uart-bridge: expose both HW UARTs

With these changes, both HW UARTs will be exposed as two independent USB-UART
bridge controllers.

Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This commit is contained in:
Álvaro Fernández Rojas 2021-02-04 09:02:27 +01:00
parent 911bf03c80
commit 410eef18ef
4 changed files with 224 additions and 107 deletions

View file

@ -11,8 +11,8 @@ pico_sdk_init()
add_executable(uart_bridge uart-bridge.c usb-descriptors.c) add_executable(uart_bridge uart-bridge.c usb-descriptors.c)
target_include_directories(uart_bridge PUBLIC target_include_directories(uart_bridge PUBLIC
pico-sdk/lib/tinyusb/src ./
pico-sdk/src/rp2_common/pico_stdio_usb/include) pico-sdk/lib/tinyusb/src)
target_link_libraries(uart_bridge target_link_libraries(uart_bridge
pico_multicore pico_multicore

36
tusb_config.h Normal file
View file

@ -0,0 +1,36 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2020 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#ifndef _PICO_STDIO_USB_TUSB_CONFIG_H
#define _PICO_STDIO_USB_TUSB_CONFIG_H
#define CFG_TUSB_RHPORT0_MODE (OPT_MODE_DEVICE)
#define CFG_TUD_CDC (2)
#define CFG_TUD_CDC_RX_BUFSIZE (256)
#define CFG_TUD_CDC_TX_BUFSIZE (256)
#endif

View file

@ -7,10 +7,8 @@
#include <hardware/structs/sio.h> #include <hardware/structs/sio.h>
#include <hardware/uart.h> #include <hardware/uart.h>
#include <pico/multicore.h> #include <pico/multicore.h>
#include <pico/stdio_usb.h>
#include <pico/stdlib.h> #include <pico/stdlib.h>
#include <tusb.h> #include <tusb.h>
#include <string.h>
#if !defined(MIN) #if !defined(MIN)
#define MIN(a, b) ((a > b) ? b : a) #define MIN(a, b) ((a > b) ? b : a)
@ -18,10 +16,6 @@
#define LED_PIN 25 #define LED_PIN 25
#define UART_ID uart0
#define UART_TX_PIN 0
#define UART_RX_PIN 1
#define BUFFER_SIZE 64 #define BUFFER_SIZE 64
#define DEF_BIT_RATE 115200 #define DEF_BIT_RATE 115200
@ -29,20 +23,36 @@
#define DEF_PARITY 0 #define DEF_PARITY 0
#define DEF_DATA_BITS 8 #define DEF_DATA_BITS 8
static cdc_line_coding_t CDC_LC = { typedef struct {
.bit_rate = DEF_BIT_RATE, uart_inst_t *const inst;
.stop_bits = DEF_STOP_BITS, uint8_t tx_pin;
.parity = DEF_PARITY, uint8_t rx_pin;
.data_bits = DEF_DATA_BITS, } uart_id_t;
typedef struct {
cdc_line_coding_t usb_lc;
cdc_line_coding_t uart_lc;
uint8_t uart_buffer[BUFFER_SIZE];
uint32_t uart_pos;
mutex_t uart_mtx;
uint8_t usb_buffer[BUFFER_SIZE];
uint32_t usb_pos;
mutex_t usb_mtx;
} uart_data_t;
const uart_id_t UART_ID[CFG_TUD_CDC] = {
{
.inst = uart0,
.tx_pin = 0,
.rx_pin = 1,
}, {
.inst = uart1,
.tx_pin = 4,
.rx_pin = 5,
}
}; };
static uint8_t UART_BUFFER[BUFFER_SIZE]; uart_data_t UART_DATA[CFG_TUD_CDC];
static uint32_t UART_POS = 0;
static mutex_t UART_MTX;
static uint8_t USB_BUFFER[BUFFER_SIZE];
static uint32_t USB_POS = 0;
static mutex_t USB_MTX;
static inline uint databits_usb2uart(uint8_t data_bits) static inline uint databits_usb2uart(uint8_t data_bits)
{ {
@ -80,133 +90,186 @@ static inline uint stopbits_usb2uart(uint8_t stop_bits)
} }
} }
int update_uart_cfg(void) void update_uart_cfg(uint8_t itf)
{ {
static cdc_line_coding_t last_cdc_lc = { const uart_id_t *ui = &UART_ID[itf];
.bit_rate = DEF_STOP_BITS, uart_data_t *ud = &UART_DATA[itf];
.stop_bits = DEF_STOP_BITS,
.parity = DEF_PARITY,
.data_bits = DEF_DATA_BITS,
};
int updated = 0;
if (last_cdc_lc.bit_rate != CDC_LC.bit_rate) { if (ud->usb_lc.bit_rate != ud->uart_lc.bit_rate) {
uart_set_baudrate(UART_ID, CDC_LC.bit_rate); uart_set_baudrate(ui->inst, ud->usb_lc.bit_rate);
updated = 1; ud->uart_lc.bit_rate = ud->usb_lc.bit_rate;
} }
if ((last_cdc_lc.stop_bits != CDC_LC.stop_bits) || if ((ud->usb_lc.stop_bits != ud->uart_lc.stop_bits) ||
(last_cdc_lc.parity != CDC_LC.parity) || (ud->usb_lc.parity != ud->uart_lc.parity) ||
(last_cdc_lc.data_bits != CDC_LC.data_bits)) { (ud->usb_lc.data_bits != ud->uart_lc.data_bits)) {
uart_set_format(UART_ID, databits_usb2uart(CDC_LC.data_bits), uart_set_format(ui->inst,
stopbits_usb2uart(CDC_LC.stop_bits), databits_usb2uart(ud->usb_lc.data_bits),
parity_usb2uart(CDC_LC.parity)); stopbits_usb2uart(ud->usb_lc.stop_bits),
updated = 1; parity_usb2uart(ud->usb_lc.parity));
ud->uart_lc.data_bits = ud->usb_lc.data_bits;
ud->uart_lc.parity = ud->usb_lc.parity;
ud->uart_lc.stop_bits = ud->usb_lc.stop_bits;
} }
if (updated)
memcpy(&last_cdc_lc, &CDC_LC, sizeof(cdc_line_coding_t));
return updated;
} }
void usb_cdc_process(void) void usb_read_bytes(uint8_t itf) {
{ uint32_t len = tud_cdc_n_available(itf);
uint32_t count;
uint32_t len;
tud_cdc_get_line_coding(&CDC_LC); if (len) {
uart_data_t *ud = &UART_DATA[itf];
/* Read bytes from USB */ mutex_enter_blocking(&ud->usb_mtx);
if (tud_cdc_available()) {
mutex_enter_blocking(&USB_MTX);
len = MIN(tud_cdc_available(), BUFFER_SIZE - USB_POS); len = MIN(len, BUFFER_SIZE - ud->usb_pos);
if (len) { if (len) {
count = tud_cdc_read(USB_BUFFER, len); uint32_t count;
USB_POS += count;
count = tud_cdc_n_read(itf, ud->usb_buffer, len);
ud->usb_pos += count;
} }
mutex_exit(&USB_MTX); mutex_exit(&ud->usb_mtx);
} }
}
/* Write bytes to USB */ void usb_write_bytes(uint8_t itf) {
if (UART_POS) { uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&UART_MTX);
count = tud_cdc_write(UART_BUFFER, UART_POS); if (ud->uart_pos) {
uint32_t count;
mutex_enter_blocking(&ud->uart_mtx);
count = tud_cdc_n_write(itf, ud->uart_buffer, ud->uart_pos);
if (count) { if (count) {
UART_POS -= count; ud->uart_pos -= count;
tud_cdc_write_flush(); tud_cdc_n_write_flush(itf);
} }
mutex_exit(&UART_MTX); mutex_exit(&ud->uart_mtx);
} }
} }
void usb_cdc_process(uint8_t itf)
{
uart_data_t *ud = &UART_DATA[itf];
int con = tud_cdc_n_connected(itf);
tud_cdc_n_get_line_coding(itf, &ud->usb_lc);
usb_read_bytes(itf);
usb_write_bytes(itf);
}
void core1_entry(void) void core1_entry(void)
{ {
tusb_init(); tusb_init();
while (1) { while (1) {
int itf;
int con = 0;
tud_task(); tud_task();
if (tud_cdc_connected()) { for (itf = 0; itf < CFG_TUD_CDC; itf++) {
usb_cdc_process(); if (tud_cdc_n_connected(itf)) {
gpio_put(LED_PIN, 1); con = 1;
} else { usb_cdc_process(itf);
gpio_put(LED_PIN, 0); }
} }
gpio_put(LED_PIN, con);
} }
} }
void uart_read_bytes(uint8_t itf) {
const uart_id_t *ui = &UART_ID[itf];
if (uart_is_readable(ui->inst)) {
uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&ud->uart_mtx);
while (uart_is_readable(ui->inst) &&
ud->uart_pos < BUFFER_SIZE) {
ud->uart_buffer[ud->uart_pos] = uart_getc(ui->inst);
ud->uart_pos++;
}
mutex_exit(&ud->uart_mtx);
}
}
void uart_write_bytes(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
if (ud->usb_pos) {
const uart_id_t *ui = &UART_ID[itf];
mutex_enter_blocking(&ud->usb_mtx);
uart_write_blocking(ui->inst, ud->usb_buffer, ud->usb_pos);
ud->usb_pos = 0;
mutex_exit(&ud->usb_mtx);
}
}
void init_uart_data(uint8_t itf) {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
/* Pinmux */
gpio_set_function(ui->tx_pin, GPIO_FUNC_UART);
gpio_set_function(ui->rx_pin, GPIO_FUNC_UART);
/* USB CDC LC */
ud->usb_lc.bit_rate = DEF_BIT_RATE;
ud->usb_lc.data_bits = DEF_DATA_BITS;
ud->usb_lc.parity = DEF_PARITY;
ud->usb_lc.stop_bits = DEF_STOP_BITS;
/* UART LC */
ud->uart_lc.bit_rate = DEF_BIT_RATE;
ud->uart_lc.data_bits = DEF_DATA_BITS;
ud->uart_lc.parity = DEF_PARITY;
ud->uart_lc.stop_bits = DEF_STOP_BITS;
/* Buffer */
ud->uart_pos = 0;
ud->usb_pos = 0;
/* Mutex */
mutex_init(&ud->uart_mtx);
mutex_init(&ud->usb_mtx);
/* UART start */
uart_init(ui->inst, ud->usb_lc.bit_rate);
uart_set_hw_flow(ui->inst, false, false);
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits),
stopbits_usb2uart(ud->usb_lc.stop_bits),
parity_usb2uart(ud->usb_lc.parity));
}
int main(void) int main(void)
{ {
uint8_t ch; uint8_t ch;
int rc; int rc;
int itf;
mutex_init(&UART_MTX); for (itf = 0; itf < CFG_TUD_CDC; itf++)
mutex_init(&USB_MTX); init_uart_data(itf);
gpio_init(LED_PIN); gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT); gpio_set_dir(LED_PIN, GPIO_OUT);
uart_init(UART_ID, CDC_LC.bit_rate);
gpio_set_function(UART_TX_PIN, GPIO_FUNC_UART);
gpio_set_function(UART_RX_PIN, GPIO_FUNC_UART);
uart_set_hw_flow(UART_ID, false, false);
uart_set_format(UART_ID, databits_usb2uart(CDC_LC.data_bits),
stopbits_usb2uart(CDC_LC.stop_bits),
parity_usb2uart(CDC_LC.parity));
multicore_launch_core1(core1_entry); multicore_launch_core1(core1_entry);
while (1) { while (1) {
update_uart_cfg(); for (itf = 0; itf < CFG_TUD_CDC; itf++) {
update_uart_cfg(itf);
/* Read bytes from UART */ uart_read_bytes(itf);
if (uart_is_readable(UART_ID)) { uart_write_bytes(itf);
mutex_enter_blocking(&UART_MTX);
while (uart_is_readable(UART_ID) &&
UART_POS < BUFFER_SIZE) {
UART_BUFFER[UART_POS] = uart_getc(UART_ID);
UART_POS++;
}
mutex_exit(&UART_MTX);
}
/* Write bytes to UART */
if (USB_POS) {
mutex_enter_blocking(&USB_MTX);
uart_write_blocking(UART_ID, USB_BUFFER, USB_POS);
USB_POS = 0;
mutex_exit(&USB_MTX);
} }
} }

View file

@ -31,9 +31,18 @@
#define USBD_VID (0x2E8A) // Raspberry Pi #define USBD_VID (0x2E8A) // Raspberry Pi
#define USBD_PID (0x000a) // Raspberry Pi Pico SDK CDC #define USBD_PID (0x000a) // Raspberry Pi Pico SDK CDC
#define USBD_DESC_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN) #define USBD_DESC_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN * CFG_TUD_CDC)
#define USBD_MAX_POWER_MA (250) #define USBD_MAX_POWER_MA (250)
enum
{
ITF_NUM_CDC_0 = 0,
ITF_NUM_CDC_0_DATA,
ITF_NUM_CDC_1,
ITF_NUM_CDC_1_DATA,
ITF_NUM_TOTAL
};
#define USBD_ITF_CDC (0) // needs 2 interfaces #define USBD_ITF_CDC (0) // needs 2 interfaces
#define USBD_ITF_MAX (2) #define USBD_ITF_MAX (2)
@ -49,6 +58,12 @@
#define USBD_STR_SERIAL (0x03) #define USBD_STR_SERIAL (0x03)
#define USBD_STR_CDC (0x04) #define USBD_STR_CDC (0x04)
#define EPNUM_CDC_0_NOTIF (0x81)
#define EPNUM_CDC_0_DATA (0x02)
#define EPNUM_CDC_1_NOTIF (0x84)
#define EPNUM_CDC_1_DATA (0x05)
// Note: descriptors returned from callbacks must exist long enough for transfer to complete // Note: descriptors returned from callbacks must exist long enough for transfer to complete
static const tusb_desc_device_t usbd_desc_device = { static const tusb_desc_device_t usbd_desc_device = {
@ -69,11 +84,14 @@ static const tusb_desc_device_t usbd_desc_device = {
}; };
static const uint8_t usbd_desc_cfg[USBD_DESC_LEN] = { static const uint8_t usbd_desc_cfg[USBD_DESC_LEN] = {
TUD_CONFIG_DESCRIPTOR(1, USBD_ITF_MAX, USBD_STR_0, USBD_DESC_LEN, TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, USBD_STR_0, USBD_DESC_LEN,
TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, USBD_MAX_POWER_MA), TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, USBD_MAX_POWER_MA),
TUD_CDC_DESCRIPTOR(USBD_ITF_CDC, USBD_STR_CDC, USBD_CDC_EP_CMD, TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_0, USBD_STR_CDC, EPNUM_CDC_0_NOTIF,
USBD_CDC_CMD_MAX_SIZE, USBD_CDC_EP_OUT, USBD_CDC_EP_IN, USBD_CDC_IN_OUT_MAX_SIZE), USBD_CDC_CMD_MAX_SIZE, EPNUM_CDC_0_DATA, 0x80 | EPNUM_CDC_0_DATA, USBD_CDC_IN_OUT_MAX_SIZE),
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_1, USBD_STR_CDC, EPNUM_CDC_1_NOTIF,
USBD_CDC_CMD_MAX_SIZE, EPNUM_CDC_1_DATA, 0x80 | EPNUM_CDC_1_DATA, USBD_CDC_IN_OUT_MAX_SIZE),
}; };
static const char *const usbd_desc_str[] = { static const char *const usbd_desc_str[] = {