Sort opcodes by their indices. Group them too when applicable (#945)

This commit is contained in:
korenkonder 2024-09-19 21:29:56 +03:00 committed by GitHub
parent c0f7de9fde
commit 07de1ee977
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 1634 additions and 1543 deletions

View file

@ -7,53 +7,157 @@ namespace Shader::Gcn {
void Translator::EmitDataShare(const GcnInst& inst) { void Translator::EmitDataShare(const GcnInst& inst) {
switch (inst.opcode) { switch (inst.opcode) {
case Opcode::DS_SWIZZLE_B32: // DS
return DS_SWIZZLE_B32(inst);
case Opcode::DS_READ_B32:
return DS_READ(32, false, false, false, inst);
case Opcode::DS_READ2ST64_B32:
return DS_READ(32, false, true, true, inst);
case Opcode::DS_READ_B64:
return DS_READ(64, false, false, false, inst);
case Opcode::DS_READ2_B32:
return DS_READ(32, false, true, false, inst);
case Opcode::DS_READ2_B64:
return DS_READ(64, false, true, false, inst);
case Opcode::DS_WRITE_B32:
return DS_WRITE(32, false, false, false, inst);
case Opcode::DS_WRITE2ST64_B32:
return DS_WRITE(32, false, true, true, inst);
case Opcode::DS_WRITE_B64:
return DS_WRITE(64, false, false, false, inst);
case Opcode::DS_WRITE2_B32:
return DS_WRITE(32, false, true, false, inst);
case Opcode::DS_WRITE2_B64:
return DS_WRITE(64, false, true, false, inst);
case Opcode::DS_ADD_U32: case Opcode::DS_ADD_U32:
return DS_ADD_U32(inst, false); return DS_ADD_U32(inst, false);
case Opcode::DS_MIN_U32:
return DS_MIN_U32(inst, false, false);
case Opcode::DS_MIN_I32: case Opcode::DS_MIN_I32:
return DS_MIN_U32(inst, true, false); return DS_MIN_U32(inst, true, false);
case Opcode::DS_MAX_U32:
return DS_MAX_U32(inst, false, false);
case Opcode::DS_MAX_I32: case Opcode::DS_MAX_I32:
return DS_MAX_U32(inst, true, false); return DS_MAX_U32(inst, true, false);
case Opcode::DS_MIN_U32:
return DS_MIN_U32(inst, false, false);
case Opcode::DS_MAX_U32:
return DS_MAX_U32(inst, false, false);
case Opcode::DS_WRITE_B32:
return DS_WRITE(32, false, false, false, inst);
case Opcode::DS_WRITE2_B32:
return DS_WRITE(32, false, true, false, inst);
case Opcode::DS_WRITE2ST64_B32:
return DS_WRITE(32, false, true, true, inst);
case Opcode::DS_ADD_RTN_U32: case Opcode::DS_ADD_RTN_U32:
return DS_ADD_U32(inst, true); return DS_ADD_U32(inst, true);
case Opcode::DS_MIN_RTN_U32: case Opcode::DS_MIN_RTN_U32:
return DS_MIN_U32(inst, false, true); return DS_MIN_U32(inst, false, true);
case Opcode::DS_MAX_RTN_U32: case Opcode::DS_MAX_RTN_U32:
return DS_MAX_U32(inst, false, true); return DS_MAX_U32(inst, false, true);
case Opcode::DS_APPEND: case Opcode::DS_SWIZZLE_B32:
return DS_APPEND(inst); return DS_SWIZZLE_B32(inst);
case Opcode::DS_READ_B32:
return DS_READ(32, false, false, false, inst);
case Opcode::DS_READ2_B32:
return DS_READ(32, false, true, false, inst);
case Opcode::DS_READ2ST64_B32:
return DS_READ(32, false, true, true, inst);
case Opcode::DS_CONSUME: case Opcode::DS_CONSUME:
return DS_CONSUME(inst); return DS_CONSUME(inst);
case Opcode::DS_APPEND:
return DS_APPEND(inst);
case Opcode::DS_WRITE_B64:
return DS_WRITE(64, false, false, false, inst);
case Opcode::DS_WRITE2_B64:
return DS_WRITE(64, false, true, false, inst);
case Opcode::DS_READ_B64:
return DS_READ(64, false, false, false, inst);
case Opcode::DS_READ2_B64:
return DS_READ(64, false, true, false, inst);
default: default:
LogMissingOpcode(inst); LogMissingOpcode(inst);
} }
} }
// SOPP
void Translator::S_BARRIER() {
ir.Barrier();
}
// VOP2
void Translator::V_READFIRSTLANE_B32(const GcnInst& inst) {
const IR::ScalarReg dst{inst.dst[0].code};
const IR::U32 value{GetSrc(inst.src[0])};
if (info.stage != Stage::Compute) {
SetDst(inst.dst[0], value);
} else {
SetDst(inst.dst[0], ir.ReadFirstLane(value));
}
}
void Translator::V_READLANE_B32(const GcnInst& inst) {
const IR::ScalarReg dst{inst.dst[0].code};
const IR::U32 value{GetSrc(inst.src[0])};
const IR::U32 lane{GetSrc(inst.src[1])};
ir.SetScalarReg(dst, ir.ReadLane(value, lane));
}
void Translator::V_WRITELANE_B32(const GcnInst& inst) {
const IR::VectorReg dst{inst.dst[0].code};
const IR::U32 value{GetSrc(inst.src[0])};
const IR::U32 lane{GetSrc(inst.src[1])};
const IR::U32 old_value{GetSrc(inst.dst[0])};
ir.SetVectorReg(dst, ir.WriteLane(old_value, value, lane));
}
// DS
void Translator::DS_ADD_U32(const GcnInst& inst, bool rtn) {
const IR::U32 addr{GetSrc(inst.src[0])};
const IR::U32 data{GetSrc(inst.src[1])};
const IR::U32 offset = ir.Imm32(u32(inst.control.ds.offset0));
const IR::U32 addr_offset = ir.IAdd(addr, offset);
const IR::Value original_val = ir.SharedAtomicIAdd(addr_offset, data);
if (rtn) {
SetDst(inst.dst[0], IR::U32{original_val});
}
}
void Translator::DS_MIN_U32(const GcnInst& inst, bool is_signed, bool rtn) {
const IR::U32 addr{GetSrc(inst.src[0])};
const IR::U32 data{GetSrc(inst.src[1])};
const IR::U32 offset = ir.Imm32(u32(inst.control.ds.offset0));
const IR::U32 addr_offset = ir.IAdd(addr, offset);
const IR::Value original_val = ir.SharedAtomicIMin(addr_offset, data, is_signed);
if (rtn) {
SetDst(inst.dst[0], IR::U32{original_val});
}
}
void Translator::DS_MAX_U32(const GcnInst& inst, bool is_signed, bool rtn) {
const IR::U32 addr{GetSrc(inst.src[0])};
const IR::U32 data{GetSrc(inst.src[1])};
const IR::U32 offset = ir.Imm32(u32(inst.control.ds.offset0));
const IR::U32 addr_offset = ir.IAdd(addr, offset);
const IR::Value original_val = ir.SharedAtomicIMax(addr_offset, data, is_signed);
if (rtn) {
SetDst(inst.dst[0], IR::U32{original_val});
}
}
void Translator::DS_WRITE(int bit_size, bool is_signed, bool is_pair, bool stride64,
const GcnInst& inst) {
const IR::U32 addr{ir.GetVectorReg(IR::VectorReg(inst.src[0].code))};
const IR::VectorReg data0{inst.src[1].code};
const IR::VectorReg data1{inst.src[2].code};
if (is_pair) {
const u32 adj = (bit_size == 32 ? 4 : 8) * (stride64 ? 64 : 1);
const IR::U32 addr0 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset0 * adj)));
if (bit_size == 32) {
ir.WriteShared(32, ir.GetVectorReg(data0), addr0);
} else {
ir.WriteShared(
64, ir.CompositeConstruct(ir.GetVectorReg(data0), ir.GetVectorReg(data0 + 1)),
addr0);
}
const IR::U32 addr1 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset1 * adj)));
if (bit_size == 32) {
ir.WriteShared(32, ir.GetVectorReg(data1), addr1);
} else {
ir.WriteShared(
64, ir.CompositeConstruct(ir.GetVectorReg(data1), ir.GetVectorReg(data1 + 1)),
addr1);
}
} else if (bit_size == 64) {
const IR::U32 addr0 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset0)));
const IR::Value data =
ir.CompositeConstruct(ir.GetVectorReg(data0), ir.GetVectorReg(data0 + 1));
ir.WriteShared(bit_size, data, addr0);
} else {
const IR::U32 addr0 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset0)));
ir.WriteShared(bit_size, ir.GetVectorReg(data0), addr0);
}
}
void Translator::DS_SWIZZLE_B32(const GcnInst& inst) { void Translator::DS_SWIZZLE_B32(const GcnInst& inst) {
const u8 offset0 = inst.control.ds.offset0; const u8 offset0 = inst.control.ds.offset0;
const u8 offset1 = inst.control.ds.offset1; const u8 offset1 = inst.control.ds.offset1;
@ -102,103 +206,6 @@ void Translator::DS_READ(int bit_size, bool is_signed, bool is_pair, bool stride
} }
} }
void Translator::DS_WRITE(int bit_size, bool is_signed, bool is_pair, bool stride64,
const GcnInst& inst) {
const IR::U32 addr{ir.GetVectorReg(IR::VectorReg(inst.src[0].code))};
const IR::VectorReg data0{inst.src[1].code};
const IR::VectorReg data1{inst.src[2].code};
if (is_pair) {
const u32 adj = (bit_size == 32 ? 4 : 8) * (stride64 ? 64 : 1);
const IR::U32 addr0 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset0 * adj)));
if (bit_size == 32) {
ir.WriteShared(32, ir.GetVectorReg(data0), addr0);
} else {
ir.WriteShared(
64, ir.CompositeConstruct(ir.GetVectorReg(data0), ir.GetVectorReg(data0 + 1)),
addr0);
}
const IR::U32 addr1 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset1 * adj)));
if (bit_size == 32) {
ir.WriteShared(32, ir.GetVectorReg(data1), addr1);
} else {
ir.WriteShared(
64, ir.CompositeConstruct(ir.GetVectorReg(data1), ir.GetVectorReg(data1 + 1)),
addr1);
}
} else if (bit_size == 64) {
const IR::U32 addr0 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset0)));
const IR::Value data =
ir.CompositeConstruct(ir.GetVectorReg(data0), ir.GetVectorReg(data0 + 1));
ir.WriteShared(bit_size, data, addr0);
} else {
const IR::U32 addr0 = ir.IAdd(addr, ir.Imm32(u32(inst.control.ds.offset0)));
ir.WriteShared(bit_size, ir.GetVectorReg(data0), addr0);
}
}
void Translator::DS_ADD_U32(const GcnInst& inst, bool rtn) {
const IR::U32 addr{GetSrc(inst.src[0])};
const IR::U32 data{GetSrc(inst.src[1])};
const IR::U32 offset = ir.Imm32(u32(inst.control.ds.offset0));
const IR::U32 addr_offset = ir.IAdd(addr, offset);
const IR::Value original_val = ir.SharedAtomicIAdd(addr_offset, data);
if (rtn) {
SetDst(inst.dst[0], IR::U32{original_val});
}
}
void Translator::DS_MIN_U32(const GcnInst& inst, bool is_signed, bool rtn) {
const IR::U32 addr{GetSrc(inst.src[0])};
const IR::U32 data{GetSrc(inst.src[1])};
const IR::U32 offset = ir.Imm32(u32(inst.control.ds.offset0));
const IR::U32 addr_offset = ir.IAdd(addr, offset);
const IR::Value original_val = ir.SharedAtomicIMin(addr_offset, data, is_signed);
if (rtn) {
SetDst(inst.dst[0], IR::U32{original_val});
}
}
void Translator::DS_MAX_U32(const GcnInst& inst, bool is_signed, bool rtn) {
const IR::U32 addr{GetSrc(inst.src[0])};
const IR::U32 data{GetSrc(inst.src[1])};
const IR::U32 offset = ir.Imm32(u32(inst.control.ds.offset0));
const IR::U32 addr_offset = ir.IAdd(addr, offset);
const IR::Value original_val = ir.SharedAtomicIMax(addr_offset, data, is_signed);
if (rtn) {
SetDst(inst.dst[0], IR::U32{original_val});
}
}
void Translator::S_BARRIER() {
ir.Barrier();
}
void Translator::V_READFIRSTLANE_B32(const GcnInst& inst) {
const IR::ScalarReg dst{inst.dst[0].code};
const IR::U32 value{GetSrc(inst.src[0])};
if (info.stage != Stage::Compute) {
SetDst(inst.dst[0], value);
} else {
SetDst(inst.dst[0], ir.ReadFirstLane(value));
}
}
void Translator::V_READLANE_B32(const GcnInst& inst) {
const IR::ScalarReg dst{inst.dst[0].code};
const IR::U32 value{GetSrc(inst.src[0])};
const IR::U32 lane{GetSrc(inst.src[1])};
ir.SetScalarReg(dst, ir.ReadLane(value, lane));
}
void Translator::V_WRITELANE_B32(const GcnInst& inst) {
const IR::VectorReg dst{inst.dst[0].code};
const IR::U32 value{GetSrc(inst.src[0])};
const IR::U32 lane{GetSrc(inst.src[1])};
const IR::U32 old_value{GetSrc(inst.dst[0])};
ir.SetVectorReg(dst, ir.WriteLane(old_value, value, lane));
}
void Translator::DS_APPEND(const GcnInst& inst) { void Translator::DS_APPEND(const GcnInst& inst) {
const u32 inst_offset = inst.control.ds.offset0; const u32 inst_offset = inst.control.ds.offset0;
const IR::U32 gds_offset = ir.IAdd(ir.GetM0(), ir.Imm32(inst_offset)); const IR::U32 gds_offset = ir.IAdd(ir.GetM0(), ir.Imm32(inst_offset));

View file

@ -17,79 +17,83 @@ void Translator::EmitScalarAlu(const GcnInst& inst) {
} }
default: default:
switch (inst.opcode) { switch (inst.opcode) {
case Opcode::S_MOV_B32: // SOP2
return S_MOV(inst); case Opcode::S_ADD_U32:
case Opcode::S_MUL_I32: return S_ADD_U32(inst);
return S_MUL_I32(inst); case Opcode::S_SUB_U32:
case Opcode::S_AND_SAVEEXEC_B64: return S_SUB_U32(inst);
return S_AND_SAVEEXEC_B64(inst);
case Opcode::S_MOV_B64:
return S_MOV_B64(inst);
case Opcode::S_OR_B64:
return S_OR_B64(NegateMode::None, false, inst);
case Opcode::S_NOR_B64:
return S_OR_B64(NegateMode::Result, false, inst);
case Opcode::S_XOR_B64:
return S_OR_B64(NegateMode::None, true, inst);
case Opcode::S_XNOR_B64:
return S_OR_B64(NegateMode::Result, true, inst);
case Opcode::S_ORN2_B64:
return S_OR_B64(NegateMode::Src1, false, inst);
case Opcode::S_AND_B64:
return S_AND_B64(NegateMode::None, inst);
case Opcode::S_NAND_B64:
return S_AND_B64(NegateMode::Result, inst);
case Opcode::S_ANDN2_B64:
return S_AND_B64(NegateMode::Src1, inst);
case Opcode::S_NOT_B64:
return S_NOT_B64(inst);
case Opcode::S_ADD_I32: case Opcode::S_ADD_I32:
return S_ADD_I32(inst); return S_ADD_I32(inst);
case Opcode::S_AND_B32: case Opcode::S_SUB_I32:
return S_AND_B32(NegateMode::None, inst); return S_SUB_U32(inst);
case Opcode::S_NAND_B32: case Opcode::S_ADDC_U32:
return S_AND_B32(NegateMode::Result, inst); return S_ADDC_U32(inst);
case Opcode::S_ANDN2_B32: case Opcode::S_MIN_I32:
return S_AND_B32(NegateMode::Src1, inst); return S_MIN_U32(true, inst);
case Opcode::S_ASHR_I32: case Opcode::S_MIN_U32:
return S_ASHR_I32(inst); return S_MIN_U32(false, inst);
case Opcode::S_OR_B32: case Opcode::S_MAX_I32:
return S_OR_B32(inst); return S_MAX_U32(true, inst);
case Opcode::S_XOR_B32: case Opcode::S_MAX_U32:
return S_XOR_B32(inst); return S_MAX_U32(false, inst);
case Opcode::S_LSHL_B32:
return S_LSHL_B32(inst);
case Opcode::S_LSHR_B32:
return S_LSHR_B32(inst);
case Opcode::S_CSELECT_B32: case Opcode::S_CSELECT_B32:
return S_CSELECT_B32(inst); return S_CSELECT_B32(inst);
case Opcode::S_CSELECT_B64: case Opcode::S_CSELECT_B64:
return S_CSELECT_B64(inst); return S_CSELECT_B64(inst);
case Opcode::S_BFE_U32: case Opcode::S_AND_B32:
return S_BFE_U32(inst); return S_AND_B32(NegateMode::None, inst);
case Opcode::S_AND_B64:
return S_AND_B64(NegateMode::None, inst);
case Opcode::S_OR_B32:
return S_OR_B32(inst);
case Opcode::S_OR_B64:
return S_OR_B64(NegateMode::None, false, inst);
case Opcode::S_XOR_B32:
return S_XOR_B32(inst);
case Opcode::S_XOR_B64:
return S_OR_B64(NegateMode::None, true, inst);
case Opcode::S_ANDN2_B32:
return S_AND_B32(NegateMode::Src1, inst);
case Opcode::S_ANDN2_B64:
return S_AND_B64(NegateMode::Src1, inst);
case Opcode::S_ORN2_B64:
return S_OR_B64(NegateMode::Src1, false, inst);
case Opcode::S_NAND_B32:
return S_AND_B32(NegateMode::Result, inst);
case Opcode::S_NAND_B64:
return S_AND_B64(NegateMode::Result, inst);
case Opcode::S_NOR_B64:
return S_OR_B64(NegateMode::Result, false, inst);
case Opcode::S_XNOR_B64:
return S_OR_B64(NegateMode::Result, true, inst);
case Opcode::S_LSHL_B32:
return S_LSHL_B32(inst);
case Opcode::S_LSHR_B32:
return S_LSHR_B32(inst);
case Opcode::S_ASHR_I32:
return S_ASHR_I32(inst);
case Opcode::S_BFM_B32: case Opcode::S_BFM_B32:
return S_BFM_B32(inst); return S_BFM_B32(inst);
case Opcode::S_BREV_B32: case Opcode::S_MUL_I32:
return S_BREV_B32(inst); return S_MUL_I32(inst);
case Opcode::S_ADD_U32: case Opcode::S_BFE_U32:
return S_ADD_U32(inst); return S_BFE_U32(inst);
case Opcode::S_ADDC_U32:
return S_ADDC_U32(inst);
case Opcode::S_SUB_U32:
case Opcode::S_SUB_I32:
return S_SUB_U32(inst);
case Opcode::S_MIN_U32:
return S_MIN_U32(false, inst);
case Opcode::S_MIN_I32:
return S_MIN_U32(true, inst);
case Opcode::S_MAX_U32:
return S_MAX_U32(false, inst);
case Opcode::S_MAX_I32:
return S_MAX_U32(true, inst);
case Opcode::S_ABSDIFF_I32: case Opcode::S_ABSDIFF_I32:
return S_ABSDIFF_I32(inst); return S_ABSDIFF_I32(inst);
// SOP1
case Opcode::S_MOV_B32:
return S_MOV(inst);
case Opcode::S_MOV_B64:
return S_MOV_B64(inst);
case Opcode::S_NOT_B64:
return S_NOT_B64(inst);
case Opcode::S_WQM_B64: case Opcode::S_WQM_B64:
break; break;
case Opcode::S_BREV_B32:
return S_BREV_B32(inst);
case Opcode::S_AND_SAVEEXEC_B64:
return S_AND_SAVEEXEC_B64(inst);
default: default:
LogMissingOpcode(inst); LogMissingOpcode(inst);
} }
@ -131,6 +135,7 @@ void Translator::EmitSOPC(const GcnInst& inst) {
void Translator::EmitSOPK(const GcnInst& inst) { void Translator::EmitSOPK(const GcnInst& inst) {
switch (inst.opcode) { switch (inst.opcode) {
// SOPK
case Opcode::S_MOVK_I32: case Opcode::S_MOVK_I32:
return S_MOVK(inst); return S_MOVK(inst);
@ -169,169 +174,78 @@ void Translator::EmitSOPK(const GcnInst& inst) {
} }
} }
void Translator::S_MOVK(const GcnInst& inst) { // SOP2
const auto simm16 = inst.control.sopk.simm;
if (simm16 & (1 << 15)) { void Translator::S_ADD_U32(const GcnInst& inst) {
// TODO: need to verify the case of imm sign extension const IR::U32 src0{GetSrc(inst.src[0])};
UNREACHABLE(); const IR::U32 src1{GetSrc(inst.src[1])};
} SetDst(inst.dst[0], ir.IAdd(src0, src1));
SetDst(inst.dst[0], ir.Imm32(simm16)); // TODO: Carry out
ir.SetScc(ir.Imm1(false));
} }
void Translator::S_ADDK_I32(const GcnInst& inst) { void Translator::S_SUB_U32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm; const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.IAdd(GetSrc(inst.dst[0]), ir.Imm32(simm16))); const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ISub(src0, src1));
// TODO: Carry out
ir.SetScc(ir.Imm1(false));
} }
void Translator::S_MULK_I32(const GcnInst& inst) { void Translator::S_ADD_I32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm; const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.IMul(GetSrc(inst.dst[0]), ir.Imm32(simm16))); const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IAdd(src0, src1));
// TODO: Overflow flag
} }
void Translator::S_MOV(const GcnInst& inst) { void Translator::S_ADDC_U32(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc(inst.src[0])); const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 carry{ir.Select(ir.GetScc(), ir.Imm32(1U), ir.Imm32(0U))};
SetDst(inst.dst[0], ir.IAdd(ir.IAdd(src0, src1), carry));
} }
void Translator::S_MUL_I32(const GcnInst& inst) { void Translator::S_MIN_U32(bool is_signed, const GcnInst& inst) {
SetDst(inst.dst[0], ir.IMul(GetSrc(inst.src[0]), GetSrc(inst.src[1]))); const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result = ir.IMin(src0, src1, is_signed);
SetDst(inst.dst[0], result);
ir.SetScc(ir.IEqual(result, src0));
} }
void Translator::S_CMP(ConditionOp cond, bool is_signed, const GcnInst& inst) { void Translator::S_MAX_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 lhs = GetSrc(inst.src[0]); const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 rhs = GetSrc(inst.src[1]); const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U1 result = [&] { const IR::U32 result = ir.IMax(src0, src1, is_signed);
switch (cond) { SetDst(inst.dst[0], result);
case ConditionOp::EQ: ir.SetScc(ir.IEqual(result, src0));
return ir.IEqual(lhs, rhs);
case ConditionOp::LG:
return ir.INotEqual(lhs, rhs);
case ConditionOp::GT:
return ir.IGreaterThan(lhs, rhs, is_signed);
case ConditionOp::GE:
return ir.IGreaterThanEqual(lhs, rhs, is_signed);
case ConditionOp::LT:
return ir.ILessThan(lhs, rhs, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(lhs, rhs, is_signed);
default:
UNREACHABLE();
}
}();
ir.SetScc(result);
} }
void Translator::S_CMPK(ConditionOp cond, bool is_signed, const GcnInst& inst) { void Translator::S_CSELECT_B32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm; const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 lhs = GetSrc(inst.dst[0]); const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 rhs = ir.Imm32(simm16); SetDst(inst.dst[0], IR::U32{ir.Select(ir.GetScc(), src0, src1)});
const IR::U1 result = [&] {
switch (cond) {
case ConditionOp::EQ:
return ir.IEqual(lhs, rhs);
case ConditionOp::LG:
return ir.INotEqual(lhs, rhs);
case ConditionOp::GT:
return ir.IGreaterThan(lhs, rhs, is_signed);
case ConditionOp::GE:
return ir.IGreaterThanEqual(lhs, rhs, is_signed);
case ConditionOp::LT:
return ir.ILessThan(lhs, rhs, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(lhs, rhs, is_signed);
default:
UNREACHABLE();
}
}();
ir.SetScc(result);
} }
void Translator::S_AND_SAVEEXEC_B64(const GcnInst& inst) { void Translator::S_CSELECT_B64(const GcnInst& inst) {
// This instruction normally operates on 64-bit data (EXEC, VCC, SGPRs) const auto get_src = [&](const InstOperand& operand) {
// However here we flatten it to 1-bit EXEC and 1-bit VCC. For the destination switch (operand.field) {
// SGPR we have a special IR opcode for SPGRs that act as thread masks.
const IR::U1 exec{ir.GetExec()};
const IR::U1 src = [&] {
switch (inst.src[0].field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[0].code));
default:
UNREACHABLE();
}
}();
switch (inst.dst[0].field) {
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), exec);
break;
case OperandField::VccLo:
ir.SetVcc(exec);
break;
default:
UNREACHABLE();
}
// Update EXEC.
const IR::U1 result = ir.LogicalAnd(exec, src);
ir.SetExec(result);
ir.SetScc(result);
}
void Translator::S_MOV_B64(const GcnInst& inst) {
const IR::U1 src = [&] {
switch (inst.src[0].field) {
case OperandField::VccLo: case OperandField::VccLo:
return ir.GetVcc(); return ir.GetVcc();
case OperandField::ExecLo: case OperandField::ExecLo:
return ir.GetExec(); return ir.GetExec();
case OperandField::ScalarGPR: case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[0].code)); return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
case OperandField::ConstZero: case OperandField::ConstZero:
return ir.Imm1(false); return ir.Imm1(false);
default: default:
UNREACHABLE(); UNREACHABLE();
} }
}();
switch (inst.dst[0].field) {
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), src);
break;
case OperandField::ExecLo:
ir.SetExec(src);
break;
case OperandField::VccLo:
ir.SetVcc(src);
break;
default:
UNREACHABLE();
}
}
void Translator::S_OR_B64(NegateMode negate, bool is_xor, const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) {
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
default:
UNREACHABLE();
}
}; };
const IR::U1 src0{get_src(inst.src[0])}; const IR::U1 src0{get_src(inst.src[0])};
IR::U1 src1{get_src(inst.src[1])}; const IR::U1 src1{get_src(inst.src[1])};
if (negate == NegateMode::Src1) { const IR::U1 result{ir.Select(ir.GetScc(), src0, src1)};
src1 = ir.LogicalNot(src1);
}
IR::U1 result = is_xor ? ir.LogicalXor(src0, src1) : ir.LogicalOr(src0, src1);
if (negate == NegateMode::Result) {
result = ir.LogicalNot(result);
}
ir.SetScc(result);
switch (inst.dst[0].field) { switch (inst.dst[0].field) {
case OperandField::VccLo: case OperandField::VccLo:
ir.SetVcc(result); ir.SetVcc(result);
@ -344,6 +258,20 @@ void Translator::S_OR_B64(NegateMode negate, bool is_xor, const GcnInst& inst) {
} }
} }
void Translator::S_AND_B32(NegateMode negate, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
IR::U32 src1{GetSrc(inst.src[1])};
if (negate == NegateMode::Src1) {
src1 = ir.BitwiseNot(src1);
}
IR::U32 result{ir.BitwiseAnd(src0, src1)};
if (negate == NegateMode::Result) {
result = ir.BitwiseNot(result);
}
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_AND_B64(NegateMode negate, const GcnInst& inst) { void Translator::S_AND_B64(NegateMode negate, const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) { const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) { switch (operand.field) {
@ -382,35 +310,6 @@ void Translator::S_AND_B64(NegateMode negate, const GcnInst& inst) {
} }
} }
void Translator::S_ADD_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IAdd(src0, src1));
// TODO: Overflow flag
}
void Translator::S_AND_B32(NegateMode negate, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
IR::U32 src1{GetSrc(inst.src[1])};
if (negate == NegateMode::Src1) {
src1 = ir.BitwiseNot(src1);
}
IR::U32 result{ir.BitwiseAnd(src0, src1)};
if (negate == NegateMode::Result) {
result = ir.BitwiseNot(result);
}
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_ASHR_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ShiftRightArithmetic(src0, src1)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_OR_B32(const GcnInst& inst) { void Translator::S_OR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])}; const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])}; const IR::U32 src1{GetSrc(inst.src[1])};
@ -419,46 +318,30 @@ void Translator::S_OR_B32(const GcnInst& inst) {
ir.SetScc(ir.INotEqual(result, ir.Imm32(0))); ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
} }
void Translator::S_XOR_B32(const GcnInst& inst) { void Translator::S_OR_B64(NegateMode negate, bool is_xor, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.BitwiseXor(src0, src1)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_LSHR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ShiftRightLogical(src0, src1)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_CSELECT_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], IR::U32{ir.Select(ir.GetScc(), src0, src1)});
}
void Translator::S_CSELECT_B64(const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) { const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) { switch (operand.field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo: case OperandField::ExecLo:
return ir.GetExec(); return ir.GetExec();
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ScalarGPR: case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code)); return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
case OperandField::ConstZero:
return ir.Imm1(false);
default: default:
UNREACHABLE(); UNREACHABLE();
} }
}; };
const IR::U1 src0{get_src(inst.src[0])}; const IR::U1 src0{get_src(inst.src[0])};
const IR::U1 src1{get_src(inst.src[1])}; IR::U1 src1{get_src(inst.src[1])};
const IR::U1 result{ir.Select(ir.GetScc(), src0, src1)}; if (negate == NegateMode::Src1) {
src1 = ir.LogicalNot(src1);
}
IR::U1 result = is_xor ? ir.LogicalXor(src0, src1) : ir.LogicalOr(src0, src1);
if (negate == NegateMode::Result) {
result = ir.LogicalNot(result);
}
ir.SetScc(result);
switch (inst.dst[0].field) { switch (inst.dst[0].field) {
case OperandField::VccLo: case OperandField::VccLo:
ir.SetVcc(result); ir.SetVcc(result);
@ -471,12 +354,10 @@ void Translator::S_CSELECT_B64(const GcnInst& inst) {
} }
} }
void Translator::S_BFE_U32(const GcnInst& inst) { void Translator::S_XOR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])}; const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])}; const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 offset{ir.BitwiseAnd(src1, ir.Imm32(0x1F))}; const IR::U32 result{ir.BitwiseXor(src0, src1)};
const IR::U32 count{ir.BitFieldExtract(src1, ir.Imm32(16), ir.Imm32(7))};
const IR::U32 result{ir.BitFieldExtract(src0, offset, count)};
SetDst(inst.dst[0], result); SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0))); ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
} }
@ -489,6 +370,22 @@ void Translator::S_LSHL_B32(const GcnInst& inst) {
ir.SetScc(ir.INotEqual(result, ir.Imm32(0))); ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
} }
void Translator::S_LSHR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ShiftRightLogical(src0, src1)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_ASHR_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ShiftRightArithmetic(src0, src1)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_BFM_B32(const GcnInst& inst) { void Translator::S_BFM_B32(const GcnInst& inst) {
const IR::U32 src0{ir.BitwiseAnd(GetSrc(inst.src[0]), ir.Imm32(0x1F))}; const IR::U32 src0{ir.BitwiseAnd(GetSrc(inst.src[0]), ir.Imm32(0x1F))};
const IR::U32 src1{ir.BitwiseAnd(GetSrc(inst.src[1]), ir.Imm32(0x1F))}; const IR::U32 src1{ir.BitwiseAnd(GetSrc(inst.src[1]), ir.Imm32(0x1F))};
@ -496,6 +393,110 @@ void Translator::S_BFM_B32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.ShiftLeftLogical(mask, src1)); SetDst(inst.dst[0], ir.ShiftLeftLogical(mask, src1));
} }
void Translator::S_MUL_I32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.IMul(GetSrc(inst.src[0]), GetSrc(inst.src[1])));
}
void Translator::S_BFE_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 offset{ir.BitwiseAnd(src1, ir.Imm32(0x1F))};
const IR::U32 count{ir.BitFieldExtract(src1, ir.Imm32(16), ir.Imm32(7))};
const IR::U32 result{ir.BitFieldExtract(src0, offset, count)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_ABSDIFF_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.IAbs(ir.ISub(src0, src1))};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
// SOPK
void Translator::S_MOVK(const GcnInst& inst) {
const auto simm16 = inst.control.sopk.simm;
if (simm16 & (1 << 15)) {
// TODO: need to verify the case of imm sign extension
UNREACHABLE();
}
SetDst(inst.dst[0], ir.Imm32(simm16));
}
void Translator::S_CMPK(ConditionOp cond, bool is_signed, const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm;
const IR::U32 lhs = GetSrc(inst.dst[0]);
const IR::U32 rhs = ir.Imm32(simm16);
const IR::U1 result = [&] {
switch (cond) {
case ConditionOp::EQ:
return ir.IEqual(lhs, rhs);
case ConditionOp::LG:
return ir.INotEqual(lhs, rhs);
case ConditionOp::GT:
return ir.IGreaterThan(lhs, rhs, is_signed);
case ConditionOp::GE:
return ir.IGreaterThanEqual(lhs, rhs, is_signed);
case ConditionOp::LT:
return ir.ILessThan(lhs, rhs, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(lhs, rhs, is_signed);
default:
UNREACHABLE();
}
}();
ir.SetScc(result);
}
void Translator::S_ADDK_I32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm;
SetDst(inst.dst[0], ir.IAdd(GetSrc(inst.dst[0]), ir.Imm32(simm16)));
}
void Translator::S_MULK_I32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm;
SetDst(inst.dst[0], ir.IMul(GetSrc(inst.dst[0]), ir.Imm32(simm16)));
}
// SOP1
void Translator::S_MOV(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc(inst.src[0]));
}
void Translator::S_MOV_B64(const GcnInst& inst) {
const IR::U1 src = [&] {
switch (inst.src[0].field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[0].code));
case OperandField::ConstZero:
return ir.Imm1(false);
default:
UNREACHABLE();
}
}();
switch (inst.dst[0].field) {
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), src);
break;
case OperandField::ExecLo:
ir.SetExec(src);
break;
case OperandField::VccLo:
ir.SetVcc(src);
break;
default:
UNREACHABLE();
}
}
void Translator::S_NOT_B64(const GcnInst& inst) { void Translator::S_NOT_B64(const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) { const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) { switch (operand.field) {
@ -528,22 +529,6 @@ void Translator::S_BREV_B32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.BitReverse(GetSrc(inst.src[0]))); SetDst(inst.dst[0], ir.BitReverse(GetSrc(inst.src[0])));
} }
void Translator::S_ADD_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IAdd(src0, src1));
// TODO: Carry out
ir.SetScc(ir.Imm1(false));
}
void Translator::S_SUB_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ISub(src0, src1));
// TODO: Carry out
ir.SetScc(ir.Imm1(false));
}
void Translator::S_GETPC_B64(u32 pc, const GcnInst& inst) { void Translator::S_GETPC_B64(u32 pc, const GcnInst& inst) {
// This only really exists to let resource tracking pass know // This only really exists to let resource tracking pass know
// there is an inline cbuf. // there is an inline cbuf.
@ -552,35 +537,63 @@ void Translator::S_GETPC_B64(u32 pc, const GcnInst& inst) {
ir.SetScalarReg(dst + 1, ir.Imm32(0)); ir.SetScalarReg(dst + 1, ir.Imm32(0));
} }
void Translator::S_ADDC_U32(const GcnInst& inst) { void Translator::S_AND_SAVEEXEC_B64(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])}; // This instruction normally operates on 64-bit data (EXEC, VCC, SGPRs)
const IR::U32 src1{GetSrc(inst.src[1])}; // However here we flatten it to 1-bit EXEC and 1-bit VCC. For the destination
const IR::U32 carry{ir.Select(ir.GetScc(), ir.Imm32(1U), ir.Imm32(0U))}; // SGPR we have a special IR opcode for SPGRs that act as thread masks.
SetDst(inst.dst[0], ir.IAdd(ir.IAdd(src0, src1), carry)); const IR::U1 exec{ir.GetExec()};
const IR::U1 src = [&] {
switch (inst.src[0].field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[0].code));
default:
UNREACHABLE();
}
}();
switch (inst.dst[0].field) {
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), exec);
break;
case OperandField::VccLo:
ir.SetVcc(exec);
break;
default:
UNREACHABLE();
}
// Update EXEC.
const IR::U1 result = ir.LogicalAnd(exec, src);
ir.SetExec(result);
ir.SetScc(result);
} }
void Translator::S_MAX_U32(bool is_signed, const GcnInst& inst) { // SOPC
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result = ir.IMax(src0, src1, is_signed);
SetDst(inst.dst[0], result);
ir.SetScc(ir.IEqual(result, src0));
}
void Translator::S_MIN_U32(bool is_signed, const GcnInst& inst) { void Translator::S_CMP(ConditionOp cond, bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])}; const IR::U32 lhs = GetSrc(inst.src[0]);
const IR::U32 src1{GetSrc(inst.src[1])}; const IR::U32 rhs = GetSrc(inst.src[1]);
const IR::U32 result = ir.IMin(src0, src1, is_signed); const IR::U1 result = [&] {
SetDst(inst.dst[0], result); switch (cond) {
ir.SetScc(ir.IEqual(result, src0)); case ConditionOp::EQ:
} return ir.IEqual(lhs, rhs);
case ConditionOp::LG:
void Translator::S_ABSDIFF_I32(const GcnInst& inst) { return ir.INotEqual(lhs, rhs);
const IR::U32 src0{GetSrc(inst.src[0])}; case ConditionOp::GT:
const IR::U32 src1{GetSrc(inst.src[1])}; return ir.IGreaterThan(lhs, rhs, is_signed);
const IR::U32 result{ir.IAbs(ir.ISub(src0, src1))}; case ConditionOp::GE:
SetDst(inst.dst[0], result); return ir.IGreaterThanEqual(lhs, rhs, is_signed);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0))); case ConditionOp::LT:
return ir.ILessThan(lhs, rhs, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(lhs, rhs, is_signed);
default:
UNREACHABLE();
}
}();
ir.SetScc(result);
} }
} // namespace Shader::Gcn } // namespace Shader::Gcn

View file

@ -9,6 +9,7 @@ static constexpr u32 SQ_SRC_LITERAL = 0xFF;
void Translator::EmitScalarMemory(const GcnInst& inst) { void Translator::EmitScalarMemory(const GcnInst& inst) {
switch (inst.opcode) { switch (inst.opcode) {
// SMRD
case Opcode::S_LOAD_DWORDX4: case Opcode::S_LOAD_DWORDX4:
return S_LOAD_DWORD(4, inst); return S_LOAD_DWORD(4, inst);
case Opcode::S_LOAD_DWORDX8: case Opcode::S_LOAD_DWORDX8:
@ -30,6 +31,8 @@ void Translator::EmitScalarMemory(const GcnInst& inst) {
} }
} }
// SMRD
void Translator::S_LOAD_DWORD(int num_dwords, const GcnInst& inst) { void Translator::S_LOAD_DWORD(int num_dwords, const GcnInst& inst) {
const auto& smrd = inst.control.smrd; const auto& smrd = inst.control.smrd;
const u32 dword_offset = [&] -> u32 { const u32 dword_offset = [&] -> u32 {

View file

@ -61,180 +61,201 @@ public:
// Instruction categories // Instruction categories
void EmitPrologue(); void EmitPrologue();
void EmitFetch(const GcnInst& inst); void EmitFetch(const GcnInst& inst);
void EmitDataShare(const GcnInst& inst);
void EmitVectorInterpolation(const GcnInst& inst);
void EmitScalarMemory(const GcnInst& inst);
void EmitVectorMemory(const GcnInst& inst);
void EmitExport(const GcnInst& inst); void EmitExport(const GcnInst& inst);
void EmitFlowControl(u32 pc, const GcnInst& inst); void EmitFlowControl(u32 pc, const GcnInst& inst);
void EmitScalarAlu(const GcnInst& inst); void EmitScalarAlu(const GcnInst& inst);
void EmitScalarMemory(const GcnInst& inst);
void EmitVectorAlu(const GcnInst& inst); void EmitVectorAlu(const GcnInst& inst);
void EmitVectorInterpolation(const GcnInst& inst);
void EmitDataShare(const GcnInst& inst);
void EmitVectorMemory(const GcnInst& inst);
// Instruction encodings // Instruction encodings
void EmitSOPC(const GcnInst& inst); void EmitSOPC(const GcnInst& inst);
void EmitSOPK(const GcnInst& inst); void EmitSOPK(const GcnInst& inst);
// Scalar ALU // Scalar ALU
void S_MOVK(const GcnInst& inst); // SOP2
void S_MOV(const GcnInst& inst);
void S_MUL_I32(const GcnInst& inst);
void S_CMP(ConditionOp cond, bool is_signed, const GcnInst& inst);
void S_AND_SAVEEXEC_B64(const GcnInst& inst);
void S_MOV_B64(const GcnInst& inst);
void S_OR_B64(NegateMode negate, bool is_xor, const GcnInst& inst);
void S_AND_B64(NegateMode negate, const GcnInst& inst);
void S_ADD_I32(const GcnInst& inst);
void S_AND_B32(NegateMode negate, const GcnInst& inst);
void S_ASHR_I32(const GcnInst& inst);
void S_OR_B32(const GcnInst& inst);
void S_XOR_B32(const GcnInst& inst);
void S_LSHR_B32(const GcnInst& inst);
void S_CSELECT_B32(const GcnInst& inst);
void S_CSELECT_B64(const GcnInst& inst);
void S_BFE_U32(const GcnInst& inst);
void S_LSHL_B32(const GcnInst& inst);
void S_BFM_B32(const GcnInst& inst);
void S_NOT_B64(const GcnInst& inst);
void S_BREV_B32(const GcnInst& inst);
void S_ADD_U32(const GcnInst& inst); void S_ADD_U32(const GcnInst& inst);
void S_SUB_U32(const GcnInst& inst); void S_SUB_U32(const GcnInst& inst);
void S_GETPC_B64(u32 pc, const GcnInst& inst); void S_ADD_I32(const GcnInst& inst);
void S_ADDC_U32(const GcnInst& inst); void S_ADDC_U32(const GcnInst& inst);
void S_MULK_I32(const GcnInst& inst);
void S_ADDK_I32(const GcnInst& inst);
void S_MAX_U32(bool is_signed, const GcnInst& inst);
void S_MIN_U32(bool is_signed, const GcnInst& inst); void S_MIN_U32(bool is_signed, const GcnInst& inst);
void S_MAX_U32(bool is_signed, const GcnInst& inst);
void S_CSELECT_B32(const GcnInst& inst);
void S_CSELECT_B64(const GcnInst& inst);
void S_AND_B32(NegateMode negate, const GcnInst& inst);
void S_AND_B64(NegateMode negate, const GcnInst& inst);
void S_OR_B32(const GcnInst& inst);
void S_OR_B64(NegateMode negate, bool is_xor, const GcnInst& inst);
void S_XOR_B32(const GcnInst& inst);
void S_LSHL_B32(const GcnInst& inst);
void S_LSHR_B32(const GcnInst& inst);
void S_ASHR_I32(const GcnInst& inst);
void S_BFM_B32(const GcnInst& inst);
void S_MUL_I32(const GcnInst& inst);
void S_BFE_U32(const GcnInst& inst);
void S_ABSDIFF_I32(const GcnInst& inst); void S_ABSDIFF_I32(const GcnInst& inst);
// SOPK
void S_MOVK(const GcnInst& inst);
void S_CMPK(ConditionOp cond, bool is_signed, const GcnInst& inst); void S_CMPK(ConditionOp cond, bool is_signed, const GcnInst& inst);
void S_ADDK_I32(const GcnInst& inst);
void S_MULK_I32(const GcnInst& inst);
// SOP1
void S_MOV(const GcnInst& inst);
void S_MOV_B64(const GcnInst& inst);
void S_NOT_B64(const GcnInst& inst);
void S_BREV_B32(const GcnInst& inst);
void S_GETPC_B64(u32 pc, const GcnInst& inst);
void S_AND_SAVEEXEC_B64(const GcnInst& inst);
// SOPC
void S_CMP(ConditionOp cond, bool is_signed, const GcnInst& inst);
// SOPP
void S_BARRIER();
// Scalar Memory // Scalar Memory
// SMRD
void S_LOAD_DWORD(int num_dwords, const GcnInst& inst); void S_LOAD_DWORD(int num_dwords, const GcnInst& inst);
void S_BUFFER_LOAD_DWORD(int num_dwords, const GcnInst& inst); void S_BUFFER_LOAD_DWORD(int num_dwords, const GcnInst& inst);
// Vector ALU // Vector ALU
void V_MOV(const GcnInst& inst); // VOP2
void V_SAD(const GcnInst& inst);
void V_MAC_F32(const GcnInst& inst);
void V_CVT_PKRTZ_F16_F32(const GcnInst& inst);
void V_CVT_F32_F16(const GcnInst& inst);
void V_CVT_F16_F32(const GcnInst& inst);
void V_MUL_F32(const GcnInst& inst);
void V_CNDMASK_B32(const GcnInst& inst); void V_CNDMASK_B32(const GcnInst& inst);
void V_OR_B32(bool is_xor, const GcnInst& inst); void V_READLANE_B32(const GcnInst& inst);
void V_AND_B32(const GcnInst& inst); void V_WRITELANE_B32(const GcnInst& inst);
void V_LSHLREV_B32(const GcnInst& inst); void V_ADD_F32(const GcnInst& inst);
void V_SUB_F32(const GcnInst& inst);
void V_SUBREV_F32(const GcnInst& inst);
void V_MUL_F32(const GcnInst& inst);
void V_MUL_I32_I24(const GcnInst& inst);
void V_MIN_F32(const GcnInst& inst, bool is_legacy = false);
void V_MAX_F32(const GcnInst& inst, bool is_legacy = false);
void V_MIN_I32(const GcnInst& inst);
void V_MIN_U32(const GcnInst& inst);
void V_MAX_U32(bool is_signed, const GcnInst& inst);
void V_LSHR_B32(const GcnInst& inst);
void V_LSHRREV_B32(const GcnInst& inst);
void V_ASHR_I32(const GcnInst& inst);
void V_ASHRREV_I32(const GcnInst& inst);
void V_LSHL_B32(const GcnInst& inst); void V_LSHL_B32(const GcnInst& inst);
void V_LSHL_B64(const GcnInst& inst); void V_LSHLREV_B32(const GcnInst& inst);
void V_AND_B32(const GcnInst& inst);
void V_OR_B32(bool is_xor, const GcnInst& inst);
void V_BFM_B32(const GcnInst& inst);
void V_MAC_F32(const GcnInst& inst);
void V_MADMK_F32(const GcnInst& inst);
void V_BCNT_U32_B32(const GcnInst& inst);
void V_MBCNT_U32_B32(bool is_low, const GcnInst& inst);
void V_ADD_I32(const GcnInst& inst); void V_ADD_I32(const GcnInst& inst);
void V_SUB_I32(const GcnInst& inst);
void V_SUBREV_I32(const GcnInst& inst);
void V_ADDC_U32(const GcnInst& inst); void V_ADDC_U32(const GcnInst& inst);
void V_LDEXP_F32(const GcnInst& inst);
void V_CVT_PKRTZ_F16_F32(const GcnInst& inst);
// VOP1
void V_MOV(const GcnInst& inst);
void V_READFIRSTLANE_B32(const GcnInst& inst);
void V_CVT_F32_I32(const GcnInst& inst); void V_CVT_F32_I32(const GcnInst& inst);
void V_CVT_F32_U32(const GcnInst& inst); void V_CVT_F32_U32(const GcnInst& inst);
void V_MAD_F32(const GcnInst& inst);
void V_FRACT_F32(const GcnInst& inst);
void V_ADD_F32(const GcnInst& inst);
void V_CVT_OFF_F32_I4(const GcnInst& inst);
void V_MED3_F32(const GcnInst& inst);
void V_MED3_I32(const GcnInst& inst);
void V_FLOOR_F32(const GcnInst& inst);
void V_SUB_F32(const GcnInst& inst);
void V_RCP_F32(const GcnInst& inst);
void V_RCP_F64(const GcnInst& inst);
void V_FMA_F32(const GcnInst& inst);
void V_FMA_F64(const GcnInst& inst);
void V_CMP_F32(ConditionOp op, bool set_exec, const GcnInst& inst);
void V_MAX_F32(const GcnInst& inst, bool is_legacy = false);
void V_MUL_F64(const GcnInst& inst);
void V_MAX_F64(const GcnInst& inst);
void V_MAX_U32(bool is_signed, const GcnInst& inst);
void V_RSQ_F32(const GcnInst& inst);
void V_SIN_F32(const GcnInst& inst);
void V_LOG_F32(const GcnInst& inst);
void V_EXP_F32(const GcnInst& inst);
void V_SQRT_F32(const GcnInst& inst);
void V_MIN_F32(const GcnInst& inst, bool is_legacy = false);
void V_MIN3_F32(const GcnInst& inst);
void V_MIN3_I32(const GcnInst& inst);
void V_MADMK_F32(const GcnInst& inst);
void V_CUBEMA_F32(const GcnInst& inst);
void V_CUBESC_F32(const GcnInst& inst);
void V_CUBETC_F32(const GcnInst& inst);
void V_CUBEID_F32(const GcnInst& inst);
void V_CVT_U32_F32(const GcnInst& inst); void V_CVT_U32_F32(const GcnInst& inst);
void V_SUBREV_F32(const GcnInst& inst);
void V_SUBREV_I32(const GcnInst& inst);
void V_MAD_U64_U32(const GcnInst& inst);
void V_CMP_U32(ConditionOp op, bool is_signed, bool set_exec, const GcnInst& inst);
void V_LSHRREV_B32(const GcnInst& inst);
void V_MUL_HI_U32(bool is_signed, const GcnInst& inst);
void V_SAD_U32(const GcnInst& inst);
void V_BFE_U32(bool is_signed, const GcnInst& inst);
void V_MAD_I32_I24(const GcnInst& inst, bool is_signed = true);
void V_MUL_I32_I24(const GcnInst& inst);
void V_SUB_I32(const GcnInst& inst);
void V_LSHR_B32(const GcnInst& inst);
void V_ASHRREV_I32(const GcnInst& inst);
void V_ASHR_I32(const GcnInst& inst);
void V_MAD_U32_U24(const GcnInst& inst);
void V_RNDNE_F32(const GcnInst& inst);
void V_BCNT_U32_B32(const GcnInst& inst);
void V_COS_F32(const GcnInst& inst);
void V_MAX3_F32(const GcnInst& inst);
void V_MAX3_U32(bool is_signed, const GcnInst& inst);
void V_CVT_I32_F32(const GcnInst& inst); void V_CVT_I32_F32(const GcnInst& inst);
void V_MIN_I32(const GcnInst& inst); void V_CVT_F16_F32(const GcnInst& inst);
void V_MUL_LO_U32(const GcnInst& inst); void V_CVT_F32_F16(const GcnInst& inst);
void V_CVT_FLR_I32_F32(const GcnInst& inst);
void V_CVT_OFF_F32_I4(const GcnInst& inst);
void V_CVT_F32_UBYTE(u32 index, const GcnInst& inst);
void V_FRACT_F32(const GcnInst& inst);
void V_TRUNC_F32(const GcnInst& inst); void V_TRUNC_F32(const GcnInst& inst);
void V_CEIL_F32(const GcnInst& inst); void V_CEIL_F32(const GcnInst& inst);
void V_MIN_U32(const GcnInst& inst); void V_RNDNE_F32(const GcnInst& inst);
void V_CMP_NE_U64(const GcnInst& inst); void V_FLOOR_F32(const GcnInst& inst);
void V_BFI_B32(const GcnInst& inst); void V_EXP_F32(const GcnInst& inst);
void V_LOG_F32(const GcnInst& inst);
void V_RCP_F32(const GcnInst& inst);
void V_RCP_F64(const GcnInst& inst);
void V_RSQ_F32(const GcnInst& inst);
void V_SQRT_F32(const GcnInst& inst);
void V_SIN_F32(const GcnInst& inst);
void V_COS_F32(const GcnInst& inst);
void V_NOT_B32(const GcnInst& inst); void V_NOT_B32(const GcnInst& inst);
void V_CVT_F32_UBYTE(u32 index, const GcnInst& inst);
void V_BFREV_B32(const GcnInst& inst); void V_BFREV_B32(const GcnInst& inst);
void V_LDEXP_F32(const GcnInst& inst);
void V_CVT_FLR_I32_F32(const GcnInst& inst);
void V_CMP_CLASS_F32(const GcnInst& inst);
void V_FFBL_B32(const GcnInst& inst);
void V_MBCNT_U32_B32(bool is_low, const GcnInst& inst);
void V_BFM_B32(const GcnInst& inst);
void V_FFBH_U32(const GcnInst& inst); void V_FFBH_U32(const GcnInst& inst);
void V_MOVRELS_B32(const GcnInst& inst); void V_FFBL_B32(const GcnInst& inst);
void V_MOVRELD_B32(const GcnInst& inst); void V_MOVRELD_B32(const GcnInst& inst);
void V_MOVRELS_B32(const GcnInst& inst);
void V_MOVRELSD_B32(const GcnInst& inst); void V_MOVRELSD_B32(const GcnInst& inst);
// Vector Memory // VOPC
void V_CMP_F32(ConditionOp op, bool set_exec, const GcnInst& inst);
void V_CMP_U32(ConditionOp op, bool is_signed, bool set_exec, const GcnInst& inst);
void V_CMP_NE_U64(const GcnInst& inst);
void V_CMP_CLASS_F32(const GcnInst& inst);
// VOP3a
void V_MAD_F32(const GcnInst& inst);
void V_MAD_I32_I24(const GcnInst& inst, bool is_signed = false);
void V_MAD_U32_U24(const GcnInst& inst);
void V_CUBEID_F32(const GcnInst& inst);
void V_CUBESC_F32(const GcnInst& inst);
void V_CUBETC_F32(const GcnInst& inst);
void V_CUBEMA_F32(const GcnInst& inst);
void V_BFE_U32(bool is_signed, const GcnInst& inst);
void V_BFI_B32(const GcnInst& inst);
void V_FMA_F32(const GcnInst& inst);
void V_FMA_F64(const GcnInst& inst);
void V_MIN3_F32(const GcnInst& inst);
void V_MIN3_I32(const GcnInst& inst);
void V_MAX3_F32(const GcnInst& inst);
void V_MAX3_U32(bool is_signed, const GcnInst& inst);
void V_MED3_F32(const GcnInst& inst);
void V_MED3_I32(const GcnInst& inst);
void V_SAD(const GcnInst& inst);
void V_SAD_U32(const GcnInst& inst);
void V_LSHL_B64(const GcnInst& inst);
void V_MUL_F64(const GcnInst& inst);
void V_MAX_F64(const GcnInst& inst);
void V_MUL_LO_U32(const GcnInst& inst);
void V_MUL_HI_U32(bool is_signed, const GcnInst& inst);
void V_MAD_U64_U32(const GcnInst& inst);
// Vector interpolation
// VINTRP
void V_INTERP_P2_F32(const GcnInst& inst);
void V_INTERP_MOV_F32(const GcnInst& inst);
// Data share
// DS
void DS_ADD_U32(const GcnInst& inst, bool rtn);
void DS_MIN_U32(const GcnInst& inst, bool is_signed, bool rtn);
void DS_MAX_U32(const GcnInst& inst, bool is_signed, bool rtn);
void DS_WRITE(int bit_size, bool is_signed, bool is_pair, bool stride64, const GcnInst& inst);
void DS_SWIZZLE_B32(const GcnInst& inst);
void DS_READ(int bit_size, bool is_signed, bool is_pair, bool stride64, const GcnInst& inst);
void DS_APPEND(const GcnInst& inst);
void DS_CONSUME(const GcnInst& inst);
// Buffer Memory
// MUBUF / MTBUF
void BUFFER_LOAD(u32 num_dwords, bool is_typed, const GcnInst& inst); void BUFFER_LOAD(u32 num_dwords, bool is_typed, const GcnInst& inst);
void BUFFER_LOAD_FORMAT(u32 num_dwords, const GcnInst& inst); void BUFFER_LOAD_FORMAT(u32 num_dwords, const GcnInst& inst);
void BUFFER_STORE(u32 num_dwords, bool is_typed, const GcnInst& inst); void BUFFER_STORE(u32 num_dwords, bool is_typed, const GcnInst& inst);
void BUFFER_STORE_FORMAT(u32 num_dwords, const GcnInst& inst); void BUFFER_STORE_FORMAT(u32 num_dwords, const GcnInst& inst);
void BUFFER_ATOMIC(AtomicOp op, const GcnInst& inst); void BUFFER_ATOMIC(AtomicOp op, const GcnInst& inst);
// Vector interpolation // Image Memory
void V_INTERP_P2_F32(const GcnInst& inst);
void V_INTERP_MOV_F32(const GcnInst& inst);
// Data share
void DS_SWIZZLE_B32(const GcnInst& inst);
void DS_READ(int bit_size, bool is_signed, bool is_pair, bool stride64, const GcnInst& inst);
void DS_WRITE(int bit_size, bool is_signed, bool is_pair, bool stride64, const GcnInst& inst);
void DS_ADD_U32(const GcnInst& inst, bool rtn);
void DS_MIN_U32(const GcnInst& inst, bool is_signed, bool rtn);
void DS_MAX_U32(const GcnInst& inst, bool is_signed, bool rtn);
void V_READFIRSTLANE_B32(const GcnInst& inst);
void V_READLANE_B32(const GcnInst& inst);
void V_WRITELANE_B32(const GcnInst& inst);
void DS_APPEND(const GcnInst& inst);
void DS_CONSUME(const GcnInst& inst);
void S_BARRIER();
// MIMG // MIMG
void IMAGE_LOAD(bool has_mip, const GcnInst& inst);
void IMAGE_STORE(const GcnInst& inst);
void IMAGE_GET_RESINFO(const GcnInst& inst); void IMAGE_GET_RESINFO(const GcnInst& inst);
void IMAGE_ATOMIC(AtomicOp op, const GcnInst& inst);
void IMAGE_SAMPLE(const GcnInst& inst); void IMAGE_SAMPLE(const GcnInst& inst);
void IMAGE_GATHER(const GcnInst& inst); void IMAGE_GATHER(const GcnInst& inst);
void IMAGE_STORE(const GcnInst& inst);
void IMAGE_LOAD(bool has_mip, const GcnInst& inst);
void IMAGE_GET_LOD(const GcnInst& inst); void IMAGE_GET_LOD(const GcnInst& inst);
void IMAGE_ATOMIC(AtomicOp op, const GcnInst& inst);
private: private:
template <typename T = IR::U32> template <typename T = IR::U32>
@ -244,6 +265,7 @@ private:
void SetDst(const InstOperand& operand, const IR::U32F32& value); void SetDst(const InstOperand& operand, const IR::U32F32& value);
void SetDst64(const InstOperand& operand, const IR::U64F64& value_raw); void SetDst64(const InstOperand& operand, const IR::U64F64& value_raw);
// Vector ALU Helprers
IR::U32 VMovRelSHelper(u32 src_vgprno, const IR::U32 m0); IR::U32 VMovRelSHelper(u32 src_vgprno, const IR::U32 m0);
void VMovRelDHelper(u32 dst_vgprno, const IR::U32 src_val, const IR::U32 m0); void VMovRelDHelper(u32 dst_vgprno, const IR::U32 src_val, const IR::U32 m0);

File diff suppressed because it is too large Load diff

View file

@ -5,6 +5,22 @@
namespace Shader::Gcn { namespace Shader::Gcn {
void Translator::EmitVectorInterpolation(const GcnInst& inst) {
switch (inst.opcode) {
// VINTRP
case Opcode::V_INTERP_P1_F32:
return;
case Opcode::V_INTERP_P2_F32:
return V_INTERP_P2_F32(inst);
case Opcode::V_INTERP_MOV_F32:
return V_INTERP_MOV_F32(inst);
default:
LogMissingOpcode(inst);
}
}
// VINTRP
void Translator::V_INTERP_P2_F32(const GcnInst& inst) { void Translator::V_INTERP_P2_F32(const GcnInst& inst) {
const IR::VectorReg dst_reg{inst.dst[0].code}; const IR::VectorReg dst_reg{inst.dst[0].code};
auto& attr = runtime_info.fs_info.inputs.at(inst.control.vintrp.attr); auto& attr = runtime_info.fs_info.inputs.at(inst.control.vintrp.attr);
@ -19,17 +35,4 @@ void Translator::V_INTERP_MOV_F32(const GcnInst& inst) {
ir.SetVectorReg(dst_reg, ir.GetAttribute(attrib, inst.control.vintrp.chan)); ir.SetVectorReg(dst_reg, ir.GetAttribute(attrib, inst.control.vintrp.chan));
} }
void Translator::EmitVectorInterpolation(const GcnInst& inst) {
switch (inst.opcode) {
case Opcode::V_INTERP_P1_F32:
return;
case Opcode::V_INTERP_P2_F32:
return V_INTERP_P2_F32(inst);
case Opcode::V_INTERP_MOV_F32:
return V_INTERP_MOV_F32(inst);
default:
LogMissingOpcode(inst);
}
}
} // namespace Shader::Gcn } // namespace Shader::Gcn

View file

@ -7,55 +7,7 @@ namespace Shader::Gcn {
void Translator::EmitVectorMemory(const GcnInst& inst) { void Translator::EmitVectorMemory(const GcnInst& inst) {
switch (inst.opcode) { switch (inst.opcode) {
case Opcode::IMAGE_SAMPLE_LZ_O: // MUBUF / MTBUF
case Opcode::IMAGE_SAMPLE_O:
case Opcode::IMAGE_SAMPLE_C:
case Opcode::IMAGE_SAMPLE_C_LZ:
case Opcode::IMAGE_SAMPLE_LZ:
case Opcode::IMAGE_SAMPLE:
case Opcode::IMAGE_SAMPLE_L:
case Opcode::IMAGE_SAMPLE_L_O:
case Opcode::IMAGE_SAMPLE_C_O:
case Opcode::IMAGE_SAMPLE_B:
case Opcode::IMAGE_SAMPLE_C_LZ_O:
case Opcode::IMAGE_SAMPLE_D:
case Opcode::IMAGE_SAMPLE_CD:
return IMAGE_SAMPLE(inst);
case Opcode::IMAGE_GATHER4_LZ:
case Opcode::IMAGE_GATHER4_C:
case Opcode::IMAGE_GATHER4_C_LZ:
case Opcode::IMAGE_GATHER4_LZ_O:
return IMAGE_GATHER(inst);
case Opcode::IMAGE_ATOMIC_ADD:
return IMAGE_ATOMIC(AtomicOp::Add, inst);
case Opcode::IMAGE_ATOMIC_AND:
return IMAGE_ATOMIC(AtomicOp::And, inst);
case Opcode::IMAGE_ATOMIC_OR:
return IMAGE_ATOMIC(AtomicOp::Or, inst);
case Opcode::IMAGE_ATOMIC_XOR:
return IMAGE_ATOMIC(AtomicOp::Xor, inst);
case Opcode::IMAGE_ATOMIC_UMAX:
return IMAGE_ATOMIC(AtomicOp::Umax, inst);
case Opcode::IMAGE_ATOMIC_SMAX:
return IMAGE_ATOMIC(AtomicOp::Smax, inst);
case Opcode::IMAGE_ATOMIC_UMIN:
return IMAGE_ATOMIC(AtomicOp::Umin, inst);
case Opcode::IMAGE_ATOMIC_SMIN:
return IMAGE_ATOMIC(AtomicOp::Smin, inst);
case Opcode::IMAGE_ATOMIC_INC:
return IMAGE_ATOMIC(AtomicOp::Inc, inst);
case Opcode::IMAGE_ATOMIC_DEC:
return IMAGE_ATOMIC(AtomicOp::Dec, inst);
case Opcode::IMAGE_GET_LOD:
return IMAGE_GET_LOD(inst);
case Opcode::IMAGE_STORE:
return IMAGE_STORE(inst);
case Opcode::IMAGE_LOAD_MIP:
return IMAGE_LOAD(true, inst);
case Opcode::IMAGE_LOAD:
return IMAGE_LOAD(false, inst);
case Opcode::IMAGE_GET_RESINFO:
return IMAGE_GET_RESINFO(inst);
// Buffer load operations // Buffer load operations
case Opcode::TBUFFER_LOAD_FORMAT_X: case Opcode::TBUFFER_LOAD_FORMAT_X:
@ -137,239 +89,74 @@ void Translator::EmitVectorMemory(const GcnInst& inst) {
case Opcode::BUFFER_ATOMIC_DEC: case Opcode::BUFFER_ATOMIC_DEC:
return BUFFER_ATOMIC(AtomicOp::Dec, inst); return BUFFER_ATOMIC(AtomicOp::Dec, inst);
// MIMG
// Image load operations
case Opcode::IMAGE_LOAD:
return IMAGE_LOAD(false, inst);
case Opcode::IMAGE_LOAD_MIP:
return IMAGE_LOAD(true, inst);
// Buffer store operations
case Opcode::IMAGE_STORE:
return IMAGE_STORE(inst);
// Image misc operations
case Opcode::IMAGE_GET_RESINFO:
return IMAGE_GET_RESINFO(inst);
// Image atomic operations
case Opcode::IMAGE_ATOMIC_ADD:
return IMAGE_ATOMIC(AtomicOp::Add, inst);
case Opcode::IMAGE_ATOMIC_SMIN:
return IMAGE_ATOMIC(AtomicOp::Smin, inst);
case Opcode::IMAGE_ATOMIC_UMIN:
return IMAGE_ATOMIC(AtomicOp::Umin, inst);
case Opcode::IMAGE_ATOMIC_SMAX:
return IMAGE_ATOMIC(AtomicOp::Smax, inst);
case Opcode::IMAGE_ATOMIC_UMAX:
return IMAGE_ATOMIC(AtomicOp::Umax, inst);
case Opcode::IMAGE_ATOMIC_AND:
return IMAGE_ATOMIC(AtomicOp::And, inst);
case Opcode::IMAGE_ATOMIC_OR:
return IMAGE_ATOMIC(AtomicOp::Or, inst);
case Opcode::IMAGE_ATOMIC_XOR:
return IMAGE_ATOMIC(AtomicOp::Xor, inst);
case Opcode::IMAGE_ATOMIC_INC:
return IMAGE_ATOMIC(AtomicOp::Inc, inst);
case Opcode::IMAGE_ATOMIC_DEC:
return IMAGE_ATOMIC(AtomicOp::Dec, inst);
case Opcode::IMAGE_SAMPLE:
case Opcode::IMAGE_SAMPLE_D:
case Opcode::IMAGE_SAMPLE_L:
case Opcode::IMAGE_SAMPLE_B:
case Opcode::IMAGE_SAMPLE_LZ:
case Opcode::IMAGE_SAMPLE_C:
case Opcode::IMAGE_SAMPLE_C_LZ:
case Opcode::IMAGE_SAMPLE_O:
case Opcode::IMAGE_SAMPLE_L_O:
case Opcode::IMAGE_SAMPLE_LZ_O:
case Opcode::IMAGE_SAMPLE_C_O:
case Opcode::IMAGE_SAMPLE_C_LZ_O:
case Opcode::IMAGE_SAMPLE_CD:
return IMAGE_SAMPLE(inst);
// Image gather operations
case Opcode::IMAGE_GATHER4_LZ:
case Opcode::IMAGE_GATHER4_C:
case Opcode::IMAGE_GATHER4_C_LZ:
case Opcode::IMAGE_GATHER4_LZ_O:
return IMAGE_GATHER(inst);
// Image misc operations
case Opcode::IMAGE_GET_LOD:
return IMAGE_GET_LOD(inst);
default: default:
LogMissingOpcode(inst); LogMissingOpcode(inst);
} }
} }
void Translator::IMAGE_GET_RESINFO(const GcnInst& inst) {
IR::VectorReg dst_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const auto flags = ImageResFlags(inst.control.mimg.dmask);
const bool has_mips = flags.test(ImageResComponent::MipCount);
const IR::U32 lod = ir.GetVectorReg(IR::VectorReg(inst.src[0].code));
const IR::Value tsharp = ir.GetScalarReg(tsharp_reg);
const IR::Value size = ir.ImageQueryDimension(tsharp, lod, ir.Imm1(has_mips));
if (flags.test(ImageResComponent::Width)) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 0)});
}
if (flags.test(ImageResComponent::Height)) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 1)});
}
if (flags.test(ImageResComponent::Depth)) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 2)});
}
if (has_mips) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 3)});
}
}
void Translator::IMAGE_SAMPLE(const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg dest_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::ScalarReg sampler_reg{inst.src[3].code * 4};
const auto flags = MimgModifierFlags(mimg.mod);
// Load first dword of T# and S#. We will use them as the handle that will guide resource
// tracking pass where to read the sharps. This will later also get patched to the SPIRV texture
// binding index.
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(tsharp_reg), ir.GetScalarReg(sampler_reg));
// Load first address components as denoted in 8.2.4 VGPR Usage Sea Islands Series Instruction
// Set Architecture
const IR::U32 offset =
flags.test(MimgModifier::Offset) ? ir.GetVectorReg<IR::U32>(addr_reg++) : IR::U32{};
const IR::F32 bias =
flags.test(MimgModifier::LodBias) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::F32 dref =
flags.test(MimgModifier::Pcf) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::Value derivatives = [&] -> IR::Value {
if (!flags.test(MimgModifier::Derivative)) {
return {};
}
addr_reg = addr_reg + 4;
return ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg - 4), ir.GetVectorReg<IR::F32>(addr_reg - 3),
ir.GetVectorReg<IR::F32>(addr_reg - 2), ir.GetVectorReg<IR::F32>(addr_reg - 1));
}();
// Now we can load body components as noted in Table 8.9 Image Opcodes with Sampler
// Since these are at most 4 dwords, we load them into a single uvec4 and place them
// in coords field of the instruction. Then the resource tracking pass will patch the
// IR instruction to fill in lod_clamp field.
const IR::Value body = ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3));
// Derivatives are tricky because their number depends on the texture type which is located in
// T#. We don't have access to T# though until resource tracking pass. For now assume if
// derivatives are present, that a 2D image is bound.
const bool has_derivatives = flags.test(MimgModifier::Derivative);
const bool explicit_lod = flags.any(MimgModifier::Level0, MimgModifier::Lod);
IR::TextureInstInfo info{};
info.is_depth.Assign(flags.test(MimgModifier::Pcf));
info.has_bias.Assign(flags.test(MimgModifier::LodBias));
info.has_lod_clamp.Assign(flags.test(MimgModifier::LodClamp));
info.force_level0.Assign(flags.test(MimgModifier::Level0));
info.has_offset.Assign(flags.test(MimgModifier::Offset));
info.explicit_lod.Assign(explicit_lod);
info.has_derivatives.Assign(has_derivatives);
// Issue IR instruction, leaving unknown fields blank to patch later.
const IR::Value texel = [&]() -> IR::Value {
if (has_derivatives) {
return ir.ImageGradient(handle, body, derivatives, offset, {}, info);
}
if (!flags.test(MimgModifier::Pcf)) {
if (explicit_lod) {
return ir.ImageSampleExplicitLod(handle, body, offset, info);
} else {
return ir.ImageSampleImplicitLod(handle, body, bias, offset, info);
}
}
if (explicit_lod) {
return ir.ImageSampleDrefExplicitLod(handle, body, dref, offset, info);
}
return ir.ImageSampleDrefImplicitLod(handle, body, dref, bias, offset, info);
}();
for (u32 i = 0; i < 4; i++) {
if (((mimg.dmask >> i) & 1) == 0) {
continue;
}
IR::F32 value;
if (flags.test(MimgModifier::Pcf)) {
value = i < 3 ? IR::F32{texel} : ir.Imm32(1.0f);
} else {
value = IR::F32{ir.CompositeExtract(texel, i)};
}
ir.SetVectorReg(dest_reg++, value);
}
}
void Translator::IMAGE_GATHER(const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
if (mimg.da) {
LOG_WARNING(Render_Vulkan, "Image instruction declares an array");
}
IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg dest_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::ScalarReg sampler_reg{inst.src[3].code * 4};
const auto flags = MimgModifierFlags(mimg.mod);
// Load first dword of T# and S#. We will use them as the handle that will guide resource
// tracking pass where to read the sharps. This will later also get patched to the SPIRV texture
// binding index.
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(tsharp_reg), ir.GetScalarReg(sampler_reg));
// Load first address components as denoted in 8.2.4 VGPR Usage Sea Islands Series Instruction
// Set Architecture
const IR::Value offset =
flags.test(MimgModifier::Offset) ? ir.GetVectorReg(addr_reg++) : IR::Value{};
const IR::F32 bias =
flags.test(MimgModifier::LodBias) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::F32 dref =
flags.test(MimgModifier::Pcf) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
// Derivatives are tricky because their number depends on the texture type which is located in
// T#. We don't have access to T# though until resource tracking pass. For now assume no
// derivatives are present, otherwise we don't know where coordinates are placed in the address
// stream.
ASSERT_MSG(!flags.test(MimgModifier::Derivative), "Derivative image instruction");
// Now we can load body components as noted in Table 8.9 Image Opcodes with Sampler
// Since these are at most 4 dwords, we load them into a single uvec4 and place them
// in coords field of the instruction. Then the resource tracking pass will patch the
// IR instruction to fill in lod_clamp field.
const IR::Value body = ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3));
const bool explicit_lod = flags.any(MimgModifier::Level0, MimgModifier::Lod);
IR::TextureInstInfo info{};
info.is_depth.Assign(flags.test(MimgModifier::Pcf));
info.has_bias.Assign(flags.test(MimgModifier::LodBias));
info.has_lod_clamp.Assign(flags.test(MimgModifier::LodClamp));
info.force_level0.Assign(flags.test(MimgModifier::Level0));
info.has_offset.Assign(flags.test(MimgModifier::Offset));
// info.explicit_lod.Assign(explicit_lod);
info.gather_comp.Assign(std::bit_width(mimg.dmask) - 1);
// Issue IR instruction, leaving unknown fields blank to patch later.
const IR::Value texel = [&]() -> IR::Value {
const IR::F32 lod = flags.test(MimgModifier::Level0) ? ir.Imm32(0.f) : IR::F32{};
if (!flags.test(MimgModifier::Pcf)) {
return ir.ImageGather(handle, body, offset, info);
}
ASSERT(mimg.dmask & 1); // should be always 1st (R) component
return ir.ImageGatherDref(handle, body, offset, dref, info);
}();
// For gather4 instructions dmask selects which component to read and must have
// only one bit set to 1
ASSERT_MSG(std::popcount(mimg.dmask) == 1, "Unexpected bits in gather dmask");
for (u32 i = 0; i < 4; i++) {
const IR::F32 value = IR::F32{ir.CompositeExtract(texel, i)};
ir.SetVectorReg(dest_reg++, value);
}
}
void Translator::IMAGE_LOAD(bool has_mip, const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg dest_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::Value handle = ir.GetScalarReg(tsharp_reg);
const IR::Value body =
ir.CompositeConstruct(ir.GetVectorReg(addr_reg), ir.GetVectorReg(addr_reg + 1),
ir.GetVectorReg(addr_reg + 2), ir.GetVectorReg(addr_reg + 3));
IR::TextureInstInfo info{};
info.explicit_lod.Assign(has_mip);
const IR::Value texel = ir.ImageFetch(handle, body, {}, {}, {}, info);
for (u32 i = 0; i < 4; i++) {
if (((mimg.dmask >> i) & 1) == 0) {
continue;
}
IR::F32 value = IR::F32{ir.CompositeExtract(texel, i)};
ir.SetVectorReg(dest_reg++, value);
}
}
void Translator::IMAGE_STORE(const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg data_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::Value handle = ir.GetScalarReg(tsharp_reg);
const IR::Value body =
ir.CompositeConstruct(ir.GetVectorReg(addr_reg), ir.GetVectorReg(addr_reg + 1),
ir.GetVectorReg(addr_reg + 2), ir.GetVectorReg(addr_reg + 3));
boost::container::static_vector<IR::F32, 4> comps;
for (u32 i = 0; i < 4; i++) {
if (((mimg.dmask >> i) & 1) == 0) {
comps.push_back(ir.Imm32(0.f));
continue;
}
comps.push_back(ir.GetVectorReg<IR::F32>(data_reg++));
}
const IR::Value value = ir.CompositeConstruct(comps[0], comps[1], comps[2], comps[3]);
ir.ImageWrite(handle, body, value, {});
}
void Translator::BUFFER_LOAD(u32 num_dwords, bool is_typed, const GcnInst& inst) { void Translator::BUFFER_LOAD(u32 num_dwords, bool is_typed, const GcnInst& inst) {
const auto& mtbuf = inst.control.mtbuf; const auto& mtbuf = inst.control.mtbuf;
const IR::VectorReg vaddr{inst.src[0].code}; const IR::VectorReg vaddr{inst.src[0].code};
@ -588,19 +375,77 @@ void Translator::BUFFER_ATOMIC(AtomicOp op, const GcnInst& inst) {
} }
} }
void Translator::IMAGE_GET_LOD(const GcnInst& inst) { // Image Memory
// MIMG
void Translator::IMAGE_LOAD(bool has_mip, const GcnInst& inst) {
const auto& mimg = inst.control.mimg; const auto& mimg = inst.control.mimg;
IR::VectorReg dst_reg{inst.dst[0].code};
IR::VectorReg addr_reg{inst.src[0].code}; IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg dest_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4}; const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::Value handle = ir.GetScalarReg(tsharp_reg); const IR::Value handle = ir.GetScalarReg(tsharp_reg);
const IR::Value body = ir.CompositeConstruct( const IR::Value body =
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1), ir.CompositeConstruct(ir.GetVectorReg(addr_reg), ir.GetVectorReg(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3)); ir.GetVectorReg(addr_reg + 2), ir.GetVectorReg(addr_reg + 3));
const IR::Value lod = ir.ImageQueryLod(handle, body, {});
ir.SetVectorReg(dst_reg++, IR::F32{ir.CompositeExtract(lod, 0)}); IR::TextureInstInfo info{};
ir.SetVectorReg(dst_reg++, IR::F32{ir.CompositeExtract(lod, 1)}); info.explicit_lod.Assign(has_mip);
const IR::Value texel = ir.ImageFetch(handle, body, {}, {}, {}, info);
for (u32 i = 0; i < 4; i++) {
if (((mimg.dmask >> i) & 1) == 0) {
continue;
}
IR::F32 value = IR::F32{ir.CompositeExtract(texel, i)};
ir.SetVectorReg(dest_reg++, value);
}
}
void Translator::IMAGE_STORE(const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg data_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::Value handle = ir.GetScalarReg(tsharp_reg);
const IR::Value body =
ir.CompositeConstruct(ir.GetVectorReg(addr_reg), ir.GetVectorReg(addr_reg + 1),
ir.GetVectorReg(addr_reg + 2), ir.GetVectorReg(addr_reg + 3));
boost::container::static_vector<IR::F32, 4> comps;
for (u32 i = 0; i < 4; i++) {
if (((mimg.dmask >> i) & 1) == 0) {
comps.push_back(ir.Imm32(0.f));
continue;
}
comps.push_back(ir.GetVectorReg<IR::F32>(data_reg++));
}
const IR::Value value = ir.CompositeConstruct(comps[0], comps[1], comps[2], comps[3]);
ir.ImageWrite(handle, body, value, {});
}
void Translator::IMAGE_GET_RESINFO(const GcnInst& inst) {
IR::VectorReg dst_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const auto flags = ImageResFlags(inst.control.mimg.dmask);
const bool has_mips = flags.test(ImageResComponent::MipCount);
const IR::U32 lod = ir.GetVectorReg(IR::VectorReg(inst.src[0].code));
const IR::Value tsharp = ir.GetScalarReg(tsharp_reg);
const IR::Value size = ir.ImageQueryDimension(tsharp, lod, ir.Imm1(has_mips));
if (flags.test(ImageResComponent::Width)) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 0)});
}
if (flags.test(ImageResComponent::Height)) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 1)});
}
if (flags.test(ImageResComponent::Depth)) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 2)});
}
if (has_mips) {
ir.SetVectorReg(dst_reg++, IR::U32{ir.CompositeExtract(size, 3)});
}
} }
void Translator::IMAGE_ATOMIC(AtomicOp op, const GcnInst& inst) { void Translator::IMAGE_ATOMIC(AtomicOp op, const GcnInst& inst) {
@ -647,4 +492,177 @@ void Translator::IMAGE_ATOMIC(AtomicOp op, const GcnInst& inst) {
} }
} }
void Translator::IMAGE_SAMPLE(const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg dest_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::ScalarReg sampler_reg{inst.src[3].code * 4};
const auto flags = MimgModifierFlags(mimg.mod);
// Load first dword of T# and S#. We will use them as the handle that will guide resource
// tracking pass where to read the sharps. This will later also get patched to the SPIRV texture
// binding index.
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(tsharp_reg), ir.GetScalarReg(sampler_reg));
// Load first address components as denoted in 8.2.4 VGPR Usage Sea Islands Series Instruction
// Set Architecture
const IR::U32 offset =
flags.test(MimgModifier::Offset) ? ir.GetVectorReg<IR::U32>(addr_reg++) : IR::U32{};
const IR::F32 bias =
flags.test(MimgModifier::LodBias) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::F32 dref =
flags.test(MimgModifier::Pcf) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::Value derivatives = [&] -> IR::Value {
if (!flags.test(MimgModifier::Derivative)) {
return {};
}
addr_reg = addr_reg + 4;
return ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg - 4), ir.GetVectorReg<IR::F32>(addr_reg - 3),
ir.GetVectorReg<IR::F32>(addr_reg - 2), ir.GetVectorReg<IR::F32>(addr_reg - 1));
}();
// Now we can load body components as noted in Table 8.9 Image Opcodes with Sampler
// Since these are at most 4 dwords, we load them into a single uvec4 and place them
// in coords field of the instruction. Then the resource tracking pass will patch the
// IR instruction to fill in lod_clamp field.
const IR::Value body = ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3));
// Derivatives are tricky because their number depends on the texture type which is located in
// T#. We don't have access to T# though until resource tracking pass. For now assume if
// derivatives are present, that a 2D image is bound.
const bool has_derivatives = flags.test(MimgModifier::Derivative);
const bool explicit_lod = flags.any(MimgModifier::Level0, MimgModifier::Lod);
IR::TextureInstInfo info{};
info.is_depth.Assign(flags.test(MimgModifier::Pcf));
info.has_bias.Assign(flags.test(MimgModifier::LodBias));
info.has_lod_clamp.Assign(flags.test(MimgModifier::LodClamp));
info.force_level0.Assign(flags.test(MimgModifier::Level0));
info.has_offset.Assign(flags.test(MimgModifier::Offset));
info.explicit_lod.Assign(explicit_lod);
info.has_derivatives.Assign(has_derivatives);
// Issue IR instruction, leaving unknown fields blank to patch later.
const IR::Value texel = [&]() -> IR::Value {
if (has_derivatives) {
return ir.ImageGradient(handle, body, derivatives, offset, {}, info);
}
if (!flags.test(MimgModifier::Pcf)) {
if (explicit_lod) {
return ir.ImageSampleExplicitLod(handle, body, offset, info);
} else {
return ir.ImageSampleImplicitLod(handle, body, bias, offset, info);
}
}
if (explicit_lod) {
return ir.ImageSampleDrefExplicitLod(handle, body, dref, offset, info);
}
return ir.ImageSampleDrefImplicitLod(handle, body, dref, bias, offset, info);
}();
for (u32 i = 0; i < 4; i++) {
if (((mimg.dmask >> i) & 1) == 0) {
continue;
}
IR::F32 value;
if (flags.test(MimgModifier::Pcf)) {
value = i < 3 ? IR::F32{texel} : ir.Imm32(1.0f);
} else {
value = IR::F32{ir.CompositeExtract(texel, i)};
}
ir.SetVectorReg(dest_reg++, value);
}
}
void Translator::IMAGE_GATHER(const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
if (mimg.da) {
LOG_WARNING(Render_Vulkan, "Image instruction declares an array");
}
IR::VectorReg addr_reg{inst.src[0].code};
IR::VectorReg dest_reg{inst.dst[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::ScalarReg sampler_reg{inst.src[3].code * 4};
const auto flags = MimgModifierFlags(mimg.mod);
// Load first dword of T# and S#. We will use them as the handle that will guide resource
// tracking pass where to read the sharps. This will later also get patched to the SPIRV texture
// binding index.
const IR::Value handle =
ir.CompositeConstruct(ir.GetScalarReg(tsharp_reg), ir.GetScalarReg(sampler_reg));
// Load first address components as denoted in 8.2.4 VGPR Usage Sea Islands Series Instruction
// Set Architecture
const IR::Value offset =
flags.test(MimgModifier::Offset) ? ir.GetVectorReg(addr_reg++) : IR::Value{};
const IR::F32 bias =
flags.test(MimgModifier::LodBias) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
const IR::F32 dref =
flags.test(MimgModifier::Pcf) ? ir.GetVectorReg<IR::F32>(addr_reg++) : IR::F32{};
// Derivatives are tricky because their number depends on the texture type which is located in
// T#. We don't have access to T# though until resource tracking pass. For now assume no
// derivatives are present, otherwise we don't know where coordinates are placed in the address
// stream.
ASSERT_MSG(!flags.test(MimgModifier::Derivative), "Derivative image instruction");
// Now we can load body components as noted in Table 8.9 Image Opcodes with Sampler
// Since these are at most 4 dwords, we load them into a single uvec4 and place them
// in coords field of the instruction. Then the resource tracking pass will patch the
// IR instruction to fill in lod_clamp field.
const IR::Value body = ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3));
const bool explicit_lod = flags.any(MimgModifier::Level0, MimgModifier::Lod);
IR::TextureInstInfo info{};
info.is_depth.Assign(flags.test(MimgModifier::Pcf));
info.has_bias.Assign(flags.test(MimgModifier::LodBias));
info.has_lod_clamp.Assign(flags.test(MimgModifier::LodClamp));
info.force_level0.Assign(flags.test(MimgModifier::Level0));
info.has_offset.Assign(flags.test(MimgModifier::Offset));
// info.explicit_lod.Assign(explicit_lod);
info.gather_comp.Assign(std::bit_width(mimg.dmask) - 1);
// Issue IR instruction, leaving unknown fields blank to patch later.
const IR::Value texel = [&]() -> IR::Value {
const IR::F32 lod = flags.test(MimgModifier::Level0) ? ir.Imm32(0.f) : IR::F32{};
if (!flags.test(MimgModifier::Pcf)) {
return ir.ImageGather(handle, body, offset, info);
}
ASSERT(mimg.dmask & 1); // should be always 1st (R) component
return ir.ImageGatherDref(handle, body, offset, dref, info);
}();
// For gather4 instructions dmask selects which component to read and must have
// only one bit set to 1
ASSERT_MSG(std::popcount(mimg.dmask) == 1, "Unexpected bits in gather dmask");
for (u32 i = 0; i < 4; i++) {
const IR::F32 value = IR::F32{ir.CompositeExtract(texel, i)};
ir.SetVectorReg(dest_reg++, value);
}
}
void Translator::IMAGE_GET_LOD(const GcnInst& inst) {
const auto& mimg = inst.control.mimg;
IR::VectorReg dst_reg{inst.dst[0].code};
IR::VectorReg addr_reg{inst.src[0].code};
const IR::ScalarReg tsharp_reg{inst.src[2].code * 4};
const IR::Value handle = ir.GetScalarReg(tsharp_reg);
const IR::Value body = ir.CompositeConstruct(
ir.GetVectorReg<IR::F32>(addr_reg), ir.GetVectorReg<IR::F32>(addr_reg + 1),
ir.GetVectorReg<IR::F32>(addr_reg + 2), ir.GetVectorReg<IR::F32>(addr_reg + 3));
const IR::Value lod = ir.ImageQueryLod(handle, body, {});
ir.SetVectorReg(dst_reg++, IR::F32{ir.CompositeExtract(lod, 0)});
ir.SetVectorReg(dst_reg++, IR::F32{ir.CompositeExtract(lod, 1)});
}
} // namespace Shader::Gcn } // namespace Shader::Gcn