pico-uart-bridge/uart-bridge.c

315 lines
6.1 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: MIT
/*
* Copyright 2021 Álvaro Fernández Rojas <noltari@gmail.com>
*/
#include <hardware/irq.h>
#include <hardware/structs/sio.h>
#include <hardware/uart.h>
#include <pico/multicore.h>
#include <pico/stdlib.h>
#include <string.h>
#include <tusb.h>
#if !defined(BIT)
#define BIT(a) (1 << a)
#endif /* BIT */
#if !defined(MIN)
#define MIN(a, b) ((a > b) ? b : a)
#endif /* MIN */
#define LED_PIN 25
#define BUFFER_SIZE 256
#define DEF_HW_FLOW false
#define DEF_BIT_RATE 115200
#define DEF_STOP_BITS 1
#define DEF_PARITY 0
#define DEF_DATA_BITS 8
#define USB_LS_RTS BIT(1)
typedef struct {
uart_inst_t *const inst;
uint8_t tx_pin;
uint8_t rx_pin;
uint8_t cts_pin;
uint8_t rts_pin;
} uart_id_t;
typedef struct {
bool usb_hf;
cdc_line_coding_t usb_lc;
bool uart_hf;
cdc_line_coding_t uart_lc;
mutex_t lc_mtx;
uint8_t uart_buffer[BUFFER_SIZE];
uint32_t uart_pos;
mutex_t uart_mtx;
uint8_t usb_buffer[BUFFER_SIZE];
uint32_t usb_pos;
mutex_t usb_mtx;
} uart_data_t;
const uart_id_t UART_ID[CFG_TUD_CDC] = {
{
.inst = uart0,
.tx_pin = 0,
.rx_pin = 1,
.cts_pin = 2,
.rts_pin = 3,
}, {
.inst = uart1,
.tx_pin = 4,
.rx_pin = 5,
.cts_pin = 6,
.rts_pin = 7,
}
};
uart_data_t UART_DATA[CFG_TUD_CDC];
static inline uint databits_usb2uart(uint8_t data_bits)
{
switch (data_bits) {
case 5:
return 5;
case 6:
return 6;
case 7:
return 7;
default:
return 8;
}
}
static inline uart_parity_t parity_usb2uart(uint8_t usb_parity)
{
switch (usb_parity) {
case 1:
return UART_PARITY_ODD;
case 2:
return UART_PARITY_EVEN;
default:
return UART_PARITY_NONE;
}
}
static inline uint stopbits_usb2uart(uint8_t stop_bits)
{
switch (stop_bits) {
case 2:
return 2;
default:
return 1;
}
}
void update_uart_cfg(uint8_t itf)
{
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&ud->lc_mtx);
if (ud->usb_hf != ud->uart_hf) {
uart_set_hw_flow(ui->inst, ud->usb_hf, ud->usb_hf);
ud->uart_hf = ud->usb_hf;
}
if (ud->usb_lc.bit_rate != ud->uart_lc.bit_rate) {
uart_set_baudrate(ui->inst, ud->usb_lc.bit_rate);
ud->uart_lc.bit_rate = ud->usb_lc.bit_rate;
}
if ((ud->usb_lc.stop_bits != ud->uart_lc.stop_bits) ||
(ud->usb_lc.parity != ud->uart_lc.parity) ||
(ud->usb_lc.data_bits != ud->uart_lc.data_bits)) {
uart_set_format(ui->inst,
databits_usb2uart(ud->usb_lc.data_bits),
stopbits_usb2uart(ud->usb_lc.stop_bits),
parity_usb2uart(ud->usb_lc.parity));
ud->uart_lc.data_bits = ud->usb_lc.data_bits;
ud->uart_lc.parity = ud->usb_lc.parity;
ud->uart_lc.stop_bits = ud->usb_lc.stop_bits;
}
mutex_exit(&ud->lc_mtx);
}
void usb_read_bytes(uint8_t itf) {
uint32_t len = tud_cdc_n_available(itf);
if (len) {
uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&ud->usb_mtx);
len = MIN(len, BUFFER_SIZE - ud->usb_pos);
if (len) {
uint32_t count;
count = tud_cdc_n_read(itf, &ud->usb_buffer[ud->usb_pos], len);
ud->usb_pos += count;
}
mutex_exit(&ud->usb_mtx);
}
}
void usb_write_bytes(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
if (ud->uart_pos) {
uint32_t count;
mutex_enter_blocking(&ud->uart_mtx);
count = tud_cdc_n_write(itf, ud->uart_buffer, ud->uart_pos);
if (count < ud->uart_pos)
memcpy(ud->uart_buffer, &ud->uart_buffer[count],
ud->uart_pos - count);
ud->uart_pos -= count;
mutex_exit(&ud->uart_mtx);
if (count)
tud_cdc_n_write_flush(itf);
}
}
void usb_cdc_process(uint8_t itf)
{
uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&ud->lc_mtx);
ud->usb_hf = !!(tud_cdc_n_get_line_state(itf) & USB_LS_RTS);
tud_cdc_n_get_line_coding(itf, &ud->usb_lc);
mutex_exit(&ud->lc_mtx);
usb_read_bytes(itf);
usb_write_bytes(itf);
}
void core1_entry(void)
{
tusb_init();
while (1) {
int itf;
int con = 0;
tud_task();
for (itf = 0; itf < CFG_TUD_CDC; itf++) {
if (tud_cdc_n_connected(itf)) {
con = 1;
usb_cdc_process(itf);
}
}
gpio_put(LED_PIN, con);
}
}
void uart_read_bytes(uint8_t itf) {
const uart_id_t *ui = &UART_ID[itf];
if (uart_is_readable(ui->inst)) {
uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&ud->uart_mtx);
while (uart_is_readable(ui->inst) &&
ud->uart_pos < BUFFER_SIZE) {
ud->uart_buffer[ud->uart_pos] = uart_getc(ui->inst);
ud->uart_pos++;
}
mutex_exit(&ud->uart_mtx);
}
}
void uart_write_bytes(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
if (ud->usb_pos) {
const uart_id_t *ui = &UART_ID[itf];
mutex_enter_blocking(&ud->usb_mtx);
uart_write_blocking(ui->inst, ud->usb_buffer, ud->usb_pos);
ud->usb_pos = 0;
mutex_exit(&ud->usb_mtx);
}
}
void init_uart_data(uint8_t itf) {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
/* Pinmux */
gpio_set_function(ui->tx_pin, GPIO_FUNC_UART);
gpio_set_function(ui->rx_pin, GPIO_FUNC_UART);
gpio_set_function(ui->cts_pin, GPIO_FUNC_UART);
gpio_set_function(ui->rts_pin, GPIO_FUNC_UART);
/* USB CDC LC */
ud->usb_hf = DEF_HW_FLOW;
ud->usb_lc.bit_rate = DEF_BIT_RATE;
ud->usb_lc.data_bits = DEF_DATA_BITS;
ud->usb_lc.parity = DEF_PARITY;
ud->usb_lc.stop_bits = DEF_STOP_BITS;
/* UART LC */
ud->uart_hf = DEF_HW_FLOW;
ud->uart_lc.bit_rate = DEF_BIT_RATE;
ud->uart_lc.data_bits = DEF_DATA_BITS;
ud->uart_lc.parity = DEF_PARITY;
ud->uart_lc.stop_bits = DEF_STOP_BITS;
/* Buffer */
ud->uart_pos = 0;
ud->usb_pos = 0;
/* Mutex */
mutex_init(&ud->lc_mtx);
mutex_init(&ud->uart_mtx);
mutex_init(&ud->usb_mtx);
/* UART start */
uart_init(ui->inst, ud->usb_lc.bit_rate);
uart_set_hw_flow(ui->inst, DEF_HW_FLOW, DEF_HW_FLOW);
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits),
stopbits_usb2uart(ud->usb_lc.stop_bits),
parity_usb2uart(ud->usb_lc.parity));
}
int main(void)
{
int itf;
set_sys_clock_khz(250000, false);
for (itf = 0; itf < CFG_TUD_CDC; itf++)
init_uart_data(itf);
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
multicore_launch_core1(core1_entry);
while (1) {
for (itf = 0; itf < CFG_TUD_CDC; itf++) {
update_uart_cfg(itf);
uart_read_bytes(itf);
uart_write_bytes(itf);
}
}
return 0;
}