.emplace_back(vk::PipelineShaderStageCreateInfo{
.stage = vk::ShaderStageFlagBits::eTessellationControl,
.module = CompileSPV(tcs, instance.GetDevice()),
.pName = "main",
});
}
stage = u32(Shader::LogicalStage::TessellationEval);
if (infos[stage]) {
@ -240,6 +250,14 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.module = modules[stage],
.pName = "main",
});
} else if (is_rect_list || is_quad_list) {
auto tes =
Shader::Backend::SPIRV::EmitAuxilaryTessShader(AuxShaderType::PassthroughTES, fs_info);
shader_stages.emplace_back(vk::PipelineShaderStageCreateInfo{
.stage = vk::ShaderStageFlagBits::eTessellationEvaluation,
.module = CompileSPV(tes, instance.GetDevice()),
.pName = "main",
});
}
stage = u32(Shader::LogicalStage::Fragment);
if (infos[stage]) {
@ -322,8 +340,7 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.pStages = shader_stages.data(),
.pVertexInputState = !instance.IsVertexInputDynamicState() ? &vertex_input_info : nullptr,
.pInputAssemblyState = &input_assembly,
.pTessellationState =
stages[u32(Shader::LogicalStage::TessellationControl)] ? &tessellation_state : nullptr,
.pTessellationState = &tessellation_state,
.pViewportState = &viewport_info,
.pRasterizationState = &raster_state,
.pMultisampleState = &multisampling,

View file

@ -18,7 +18,7 @@ class TextureCache;
namespace Vulkan {
static constexpr u32 MaxShaderStages = 5;
static constexpr u32 MaxShaderStages = static_cast<u32>(Shader::LogicalStage::NumLogicalStages);
static constexpr u32 MaxVertexBufferCount = 32;
class Instance;
@ -64,6 +64,7 @@ public:
GraphicsPipeline(const Instance& instance, Scheduler& scheduler, DescriptorHeap& desc_heap,
const GraphicsPipelineKey& key, vk::PipelineCache pipeline_cache,
std::span<const Shader::Info*, MaxShaderStages> stages,
std::span<const Shader::RuntimeInfo, MaxShaderStages> runtime_infos,
std::optional<const Shader::Gcn::FetchShaderData> fetch_shader,
std::span<const vk::ShaderModule> modules);
~GraphicsPipeline();
@ -72,11 +73,6 @@ public:
return fetch_shader;
}
bool IsEmbeddedVs() const noexcept {
static constexpr size_t EmbeddedVsHash = 0x9b2da5cf47f8c29f;
return key.stage_hashes[u32(Shader::LogicalStage::Vertex)] == EmbeddedVsHash;
}
auto GetWriteMasks() const {
return key.write_masks;
}

View file

@ -80,8 +80,8 @@ void GatherVertexOutputs(Shader::VertexRuntimeInfo& info,
: (ctl.IsCullDistEnabled(7) ? VsOutput::CullDist7 : VsOutput::None));
}
Shader::RuntimeInfo PipelineCache::BuildRuntimeInfo(Stage stage, LogicalStage l_stage) {
auto info = Shader::RuntimeInfo{stage};
const Shader::RuntimeInfo& PipelineCache::BuildRuntimeInfo(Stage stage, LogicalStage l_stage) {
auto& info = runtime_infos[u32(l_stage)];
const auto& regs = liverpool->regs;
const auto BuildCommon = [&](const auto& program) {
info.num_user_data = program.settings.num_user_regs;
@ -90,6 +90,7 @@ Shader::RuntimeInfo PipelineCache::BuildRuntimeInfo(Stage stage, LogicalStage l_
info.fp_denorm_mode32 = program.settings.fp_denorm_mode32;
info.fp_round_mode32 = program.settings.fp_round_mode32;
};
info.Initialize(stage);
switch (stage) {
case Stage::Local: {
BuildCommon(regs.ls_program);
@ -220,9 +221,9 @@ const GraphicsPipeline* PipelineCache::GetGraphicsPipeline() {
}
const auto [it, is_new] = graphics_pipelines.try_emplace(graphics_key);
if (is_new) {
it.value() =
std::make_unique<GraphicsPipeline>(instance, scheduler, desc_heap, graphics_key,
*pipeline_cache, infos, fetch_shader, modules);
it.value() = std::make_unique<GraphicsPipeline>(instance, scheduler, desc_heap,
graphics_key, *pipeline_cache, infos,
runtime_infos, fetch_shader, modules);
if (Config::collectShadersForDebug()) {
for (auto stage = 0; stage < MaxShaderStages; ++stage) {
if (infos[stage]) {

View file

@ -76,7 +76,7 @@ private:
vk::ShaderModule CompileModule(Shader::Info& info, Shader::RuntimeInfo& runtime_info,
std::span<const u32> code, size_t perm_idx,
Shader::Backend::Bindings& binding);
Shader::RuntimeInfo BuildRuntimeInfo(Shader::Stage stage, Shader::LogicalStage l_stage);
const Shader::RuntimeInfo& BuildRuntimeInfo(Shader::Stage stage, Shader::LogicalStage l_stage);
private:
const Instance& instance;
@ -90,6 +90,7 @@ private:
tsl::robin_map<size_t, std::unique_ptr<Program>> program_cache;
tsl::robin_map<ComputePipelineKey, std::unique_ptr<ComputePipeline>> compute_pipelines;
tsl::robin_map<GraphicsPipelineKey, std::unique_ptr<GraphicsPipeline>> graphics_pipelines;
std::array<Shader::RuntimeInfo, MaxShaderStages> runtime_infos{};
std::array<const Shader::Info*, MaxShaderStages> infos{};
std::array<vk::ShaderModule, MaxShaderStages> modules{};
std::optional<Shader::Gcn::FetchShaderData> fetch_shader{};

View file

@ -245,7 +245,6 @@ void Rasterizer::Draw(bool is_indexed, u32 index_offset) {
}
auto state = PrepareRenderState(pipeline->GetMrtMask());
if (!BindResources(pipeline)) {
return;
}
@ -267,10 +266,7 @@ void Rasterizer::Draw(bool is_indexed, u32 index_offset) {
cmdbuf.drawIndexed(num_indices, regs.num_instances.NumInstances(), 0, s32(vertex_offset),
instance_offset);
} else {
const u32 num_vertices =
regs.primitive_type == AmdGpu::PrimitiveType::RectList ? 4 : regs.num_indices;
cmdbuf.draw(num_vertices, regs.num_instances.NumInstances(), vertex_offset,
instance_offset);
cmdbuf.draw(num_indices, regs.num_instances.NumInstances(), vertex_offset, instance_offset);
}
ResetBindings();
@ -285,18 +281,14 @@ void Rasterizer::DrawIndirect(bool is_indexed, VAddr arg_address, u32 offset, u3
}
const auto& regs = liverpool->regs;
if (regs.primitive_type == AmdGpu::PrimitiveType::QuadList ||
regs.primitive_type == AmdGpu::PrimitiveType::Polygon) {
// We use a generated index buffer to convert quad lists and polygons to triangles. Since it
if (regs.primitive_type == AmdGpu::PrimitiveType::Polygon) {
// We use a generated index buffer to convert polygons to triangles. Since it
// changes type of the draw, arguments are not valid for this case. We need to run a
// conversion pass to repack the indirect arguments buffer first.
LOG_WARNING(Render_Vulkan, "Primitive type is not supported for indirect draw");
return;
}
ASSERT_MSG(regs.primitive_type != AmdGpu::PrimitiveType::RectList,
"Unsupported primitive type for indirect draw");
const GraphicsPipeline* pipeline = pipeline_cache.GetGraphicsPipeline();
if (!pipeline) {
return;
@ -1009,19 +1001,26 @@ void Rasterizer::UpdateViewportScissorState() {
regs.clipper_control.clip_space == AmdGpu::Liverpool::ClipSpace::MinusWToW
? 1.0f
: 0.0f;
const auto vp_ctl = regs.viewport_control;
for (u32 i = 0; i < Liverpool::NumViewports; i++) {
const auto& vp = regs.viewports[i];
const auto& vp_d = regs.viewport_depths[i];
if (vp.xscale == 0) {
continue;
}
const auto xoffset = vp_ctl.xoffset_enable ? vp.xoffset : 0.f;
const auto xscale = vp_ctl.xscale_enable ? vp.xscale : 1.f;
const auto yoffset = vp_ctl.yoffset_enable ? vp.yoffset : 0.f;
const auto yscale = vp_ctl.yscale_enable ? vp.yscale : 1.f;
const auto zoffset = vp_ctl.zoffset_enable ? vp.zoffset : 0.f;
const auto zscale = vp_ctl.zscale_enable ? vp.zscale : 1.f;
viewports.push_back({
.x = vp.xoffset - vp.xscale,
.y = vp.yoffset - vp.yscale,
.width = vp.xscale * 2.0f,
.height = vp.yscale * 2.0f,
.minDepth = vp.zoffset - vp.zscale * reduce_z,
.maxDepth = vp.zscale + vp.zoffset,
.x = xoffset - xscale,
.y = yoffset - yscale,
.width = xscale * 2.0f,
.height = yscale * 2.0f,
.minDepth = zoffset - zscale * reduce_z,
.maxDepth = zscale + zoffset,
});
}

View file

@ -126,6 +126,10 @@ EShLanguage ToEshShaderStage(vk::ShaderStageFlagBits stage) {
return EShLanguage::EShLangVertex;
case vk::ShaderStageFlagBits::eGeometry:
return EShLanguage::EShLangGeometry;
case vk::ShaderStageFlagBits::eTessellationControl:
return EShLanguage::EShLangTessControl;
case vk::ShaderStageFlagBits::eTessellationEvaluation:
return EShLanguage::EShLangTessEvaluation;
case vk::ShaderStageFlagBits::eFragment:
return EShLanguage::EShLangFragment;
case vk::ShaderStageFlagBits::eCompute: