shadPS4/src/core/address_space.cpp

533 lines
23 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <boost/icl/separate_interval_set.hpp>
#include "common/alignment.h"
#include "common/arch.h"
#include "common/assert.h"
#include "common/error.h"
#include "core/address_space.h"
#include "core/libraries/kernel/memory_management.h"
#include "core/memory.h"
#include "libraries/error_codes.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <fcntl.h>
#include <sys/mman.h>
#endif
#if defined(__APPLE__) && defined(ARCH_X86_64)
// Reserve space for the system address space using a zerofill section.
asm(".zerofill GUEST_SYSTEM,GUEST_SYSTEM,__guest_system,0xFBFC00000");
#endif
namespace Core {
static constexpr size_t BackingSize = SCE_KERNEL_MAIN_DMEM_SIZE_PRO;
2024-07-11 13:16:50 +00:00
#ifdef _WIN32
[[nodiscard]] constexpr u64 ToWindowsProt(Core::MemoryProt prot) {
switch (prot) {
case Core::MemoryProt::NoAccess:
default:
return PAGE_NOACCESS;
case Core::MemoryProt::CpuRead:
return PAGE_READONLY;
case Core::MemoryProt::CpuReadWrite:
return PAGE_READWRITE;
}
}
struct AddressSpace::Impl {
Impl() : process{GetCurrentProcess()} {
2024-06-09 23:13:44 +00:00
// Allocate virtual address placeholder for our address space.
MEM_ADDRESS_REQUIREMENTS req{};
MEM_EXTENDED_PARAMETER param{};
req.LowestStartingAddress = reinterpret_cast<PVOID>(SYSTEM_MANAGED_MIN);
// The ending address must align to page boundary - 1
// https://stackoverflow.com/questions/54223343/virtualalloc2-with-memextendedparameteraddressrequirements-always-produces-error
req.HighestEndingAddress = reinterpret_cast<PVOID>(USER_MIN + UserSize - 1);
req.Alignment = 0;
param.Type = MemExtendedParameterAddressRequirements;
param.Pointer = &req;
// Typically, lower parts of system managed area is already reserved in windows.
// If reservation fails attempt again by reducing the area size a little bit.
// System managed is about 31GB in size so also cap the number of times we can reduce it
// to a reasonable amount.
static constexpr size_t ReductionOnFail = 1_GB;
static constexpr size_t MaxReductions = 10;
size_t reduction = 0;
size_t virtual_size = SystemManagedSize + SystemReservedSize + UserSize;
for (u32 i = 0; i < MaxReductions; i++) {
2024-07-25 08:59:39 +00:00
virtual_base = static_cast<u8*>(VirtualAlloc2(process, NULL, virtual_size - reduction,
MEM_RESERVE | MEM_RESERVE_PLACEHOLDER,
PAGE_NOACCESS, &param, 1));
if (virtual_base) {
break;
}
reduction += ReductionOnFail;
2024-06-09 23:13:44 +00:00
}
ASSERT_MSG(virtual_base, "Unable to reserve virtual address space: {}",
Common::GetLastErrorMsg());
2024-06-09 23:13:44 +00:00
// Take the reduction off of the system managed area, and leave the others unchanged.
system_managed_base = virtual_base;
system_managed_size = SystemManagedSize - reduction;
system_reserved_base = reinterpret_cast<u8*>(SYSTEM_RESERVED_MIN);
system_reserved_size = SystemReservedSize;
user_base = reinterpret_cast<u8*>(USER_MIN);
user_size = UserSize;
LOG_INFO(Kernel_Vmm, "System managed virtual memory region: {} - {}",
fmt::ptr(system_managed_base),
fmt::ptr(system_managed_base + system_managed_size - 1));
LOG_INFO(Kernel_Vmm, "System reserved virtual memory region: {} - {}",
fmt::ptr(system_reserved_base),
fmt::ptr(system_reserved_base + system_reserved_size - 1));
LOG_INFO(Kernel_Vmm, "User virtual memory region: {} - {}", fmt::ptr(user_base),
fmt::ptr(user_base + user_size - 1));
2024-06-09 23:13:44 +00:00
// Initializer placeholder tracker
const uintptr_t system_managed_addr = reinterpret_cast<uintptr_t>(system_managed_base);
const uintptr_t system_reserved_addr = reinterpret_cast<uintptr_t>(system_reserved_base);
const uintptr_t user_addr = reinterpret_cast<uintptr_t>(user_base);
placeholders.insert({system_managed_addr, virtual_size - reduction});
2024-06-09 23:13:44 +00:00
// Allocate backing file that represents the total physical memory.
backing_handle =
CreateFileMapping2(INVALID_HANDLE_VALUE, nullptr, FILE_MAP_WRITE | FILE_MAP_READ,
PAGE_READWRITE, SEC_COMMIT, BackingSize, nullptr, nullptr, 0);
2024-08-19 12:29:13 +00:00
ASSERT_MSG(backing_handle, "{}", Common::GetLastErrorMsg());
// Allocate a virtual memory for the backing file map as placeholder
backing_base = static_cast<u8*>(VirtualAlloc2(process, nullptr, BackingSize,
MEM_RESERVE | MEM_RESERVE_PLACEHOLDER,
PAGE_NOACCESS, nullptr, 0));
// Map backing placeholder. This will commit the pages
void* const ret = MapViewOfFile3(backing_handle, process, backing_base, 0, BackingSize,
MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE, nullptr, 0);
2024-08-19 12:29:13 +00:00
ASSERT_MSG(ret == backing_base, "{}", Common::GetLastErrorMsg());
}
~Impl() {
if (virtual_base) {
if (!VirtualFree(virtual_base, 0, MEM_RELEASE)) {
LOG_CRITICAL(Render, "Failed to free virtual memory");
}
}
if (backing_base) {
if (!UnmapViewOfFile2(process, backing_base, MEM_PRESERVE_PLACEHOLDER)) {
LOG_CRITICAL(Render, "Failed to unmap backing memory placeholder");
}
if (!VirtualFreeEx(process, backing_base, 0, MEM_RELEASE)) {
LOG_CRITICAL(Render, "Failed to free backing memory");
}
}
if (!CloseHandle(backing_handle)) {
LOG_CRITICAL(Render, "Failed to free backing memory file handle");
}
}
void* Map(VAddr virtual_addr, PAddr phys_addr, size_t size, ULONG prot, uintptr_t fd = 0) {
const size_t aligned_size = Common::AlignUp(size, 16_KB);
const auto it = placeholders.find(virtual_addr);
ASSERT_MSG(it != placeholders.end(), "Cannot map already mapped region");
ASSERT_MSG(virtual_addr >= it->lower() && virtual_addr + aligned_size <= it->upper(),
"Map range must be fully contained in a placeholder");
// Windows only allows splitting a placeholder into two.
// This means that if the map range is fully
// contained the the placeholder we need to perform two split operations,
// one at the start and at the end.
const VAddr placeholder_start = it->lower();
const VAddr placeholder_end = it->upper();
const VAddr virtual_end = virtual_addr + aligned_size;
// If the placeholder doesn't exactly start at virtual_addr, split it at the start.
if (placeholder_start != virtual_addr) {
VirtualFreeEx(process, reinterpret_cast<LPVOID>(placeholder_start),
virtual_addr - placeholder_start, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER);
}
// If the placeholder doesn't exactly end at virtual_end, split it at the end.
if (placeholder_end != virtual_end) {
VirtualFreeEx(process, reinterpret_cast<LPVOID>(virtual_end),
placeholder_end - virtual_end, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER);
}
// Remove the placeholder.
placeholders.erase({virtual_addr, virtual_end});
// Perform the map.
void* ptr = nullptr;
if (phys_addr != -1) {
HANDLE backing = fd ? reinterpret_cast<HANDLE>(fd) : backing_handle;
if (fd && prot == PAGE_READONLY) {
DWORD resultvar;
ptr = VirtualAlloc2(process, reinterpret_cast<PVOID>(virtual_addr), aligned_size,
MEM_RESERVE | MEM_COMMIT | MEM_REPLACE_PLACEHOLDER,
PAGE_READWRITE, nullptr, 0);
bool ret = ReadFile(backing, ptr, size, &resultvar, NULL);
ASSERT_MSG(ret, "ReadFile failed. {}", Common::GetLastErrorMsg());
ret = VirtualProtect(ptr, size, prot, &resultvar);
ASSERT_MSG(ret, "VirtualProtect failed. {}", Common::GetLastErrorMsg());
} else {
ptr = MapViewOfFile3(backing, process, reinterpret_cast<PVOID>(virtual_addr),
phys_addr, aligned_size, MEM_REPLACE_PLACEHOLDER, prot,
nullptr, 0);
}
} else {
2024-06-09 23:13:44 +00:00
ptr =
VirtualAlloc2(process, reinterpret_cast<PVOID>(virtual_addr), aligned_size,
2024-06-09 23:13:44 +00:00
MEM_RESERVE | MEM_COMMIT | MEM_REPLACE_PLACEHOLDER, prot, nullptr, 0);
}
ASSERT_MSG(ptr, "{}", Common::GetLastErrorMsg());
return ptr;
}
void Unmap(VAddr virtual_addr, size_t size, bool has_backing) {
2024-06-09 23:13:44 +00:00
bool ret;
if (has_backing) {
2024-06-09 23:13:44 +00:00
ret = UnmapViewOfFile2(process, reinterpret_cast<PVOID>(virtual_addr),
MEM_PRESERVE_PLACEHOLDER);
} else {
2024-06-09 23:13:44 +00:00
ret = VirtualFreeEx(process, reinterpret_cast<PVOID>(virtual_addr), size,
MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER);
}
2024-06-09 23:13:44 +00:00
ASSERT_MSG(ret, "Unmap operation on virtual_addr={:#X} failed: {}", virtual_addr,
Common::GetLastErrorMsg());
// The unmap call will create a new placeholder region. We need to see if we can coalesce it
// with neighbors.
VAddr placeholder_start = virtual_addr;
VAddr placeholder_end = virtual_addr + size;
// Check if a placeholder exists right before us.
const auto left_it = placeholders.find(virtual_addr - 1);
if (left_it != placeholders.end()) {
ASSERT_MSG(left_it->upper() == virtual_addr,
"Left placeholder does not end at virtual_addr!");
placeholder_start = left_it->lower();
VirtualFreeEx(process, reinterpret_cast<LPVOID>(placeholder_start),
placeholder_end - placeholder_start,
MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS);
}
// Check if a placeholder exists right after us.
const auto right_it = placeholders.find(placeholder_end + 1);
if (right_it != placeholders.end()) {
ASSERT_MSG(right_it->lower() == placeholder_end,
"Right placeholder does not start at virtual_end!");
placeholder_end = right_it->upper();
VirtualFreeEx(process, reinterpret_cast<LPVOID>(placeholder_start),
placeholder_end - placeholder_start,
MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS);
}
// Insert the new placeholder.
placeholders.insert({placeholder_start, placeholder_end});
}
void Protect(VAddr virtual_addr, size_t size, bool read, bool write, bool execute) {
DWORD new_flags{};
if (read && write && execute) {
new_flags = PAGE_EXECUTE_READWRITE;
} else if (read && write) {
new_flags = PAGE_READWRITE;
} else if (read && !write) {
new_flags = PAGE_READONLY;
} else if (execute && !read && not write) {
new_flags = PAGE_EXECUTE;
} else if (!read && !write && !execute) {
new_flags = PAGE_NOACCESS;
} else {
LOG_CRITICAL(Common_Memory,
"Unsupported protection flag combination for address {:#x}, size {}",
virtual_addr, size);
return;
}
DWORD old_flags{};
bool success =
VirtualProtect(reinterpret_cast<void*>(virtual_addr), size, new_flags, &old_flags);
if (!success) {
LOG_ERROR(Common_Memory,
"Failed to change virtual memory protection for address {:#x}, size {}",
virtual_addr, size);
}
// Use assert to ensure success in debug builds
DEBUG_ASSERT(success && "Failed to change virtual memory protection");
}
HANDLE process{};
HANDLE backing_handle{};
u8* backing_base{};
u8* virtual_base{};
u8* system_managed_base{};
size_t system_managed_size{};
u8* system_reserved_base{};
size_t system_reserved_size{};
u8* user_base{};
size_t user_size{};
boost::icl::separate_interval_set<uintptr_t> placeholders;
};
#else
enum PosixPageProtection {
PAGE_NOACCESS = 0,
PAGE_READONLY = PROT_READ,
PAGE_READWRITE = PROT_READ | PROT_WRITE,
PAGE_EXECUTE = PROT_EXEC,
PAGE_EXECUTE_READ = PROT_EXEC | PROT_READ,
PAGE_EXECUTE_READWRITE = PROT_EXEC | PROT_READ | PROT_WRITE
};
2024-07-11 13:16:50 +00:00
[[nodiscard]] constexpr PosixPageProtection ToPosixProt(Core::MemoryProt prot) {
switch (prot) {
case Core::MemoryProt::NoAccess:
default:
return PAGE_NOACCESS;
case Core::MemoryProt::CpuRead:
return PAGE_READONLY;
case Core::MemoryProt::CpuReadWrite:
return PAGE_READWRITE;
}
}
struct AddressSpace::Impl {
Impl() {
// Allocate virtual address placeholder for our address space.
system_managed_size = SystemManagedSize;
system_reserved_size = SystemReservedSize;
user_size = UserSize;
constexpr int protection_flags = PROT_READ | PROT_WRITE;
constexpr int base_map_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
#if defined(__APPLE__) && defined(ARCH_X86_64)
// On ARM64 Macs under Rosetta 2, we run into limitations due to the commpage from
// 0xFC0000000 - 0xFFFFFFFFF and the GPU carveout region from 0x1000000000 - 0x6FFFFFFFFF.
// We can allocate the system managed region, as well as system reserved if reduced in size
// slightly, but we cannot map the user region where we want, so we must let the OS put it
// wherever possible and hope the game won't rely on its location.
system_managed_base = reinterpret_cast<u8*>(
mmap(reinterpret_cast<void*>(SYSTEM_MANAGED_MIN), system_managed_size, protection_flags,
base_map_flags | MAP_FIXED, -1, 0));
system_reserved_base = reinterpret_cast<u8*>(
mmap(reinterpret_cast<void*>(SYSTEM_RESERVED_MIN), system_reserved_size,
protection_flags, base_map_flags | MAP_FIXED, -1, 0));
// Cannot guarantee enough space for these areas at the desired addresses, so not MAP_FIXED.
user_base = reinterpret_cast<u8*>(mmap(reinterpret_cast<void*>(USER_MIN), user_size,
protection_flags, base_map_flags, -1, 0));
2024-07-09 09:18:34 +00:00
#else
const auto virtual_size = system_managed_size + system_reserved_size + user_size;
#if defined(ARCH_X86_64)
const auto virtual_base =
reinterpret_cast<u8*>(mmap(reinterpret_cast<void*>(SYSTEM_MANAGED_MIN), virtual_size,
protection_flags, base_map_flags | MAP_FIXED, -1, 0));
system_managed_base = virtual_base;
system_reserved_base = reinterpret_cast<u8*>(SYSTEM_RESERVED_MIN);
user_base = reinterpret_cast<u8*>(USER_MIN);
#else
// Map memory wherever possible and instruction translation can handle offsetting to the
// base.
const auto virtual_base = reinterpret_cast<u8*>(
mmap(nullptr, virtual_size, protection_flags, base_map_flags, -1, 0));
system_managed_base = virtual_base;
system_reserved_base = virtual_base + SYSTEM_RESERVED_MIN - SYSTEM_MANAGED_MIN;
user_base = virtual_base + USER_MIN - SYSTEM_MANAGED_MIN;
#endif
2024-07-09 09:18:34 +00:00
#endif
if (system_managed_base == MAP_FAILED || system_reserved_base == MAP_FAILED ||
user_base == MAP_FAILED) {
LOG_CRITICAL(Kernel_Vmm, "mmap failed: {}", strerror(errno));
throw std::bad_alloc{};
}
2024-07-09 09:18:34 +00:00
LOG_INFO(Kernel_Vmm, "System managed virtual memory region: {} - {}",
fmt::ptr(system_managed_base),
fmt::ptr(system_managed_base + system_managed_size - 1));
LOG_INFO(Kernel_Vmm, "System reserved virtual memory region: {} - {}",
fmt::ptr(system_reserved_base),
fmt::ptr(system_reserved_base + system_reserved_size - 1));
LOG_INFO(Kernel_Vmm, "User virtual memory region: {} - {}", fmt::ptr(user_base),
fmt::ptr(user_base + user_size - 1));
const VAddr system_managed_addr = reinterpret_cast<VAddr>(system_managed_base);
const VAddr system_reserved_addr = reinterpret_cast<VAddr>(system_managed_base);
const VAddr user_addr = reinterpret_cast<VAddr>(user_base);
m_free_regions.insert({system_managed_addr, system_managed_addr + system_managed_size});
m_free_regions.insert({system_reserved_addr, system_reserved_addr + system_reserved_size});
m_free_regions.insert({user_addr, user_addr + user_size});
#ifdef __APPLE__
2024-07-09 09:18:34 +00:00
const auto shm_path = fmt::format("/BackingDmem{}", getpid());
backing_fd = shm_open(shm_path.c_str(), O_RDWR | O_CREAT | O_EXCL, 0600);
if (backing_fd < 0) {
LOG_CRITICAL(Kernel_Vmm, "shm_open failed: {}", strerror(errno));
throw std::bad_alloc{};
}
shm_unlink(shm_path.c_str());
#else
madvise(virtual_base, virtual_size, MADV_HUGEPAGE);
backing_fd = memfd_create("BackingDmem", 0);
if (backing_fd < 0) {
LOG_CRITICAL(Kernel_Vmm, "memfd_create failed: {}", strerror(errno));
throw std::bad_alloc{};
}
2024-07-09 09:18:34 +00:00
#endif
// Defined to extend the file with zeros
int ret = ftruncate(backing_fd, BackingSize);
if (ret != 0) {
LOG_CRITICAL(Kernel_Vmm, "ftruncate failed with {}, are you out-of-memory?",
strerror(errno));
throw std::bad_alloc{};
}
// Map backing dmem handle.
backing_base = static_cast<u8*>(
mmap(nullptr, BackingSize, PROT_READ | PROT_WRITE, MAP_SHARED, backing_fd, 0));
if (backing_base == MAP_FAILED) {
LOG_CRITICAL(Kernel_Vmm, "mmap failed: {}", strerror(errno));
throw std::bad_alloc{};
}
}
void* Map(VAddr virtual_addr, PAddr phys_addr, size_t size, PosixPageProtection prot,
int fd = -1) {
m_free_regions.subtract({virtual_addr, virtual_addr + size});
const int handle = phys_addr != -1 ? (fd == -1 ? backing_fd : fd) : -1;
const off_t host_offset = phys_addr != -1 ? phys_addr : 0;
const int flag = phys_addr != -1 ? MAP_SHARED : (MAP_ANONYMOUS | MAP_PRIVATE);
void* ret = mmap(reinterpret_cast<void*>(virtual_addr), size, prot, MAP_FIXED | flag,
handle, host_offset);
ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno));
return ret;
}
void Unmap(VAddr virtual_addr, size_t size, bool) {
// Check to see if we are adjacent to any regions.
auto start_address = virtual_addr;
auto end_address = start_address + size;
auto it = m_free_regions.find({start_address - 1, end_address + 1});
// If we are, join with them, ensuring we stay in bounds.
if (it != m_free_regions.end()) {
start_address = std::min(start_address, it->lower());
end_address = std::max(end_address, it->upper());
}
// Free the relevant region.
m_free_regions.insert({start_address, end_address});
// Return the adjusted pointers.
void* ret = mmap(reinterpret_cast<void*>(start_address), end_address - start_address,
PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno));
}
void Protect(VAddr virtual_addr, size_t size, bool read, bool write, bool execute) {
int flags = PROT_NONE;
if (read) {
flags |= PROT_READ;
}
if (write) {
flags |= PROT_WRITE;
}
#ifdef ARCH_X86_64
if (execute) {
flags |= PROT_EXEC;
}
#endif
int ret = mprotect(reinterpret_cast<void*>(virtual_addr), size, flags);
ASSERT_MSG(ret == 0, "mprotect failed: {}", strerror(errno));
}
int backing_fd;
u8* backing_base{};
u8* system_managed_base{};
size_t system_managed_size{};
u8* system_reserved_base{};
size_t system_reserved_size{};
u8* user_base{};
size_t user_size{};
boost::icl::interval_set<VAddr> m_free_regions;
};
#endif
AddressSpace::AddressSpace() : impl{std::make_unique<Impl>()} {
backing_base = impl->backing_base;
system_managed_base = impl->system_managed_base;
system_managed_size = impl->system_managed_size;
system_reserved_base = impl->system_reserved_base;
system_reserved_size = impl->system_reserved_size;
user_base = impl->user_base;
user_size = impl->user_size;
}
AddressSpace::~AddressSpace() = default;
2024-06-09 23:13:44 +00:00
void* AddressSpace::Map(VAddr virtual_addr, size_t size, u64 alignment, PAddr phys_addr,
bool is_exec) {
#if ARCH_X86_64
const auto prot = is_exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
#else
// On non-native architectures, we can simplify things by ignoring the execute flag for the
// canonical copy of the memory and rely on the JIT to map translated code as executable.
constexpr auto prot = PAGE_READWRITE;
#endif
return impl->Map(virtual_addr, phys_addr, size, prot);
}
void* AddressSpace::MapFile(VAddr virtual_addr, size_t size, size_t offset, u32 prot,
uintptr_t fd) {
2024-07-11 13:16:50 +00:00
#ifdef _WIN32
return impl->Map(virtual_addr, offset, size,
ToWindowsProt(std::bit_cast<Core::MemoryProt>(prot)), fd);
2024-07-11 13:16:50 +00:00
#else
return impl->Map(virtual_addr, offset, size, ToPosixProt(std::bit_cast<Core::MemoryProt>(prot)),
fd);
#endif
}
void AddressSpace::Unmap(VAddr virtual_addr, size_t size, VAddr start_in_vma, VAddr end_in_vma,
2024-08-21 03:07:32 +00:00
PAddr phys_base, bool is_exec, bool has_backing, bool readonly_file) {
#ifdef _WIN32
// There does not appear to be comparable support for partial unmapping on Windows.
// Unfortunately, a least one title was found to require this. The workaround is to unmap
// the entire allocation and remap the portions outside of the requested unmapping range.
2024-08-21 03:07:32 +00:00
impl->Unmap(virtual_addr, size, has_backing && !readonly_file);
// TODO: Determine if any titles require partial unmapping support for flexible allocations.
ASSERT_MSG(has_backing || (start_in_vma == 0 && end_in_vma == size),
"Partial unmapping of flexible allocations is not supported");
if (start_in_vma != 0) {
Map(virtual_addr, start_in_vma, 0, phys_base, is_exec);
}
if (end_in_vma != size) {
Map(virtual_addr + end_in_vma, size - end_in_vma, 0, phys_base + end_in_vma, is_exec);
}
#else
impl->Unmap(virtual_addr + start_in_vma, end_in_vma - start_in_vma, has_backing);
#endif
}
void AddressSpace::Protect(VAddr virtual_addr, size_t size, MemoryPermission perms) {
const bool read = True(perms & MemoryPermission::Read);
const bool write = True(perms & MemoryPermission::Write);
const bool execute = True(perms & MemoryPermission::Execute);
return impl->Protect(virtual_addr, size, read, write, execute);
}
} // namespace Core