shadPS4/src/core/module.cpp

481 lines
20 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <xbyak/xbyak.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/aerolib/aerolib.h"
#include "core/loader/dwarf.h"
2024-06-09 23:13:44 +00:00
#include "core/memory.h"
#include "core/module.h"
#include "core/tls.h"
#include "core/virtual_memory.h"
namespace Core {
using EntryFunc = PS4_SYSV_ABI int (*)(size_t args, const void* argp, void* param);
static u64 LoadAddress = SYSTEM_RESERVED + CODE_BASE_OFFSET;
static constexpr u64 CODE_BASE_INCR = 0x010000000u;
static u64 GetAlignedSize(const elf_program_header& phdr) {
return (phdr.p_align != 0 ? (phdr.p_memsz + (phdr.p_align - 1)) & ~(phdr.p_align - 1)
: phdr.p_memsz);
}
static u64 CalculateBaseSize(const elf_header& ehdr, std::span<const elf_program_header> phdr) {
u64 base_size = 0;
for (u16 i = 0; i < ehdr.e_phnum; i++) {
if (phdr[i].p_memsz != 0 && (phdr[i].p_type == PT_LOAD || phdr[i].p_type == PT_SCE_RELRO)) {
const u64 last_addr = phdr[i].p_vaddr + GetAlignedSize(phdr[i]);
base_size = std::max(last_addr, base_size);
}
}
return base_size;
}
static std::string EncodeId(u64 nVal) {
std::string enc;
static constexpr std::string_view codes =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+-";
if (nVal < 0x40u) {
enc += codes[nVal];
} else {
if (nVal < 0x1000u) {
enc += codes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += codes[nVal & 0x3fu];
} else {
enc += codes[static_cast<u16>(nVal >> 12u) & 0x3fu];
enc += codes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += codes[nVal & 0x3fu];
}
}
return enc;
}
Module::Module(const std::filesystem::path& file_, u32& max_tls_index)
: file{file_}, name{file.stem().string()} {
elf.Open(file);
if (elf.IsElfFile()) {
LoadModuleToMemory(max_tls_index);
LoadDynamicInfo();
LoadSymbols();
}
}
Module::~Module() = default;
s32 Module::Start(size_t args, const void* argp, void* param) {
LOG_INFO(Core_Linker, "Module started : {}", name);
const VAddr addr = dynamic_info.init_virtual_addr + GetBaseAddress();
return reinterpret_cast<EntryFunc>(addr)(args, argp, param);
}
void Module::LoadModuleToMemory(u32& max_tls_index) {
static constexpr size_t BlockAlign = 0x1000;
static constexpr u64 TrampolineSize = 8_MB;
// Retrieve elf header and program header
const auto elf_header = elf.GetElfHeader();
const auto elf_pheader = elf.GetProgramHeader();
const u64 base_size = CalculateBaseSize(elf_header, elf_pheader);
aligned_base_size = Common::AlignUp(base_size, BlockAlign);
// Map module segments (and possible TLS trampolines)
2024-06-09 23:13:44 +00:00
auto* memory = Core::Memory::Instance();
void** out_addr = reinterpret_cast<void**>(&base_virtual_addr);
memory->MapMemory(out_addr, LoadAddress, aligned_base_size + TrampolineSize,
MemoryProt::CpuReadWrite, MemoryMapFlags::Fixed, VMAType::Code, name, true);
LoadAddress += CODE_BASE_INCR * (1 + aligned_base_size / CODE_BASE_INCR);
// Initialize trampoline generator.
void* trampoline_addr = std::bit_cast<void*>(base_virtual_addr + aligned_base_size);
Xbyak::CodeGenerator c(TrampolineSize, trampoline_addr);
LOG_INFO(Core_Linker, "======== Load Module to Memory ========");
LOG_INFO(Core_Linker, "base_virtual_addr ......: {:#018x}", base_virtual_addr);
LOG_INFO(Core_Linker, "base_size ..............: {:#018x}", base_size);
LOG_INFO(Core_Linker, "aligned_base_size ......: {:#018x}", aligned_base_size);
const auto add_segment = [this](const elf_program_header& phdr, bool do_map = true) {
const VAddr segment_addr = base_virtual_addr + phdr.p_vaddr;
if (do_map) {
elf.LoadSegment(segment_addr, phdr.p_offset, phdr.p_filesz);
}
auto& segment = info.segments[info.num_segments++];
segment.address = segment_addr;
segment.prot = phdr.p_flags;
segment.size = GetAlignedSize(phdr);
};
for (u16 i = 0; i < elf_header.e_phnum; i++) {
const auto header_type = elf.ElfPheaderTypeStr(elf_pheader[i].p_type);
switch (elf_pheader[i].p_type) {
case PT_LOAD:
case PT_SCE_RELRO: {
if (elf_pheader[i].p_memsz == 0) {
LOG_ERROR(Core_Linker, "p_memsz==0 in type {}", header_type);
continue;
}
const u64 segment_addr = elf_pheader[i].p_vaddr + base_virtual_addr;
const u64 segment_file_size = elf_pheader[i].p_filesz;
const u64 segment_memory_size = GetAlignedSize(elf_pheader[i]);
const auto segment_mode = elf.ElfPheaderFlagsStr(elf_pheader[i].p_flags);
LOG_INFO(Core_Linker, "program header = [{}] type = {}", i, header_type);
LOG_INFO(Core_Linker, "segment_addr ..........: {:#018x}", segment_addr);
LOG_INFO(Core_Linker, "segment_file_size .....: {}", segment_file_size);
LOG_INFO(Core_Linker, "segment_memory_size ...: {}", segment_memory_size);
LOG_INFO(Core_Linker, "segment_mode ..........: {}", segment_mode);
add_segment(elf_pheader[i]);
if (elf_pheader[i].p_flags & PF_EXEC) {
PatchTLS(segment_addr, segment_file_size, c);
}
break;
}
case PT_DYNAMIC:
add_segment(elf_pheader[i], false);
if (elf_pheader[i].p_filesz != 0) {
m_dynamic.resize(elf_pheader[i].p_filesz);
const VAddr segment_addr = std::bit_cast<VAddr>(m_dynamic.data());
elf.LoadSegment(segment_addr, elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}", header_type);
}
break;
case PT_SCE_DYNLIBDATA:
if (elf_pheader[i].p_filesz != 0) {
m_dynamic_data.resize(elf_pheader[i].p_filesz);
const VAddr segment_addr = std::bit_cast<VAddr>(m_dynamic_data.data());
elf.LoadSegment(segment_addr, elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}", header_type);
}
break;
case PT_TLS:
tls.init_image_size = elf_pheader[i].p_filesz;
tls.align = elf_pheader[i].p_align;
tls.image_virtual_addr = elf_pheader[i].p_vaddr + base_virtual_addr;
tls.image_size = GetAlignedSize(elf_pheader[i]);
if (tls.image_size != 0) {
tls.modid = ++max_tls_index;
}
LOG_INFO(Core_Linker, "TLS virtual address = {:#x}", tls.image_virtual_addr);
LOG_INFO(Core_Linker, "TLS image size = {}", tls.image_size);
break;
case PT_SCE_PROCPARAM:
proc_param_virtual_addr = elf_pheader[i].p_vaddr + base_virtual_addr;
break;
case PT_GNU_EH_FRAME: {
eh_frame_hdr_addr = elf_pheader[i].p_vaddr;
eh_frame_hdr_size = elf_pheader[i].p_memsz;
const VAddr eh_hdr_start = base_virtual_addr + eh_frame_hdr_addr;
const VAddr eh_hdr_end = eh_hdr_start + eh_frame_hdr_size;
Dwarf::EHHeaderInfo hdr_info;
if (Dwarf::DecodeEHHdr(eh_hdr_start, eh_hdr_end, hdr_info)) {
eh_frame_addr = hdr_info.eh_frame_ptr - base_virtual_addr;
if (eh_frame_hdr_addr > eh_frame_addr) {
eh_frame_size = (eh_frame_hdr_addr - eh_frame_addr);
} else {
eh_frame_size = (aligned_base_size - eh_frame_hdr_addr);
}
}
break;
}
default:
LOG_ERROR(Core_Linker, "Unimplemented type {}", header_type);
}
}
const VAddr entry_addr = base_virtual_addr + elf.GetElfEntry();
LOG_INFO(Core_Linker, "program entry addr ..........: {:#018x}", entry_addr);
}
void Module::LoadDynamicInfo() {
for (const auto* dyn = reinterpret_cast<elf_dynamic*>(m_dynamic.data()); dyn->d_tag != DT_NULL;
dyn++) {
switch (dyn->d_tag) {
case DT_SCE_HASH: // Offset of the hash table.
dynamic_info.hash_table =
reinterpret_cast<void*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_HASHSZ: // Size of the hash table
dynamic_info.hash_table_size = dyn->d_un.d_val;
break;
case DT_SCE_STRTAB: // Offset of the string table.
dynamic_info.str_table =
reinterpret_cast<char*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_STRSZ: // Size of the string table.
dynamic_info.str_table_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMTAB: // Offset of the symbol table.
dynamic_info.symbol_table =
reinterpret_cast<elf_symbol*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_SYMTABSZ: // Size of the symbol table.
dynamic_info.symbol_table_total_size = dyn->d_un.d_val;
break;
case DT_INIT:
dynamic_info.init_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI:
dynamic_info.fini_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_PLTGOT: // Offset of the global offset table.
dynamic_info.pltgot_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_JMPREL: // Offset of the table containing jump slots.
dynamic_info.jmp_relocation_table =
reinterpret_cast<elf_relocation*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_PLTRELSZ: // Size of the global offset table.
dynamic_info.jmp_relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_PLTREL: // The type of relocations in the relocation table. Should be DT_RELA
dynamic_info.jmp_relocation_type = dyn->d_un.d_val;
if (dynamic_info.jmp_relocation_type != DT_RELA) {
LOG_WARNING(Core_Linker, "DT_SCE_PLTREL is NOT DT_RELA should check!");
}
break;
case DT_SCE_RELA: // Offset of the relocation table.
dynamic_info.relocation_table =
reinterpret_cast<elf_relocation*>(m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_RELASZ: // Size of the relocation table.
dynamic_info.relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_RELAENT: // The size of relocation table entries.
dynamic_info.relocation_table_entries_size = dyn->d_un.d_val;
if (dynamic_info.relocation_table_entries_size != 0x18) {
LOG_WARNING(Core_Linker, "DT_SCE_RELAENT is NOT 0x18 should check!");
}
break;
case DT_INIT_ARRAY: // Address of the array of pointers to initialization functions
dynamic_info.init_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI_ARRAY: // Address of the array of pointers to termination functions
dynamic_info.fini_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_INIT_ARRAYSZ: // Size in bytes of the array of initialization functions
dynamic_info.init_array_size = dyn->d_un.d_val;
break;
case DT_FINI_ARRAYSZ: // Size in bytes of the array of terminationfunctions
dynamic_info.fini_array_size = dyn->d_un.d_val;
break;
case DT_PREINIT_ARRAY: // Address of the array of pointers to pre - initialization functions
dynamic_info.preinit_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_PREINIT_ARRAYSZ: // Size in bytes of the array of pre - initialization functions
dynamic_info.preinit_array_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMENT: // The size of symbol table entries
dynamic_info.symbol_table_entries_size = dyn->d_un.d_val;
if (dynamic_info.symbol_table_entries_size != 0x18) {
LOG_WARNING(Core_Linker, "DT_SCE_SYMENT is NOT 0x18 should check!");
}
break;
case DT_DEBUG:
dynamic_info.debug = dyn->d_un.d_val;
break;
case DT_TEXTREL:
dynamic_info.textrel = dyn->d_un.d_val;
break;
case DT_FLAGS:
dynamic_info.flags = dyn->d_un.d_val;
// This value should always be DF_TEXTREL (0x04)
if (dynamic_info.flags != 0x04) {
LOG_WARNING(Core_Linker, "DT_FLAGS is NOT 0x04 should check!");
}
break;
case DT_NEEDED:
// Offset of the library string in the string table to be linked in.
// In theory this should already be filled from about just make a test case
if (dynamic_info.str_table) {
dynamic_info.needed.push_back(dynamic_info.str_table + dyn->d_un.d_val);
} else {
LOG_ERROR(Core_Linker, "DT_NEEDED str table is not loaded should check!");
}
break;
case DT_SCE_NEEDED_MODULE: {
ModuleInfo& info = dynamic_info.import_modules.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
break;
}
case DT_SCE_IMPORT_LIB: {
LibraryInfo& info = dynamic_info.import_libs.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
break;
}
case DT_SCE_FINGERPRINT:
// The fingerprint is a 24 byte (0x18) size buffer that contains a unique identifier for
// the given app. How exactly this is generated isn't known, however it is not necessary
// to have a valid fingerprint. While an invalid fingerprint will cause a warning to be
// printed to the kernel log, the ELF will still load and run.
LOG_INFO(Core_Linker, "DT_SCE_FINGERPRINT value = {:#018x}", dyn->d_un.d_val);
std::memcpy(info.fingerprint.data(), &dyn->d_un.d_val, sizeof(SCE_DBG_NUM_FINGERPRINT));
break;
case DT_SCE_IMPORT_LIB_ATTR:
// The upper 32-bits should contain the module index multiplied by 0x10000. The lower
// 32-bits should be a constant 0x9.
LOG_INFO(Core_Linker, "unsupported DT_SCE_IMPORT_LIB_ATTR value = ......: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_ORIGINAL_FILENAME:
dynamic_info.filename = dynamic_info.str_table + dyn->d_un.d_val;
break;
case DT_SCE_MODULE_INFO: {
ModuleInfo& info = dynamic_info.export_modules.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
const std::string full_name = info.name + ".sprx";
full_name.copy(this->info.name.data(), full_name.size());
break;
};
case DT_SCE_MODULE_ATTR:
LOG_INFO(Core_Linker, "unsupported DT_SCE_MODULE_ATTR value = ..........: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_EXPORT_LIB: {
LibraryInfo& info = dynamic_info.export_libs.emplace_back();
info.value = dyn->d_un.d_val;
info.name = dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
break;
}
default:
LOG_INFO(Core_Linker, "unsupported dynamic tag ..........: {:#018x}", dyn->d_tag);
}
}
const u32 relabits_num = dynamic_info.relocation_table_size / sizeof(elf_relocation) +
dynamic_info.jmp_relocation_table_size / sizeof(elf_relocation);
rela_bits.resize((relabits_num + 7) / 8);
}
void Module::LoadSymbols() {
const auto symbol_database = [this](Loader::SymbolsResolver& symbol, bool export_func) {
if (!dynamic_info.symbol_table || !dynamic_info.str_table ||
dynamic_info.symbol_table_total_size == 0) {
LOG_INFO(Core_Linker, "Symbol table not found!");
return;
}
for (auto* sym = dynamic_info.symbol_table;
reinterpret_cast<u8*>(sym) < reinterpret_cast<u8*>(dynamic_info.symbol_table) +
dynamic_info.symbol_table_total_size;
sym++) {
const u8 bind = sym->GetBind();
const u8 type = sym->GetType();
const u8 visibility = sym->GetVisibility();
const auto id = std::string(dynamic_info.str_table + sym->st_name);
const auto ids = Common::SplitString(id, '#');
if (ids.size() != 3) {
continue;
}
const auto* library = FindLibrary(ids[1]);
const auto* module = FindModule(ids[2]);
ASSERT_MSG(library && module, "Unable to find library and module");
if ((bind != STB_GLOBAL && bind != STB_WEAK) ||
(type != STT_FUN && type != STT_OBJECT) || export_func != (sym->st_value != 0)) {
continue;
}
const auto aeronid = AeroLib::FindByNid(ids.at(0).c_str());
const auto nid_name = aeronid ? aeronid->name : "UNK";
Loader::SymbolResolver sym_r{};
sym_r.name = ids.at(0);
sym_r.nidName = nid_name;
sym_r.library = library->name;
sym_r.library_version = library->version;
sym_r.module = module->name;
sym_r.module_version_major = module->version_major;
sym_r.module_version_minor = module->version_minor;
switch (type) {
case STT_NOTYPE:
sym_r.type = Loader::SymbolType::NoType;
break;
case STT_FUN:
sym_r.type = Loader::SymbolType::Function;
break;
case STT_OBJECT:
sym_r.type = Loader::SymbolType::Object;
break;
default:
sym_r.type = Loader::SymbolType::Unknown;
break;
}
const VAddr sym_addr = export_func ? sym->st_value + base_virtual_addr : 0;
symbol.AddSymbol(sym_r, sym_addr);
}
};
symbol_database(export_sym, true);
symbol_database(import_sym, false);
}
OrbisKernelModuleInfoEx Module::GetModuleInfoEx() const {
return OrbisKernelModuleInfoEx{
.name = info.name,
.tls_index = tls.modid,
.tls_init_addr = tls.image_virtual_addr,
.tls_init_size = tls.init_image_size,
.tls_size = tls.image_size,
.tls_offset = tls.offset,
.tls_align = tls.align,
.init_proc_addr = base_virtual_addr + dynamic_info.init_virtual_addr,
.fini_proc_addr = base_virtual_addr + dynamic_info.fini_virtual_addr,
.eh_frame_hdr_addr = eh_frame_hdr_addr,
.eh_frame_addr = eh_frame_addr,
.eh_frame_hdr_size = eh_frame_hdr_size,
.eh_frame_size = eh_frame_size,
.segments = info.segments,
.segment_count = info.num_segments,
};
}
const ModuleInfo* Module::FindModule(std::string_view id) {
const auto& import_modules = dynamic_info.import_modules;
for (u32 i = 0; const auto& mod : import_modules) {
if (mod.enc_id == id) {
return &import_modules[i];
}
i++;
}
const auto& export_modules = dynamic_info.export_modules;
for (u32 i = 0; const auto& mod : export_modules) {
if (mod.enc_id == id) {
return &export_modules[i];
}
i++;
}
return nullptr;
}
const LibraryInfo* Module::FindLibrary(std::string_view id) {
const auto& import_libs = dynamic_info.import_libs;
for (u32 i = 0; const auto& lib : import_libs) {
if (lib.enc_id == id) {
return &import_libs[i];
}
i++;
}
const auto& export_libs = dynamic_info.export_libs;
for (u32 i = 0; const auto& lib : export_libs) {
if (lib.enc_id == id) {
return &export_libs[i];
}
i++;
}
return nullptr;
}
} // namespace Core