monado/src/xrt/auxiliary/tracking/t_tracker_psvr.cpp

2151 lines
61 KiB
C++

// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief PSVR tracker code.
* @author Jakob Bornecrantz <jakob@collabora.com>
* @author Pete Black <pete.black@collabora.com>
* @ingroup aux_tracking
*/
#include "xrt/xrt_tracking.h"
#include "tracking/t_tracking.h"
#include "tracking/t_calibration_opencv.hpp"
#include "tracking/t_helper_debug_sink.hpp"
#include "util/u_misc.h"
#include "util/u_debug.h"
#include "util/u_frame.h"
#include "util/u_format.h"
#include "util/u_var.h"
#include "util/u_logging.h"
#include "math/m_mathinclude.h"
#include "math/m_api.h"
#include "math/m_permutation.h"
#include "math/m_imu_3dof.h"
#include "os/os_threading.h"
#include <stdio.h>
#include <assert.h>
#include <pthread.h>
#include <Hungarian.hpp>
#include <Eigen/Eigen>
#include <opencv2/opencv.hpp>
#include <inttypes.h>
DEBUG_GET_ONCE_LOG_OPTION(psvr_log, "PSVR_TRACKING_LOG", U_LOGGING_WARN)
#define PSVR_TRACE(...) U_LOG_IFL_T(t.log_level, __VA_ARGS__)
#define PSVR_DEBUG(...) U_LOG_IFL_D(t.log_level, __VA_ARGS__)
#define PSVR_INFO(...) U_LOG_IFL_I(t.log_level, __VA_ARGS__)
#define PSVR_WARN(...) U_LOG_IFL_W(t.log_level, __VA_ARGS__)
#define PSVR_ERROR(...) U_LOG_IFL_E(t.log_level, __VA_ARGS__)
/*!
* How many LEDs in the tracked configuration
*/
#define PSVR_NUM_LEDS 7
/*!
* How many LEDs do we need to do an optical solve/correction
*/
#define PSVR_OPTICAL_SOLVE_THRESH 5
/*!
* If potential match vertex is further than this distance from the
* measurement, reject the match - do not set too low
*/
#define PSVR_DISAMBIG_REJECT_DIST 0.02f
/*!
* If potential match vertex is further than this distance from the measurement,
* reject the match - do not set too low
*/
#define PSVR_DISAMBIG_REJECT_ANG 0.7f
/*!
* Cutoff distance for keeping the id for a blob from one frame to the next
*/
#define PSVR_SEARCH_RADIUS 0.043f
/*
* The magnitude of the correction relative to the previous correction must be
* below this value to contribute towards lock acquisition
*/
#define PSVR_MAX_BAD_CORR 10
#define PSVR_BAD_CORRECTION_THRESH 0.1f
#define PSVR_CORRECTION_THRESH 0.05f
/*!
* We will 'drift' our imu-solved rotation towards our optically solved
* correction to avoid jumps
*/
#define PSVR_FAST_CORRECTION 0.05f
/*!
* We will 'drift' our imu-solved rotation towards our optically solved
* correction to avoid jumps
*/
#define PSVR_SLOW_CORRECTION 0.005f
// kalman filter coefficients
#define PSVR_BLOB_PROCESS_NOISE 0.1f // R
#define PSVR_BLOB_MEASUREMENT_NOISE 1.0f // Q
#define PSVR_POSE_PROCESS_NOISE 0.5f // R
//! Our measurements are quite noisy so we need to smooth heavily
#define PSVR_POSE_MEASUREMENT_NOISE 100.0f
#define PSVR_OUTLIER_THRESH 0.17f
#define PSVR_MERGE_THRESH 0.06f
//! hold the previously recognised configuration unless we depart significantly
#define PSVR_HOLD_THRESH 0.086f
// uncomment this to dump comprehensive optical and imu data to
// /tmp/psvr_dump.txt
//#define PSVR_DUMP_FOR_OFFLINE_ANALYSIS
//#define PSVR_DUMP_IMU_FOR_OFFLINE_ANALYSIS
using namespace xrt::auxiliary::tracking;
//! Namespace for PSVR tracking implementation
namespace xrt::auxiliary::tracking::psvr {
typedef enum blob_type
{
BLOB_TYPE_UNKNOWN,
BLOB_TYPE_SIDE,
BLOB_TYPE_FRONT,
BLOB_TYPE_REAR, // currently unused
} blob_type_t;
typedef struct blob_point
{
cv::Point3f p; // 3d coordinate
cv::KeyPoint lkp; // left keypoint
cv::KeyPoint rkp; // right keypoint
blob_type_t btype; // blob type
} blob_point_t;
struct View
{
cv::Mat undistort_rectify_map_x;
cv::Mat undistort_rectify_map_y;
cv::Matx33d intrinsics;
cv::Mat distortion; // size may vary
cv::Vec4d distortion_fisheye;
bool use_fisheye;
std::vector<cv::KeyPoint> keypoints;
cv::Mat frame_undist_rectified;
void
populate_from_calib(t_camera_calibration &calib, const RemapPair &rectification)
{
CameraCalibrationWrapper wrap(calib);
intrinsics = wrap.intrinsics_mat;
distortion = wrap.distortion_mat.clone();
distortion_fisheye = wrap.distortion_fisheye_mat;
use_fisheye = wrap.use_fisheye;
undistort_rectify_map_x = rectification.remap_x;
undistort_rectify_map_y = rectification.remap_y;
}
};
typedef enum led_tag
{
TAG_TL,
TAG_TR,
TAG_C,
TAG_BL,
TAG_BR,
TAG_SL,
TAG_SR
} led_tag_t;
typedef struct model_vertex
{
int32_t vertex_index;
Eigen::Vector4f position;
led_tag_t tag;
bool active;
// NOTE: these operator overloads are required for
// comparisons with the permutations library
bool
operator<(const model_vertex &mv) const
{
return (vertex_index < mv.vertex_index);
}
bool
operator>(const model_vertex &mv) const
{
return (vertex_index > mv.vertex_index);
}
} model_vertex_t;
typedef struct match_data
{
float angle = {}; // angle from reference vector
float distance = {}; // distance from base of reference vector
int32_t vertex_index = {}; // index also known as tag
Eigen::Vector4f position = {}; // 3d position of vertex
blob_point_t src_blob = {}; // blob this vertex was derived from
} match_data_t;
typedef struct match_model
{
//! Collection of vertices and associated data.
std::vector<match_data_t> measurements;
} match_model_t;
/*!
* Main PSVR tracking class.
*/
class TrackerPSVR
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
struct xrt_tracked_psvr base = {};
struct xrt_frame_sink sink = {};
struct xrt_frame_node node = {};
//! Logging stuff.
enum u_logging_level log_level;
//! Frame waiting to be processed.
struct xrt_frame *frame;
//! Thread and lock helper.
struct os_thread_helper oth;
//! Have we received a new IMU sample.
bool has_imu = false;
timepoint_ns last_imu{0};
struct
{
struct xrt_vec3 pos = {};
struct m_imu_3dof imu_3dof;
} fusion;
struct
{
struct xrt_vec3 pos = {};
struct xrt_quat rot = {};
} optical;
Eigen::Quaternionf target_optical_rotation_correction; // the calculated rotation to
// correct the imu
Eigen::Quaternionf optical_rotation_correction; // currently applied (interpolated
// towards target) correction
Eigen::Matrix4f corrected_imu_rotation; // imu rotation with correction applied
Eigen::Quaternionf axis_align_rot; // used to rotate imu/tracking coordinates to world
model_vertex_t model_vertices[PSVR_NUM_LEDS]; // the model we match our
// measurements against
std::vector<match_data_t> last_vertices; // the last solved position of the HMD
uint32_t last_optical_model;
cv::KalmanFilter track_filters[PSVR_NUM_LEDS];
cv::KalmanFilter pose_filter; // we filter the final pose position of
// the HMD to smooth motion
View view[2];
bool calibrated;
HelperDebugSink debug = {HelperDebugSink::AllAvailable};
cv::Mat disparity_to_depth;
cv::Vec3d r_cam_translation;
cv::Matx33d r_cam_rotation;
cv::Ptr<cv::SimpleBlobDetector> sbd;
std::vector<cv::KeyPoint> l_blobs, r_blobs;
std::vector<match_model_t> matches;
// we refine our measurement by rejecting outliers and merging 'too
// close' points
std::vector<blob_point_t> world_points;
std::vector<blob_point_t> pruned_points;
std::vector<blob_point_t> merged_points;
std::vector<match_data_t> match_vertices;
float avg_optical_correction; // used to converge to a 'lock' correction
// rotation
bool done_correction; // set after a 'lock' is acquired
float max_correction;
// if we have made a lot of optical measurements that *should*
// be converging, but have not - we should reset
uint32_t bad_correction_count;
Eigen::Matrix4f last_pose;
uint64_t last_frame;
Eigen::Vector4f model_center; // center of rotation
#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS
FILE *dump_file;
#endif
};
static float
dist_3d(Eigen::Vector4f a, Eigen::Vector4f b)
{
return sqrt((a[0] - b[0]) * (a[0] - b[0]) + (a[1] - b[1]) * (a[1] - b[1]) + (a[2] - b[2]) * (a[2] - b[2]));
}
static float
dist_3d_cv(const cv::Point3f &a, const cv::Point3f &b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + (a.z - b.z) * (a.z - b.z));
}
static void
init_filter(cv::KalmanFilter &kf, float process_cov, float meas_cov, float dt)
{
kf.init(6, 3);
kf.transitionMatrix =
(cv::Mat_<float>(6, 6) << 1.0, 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
dt, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);
cv::setIdentity(kf.measurementMatrix, cv::Scalar::all(1.0f));
cv::setIdentity(kf.errorCovPost, cv::Scalar::all(0.0f));
// our filter parameters set the process and measurement noise
// covariances.
cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(process_cov));
cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(meas_cov));
}
static void
filter_predict(std::vector<match_data_t> *pose, cv::KalmanFilter *filters, float dt)
{
for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) {
match_data_t current_led;
cv::KalmanFilter *current_kf = filters + i;
// set our dt components in the transition matrix
current_kf->transitionMatrix.at<float>(0, 3) = dt;
current_kf->transitionMatrix.at<float>(1, 4) = dt;
current_kf->transitionMatrix.at<float>(2, 5) = dt;
current_led.vertex_index = i;
// current_led->tag = (led_tag_t)(i);
cv::Mat prediction = current_kf->predict();
current_led.position[0] = prediction.at<float>(0, 0);
current_led.position[1] = prediction.at<float>(1, 0);
current_led.position[2] = prediction.at<float>(2, 0);
pose->push_back(current_led);
}
}
static void
filter_update(std::vector<match_data_t> *pose, cv::KalmanFilter *filters, float dt)
{
for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) {
match_data_t *current_led = &pose->at(i);
cv::KalmanFilter *current_kf = filters + i;
// set our dt components in the transition matrix
current_kf->transitionMatrix.at<float>(0, 3) = dt;
current_kf->transitionMatrix.at<float>(1, 4) = dt;
current_kf->transitionMatrix.at<float>(2, 5) = dt;
current_led->vertex_index = i;
cv::Mat measurement = cv::Mat(3, 1, CV_32F);
measurement.at<float>(0, 0) = current_led->position[0];
measurement.at<float>(1, 0) = current_led->position[1];
measurement.at<float>(2, 0) = current_led->position[2];
current_kf->correct(measurement);
}
}
static void
pose_filter_predict(Eigen::Vector4f *pose, cv::KalmanFilter *filter, float dt)
{
// set our dt components in the transition matrix
filter->transitionMatrix.at<float>(0, 3) = dt;
filter->transitionMatrix.at<float>(1, 4) = dt;
filter->transitionMatrix.at<float>(2, 5) = dt;
cv::Mat prediction = filter->predict();
(*pose)[0] = prediction.at<float>(0, 0);
(*pose)[1] = prediction.at<float>(1, 0);
(*pose)[2] = prediction.at<float>(2, 0);
}
static void
pose_filter_update(Eigen::Vector4f *position, cv::KalmanFilter *filter, float dt)
{
filter->transitionMatrix.at<float>(0, 3) = dt;
filter->transitionMatrix.at<float>(1, 4) = dt;
filter->transitionMatrix.at<float>(2, 5) = dt;
cv::Mat measurement = cv::Mat(3, 1, CV_32F);
measurement.at<float>(0, 0) = position->x();
measurement.at<float>(1, 0) = position->y();
measurement.at<float>(2, 0) = position->z();
filter->correct(measurement);
}
static bool
match_possible(match_model_t *match)
{
//@todo - this is currently unimplemented
// check if this match makes sense - we can remove
// unobservable combinations without checking them.
// we cannot see SR,SL at the same time so remove any matches that
// contain them both in the first 5 slots
return true;
}
static void
verts_to_measurement(std::vector<blob_point_t> *meas_data, std::vector<match_data_t> *match_vertices)
{
// create a data structure that holds the inter-point distances
// and angles we will use to match the pose
match_vertices->clear();
if (meas_data->size() < PSVR_OPTICAL_SOLVE_THRESH) {
for (uint32_t i = 0; i < meas_data->size(); i++) {
match_data_t md;
md.vertex_index = -1;
md.position =
Eigen::Vector4f(meas_data->at(i).p.x, meas_data->at(i).p.y, meas_data->at(i).p.z, 1.0f);
md.src_blob = meas_data->at(i);
match_vertices->push_back(md);
}
return;
}
blob_point_t ref_a = meas_data->at(0);
blob_point_t ref_b = meas_data->at(1);
cv::Point3f ref_vec = ref_b.p - ref_a.p;
float ref_len = dist_3d_cv(ref_a.p, ref_b.p);
for (uint32_t i = 0; i < meas_data->size(); i++) {
blob_point_t vp = meas_data->at(i);
cv::Point3f point_vec = vp.p - ref_a.p;
match_data_t md;
md.vertex_index = -1;
md.position = Eigen::Vector4f(vp.p.x, vp.p.y, vp.p.z, 1.0f);
Eigen::Vector3f ref_vec3(ref_vec.x, ref_vec.y, ref_vec.z);
Eigen::Vector3f point_vec3(point_vec.x, point_vec.y, point_vec.z);
Eigen::Vector3f vp_pos3(vp.p.x, vp.p.y, vp.p.z);
if (i != 0) {
Eigen::Vector3f plane_norm = ref_vec3.cross(point_vec3).normalized();
if (plane_norm.z() > 0) {
md.angle = -1 * acos(point_vec3.normalized().dot(ref_vec3.normalized()));
} else {
md.angle = acos(point_vec3.normalized().dot(ref_vec3.normalized()));
}
md.distance = dist_3d_cv(vp.p, ref_a.p) / ref_len;
} else {
md.angle = 0.0f;
md.distance = 0.0f;
}
// fix up any NaNs
if (md.angle != md.angle) {
md.angle = 0.0f;
}
if (md.distance != md.distance) {
md.distance = 0.0f;
}
md.src_blob = vp;
match_vertices->push_back(md);
}
}
static float
last_diff(TrackerPSVR &t, std::vector<match_data_t> *meas_pose, std::vector<match_data_t> *last_pose)
{
// compute the aggregate difference (sum of distances between matching
// indices)between two poses
float diff = 0.0f;
for (uint32_t i = 0; i < meas_pose->size(); i++) {
uint32_t meas_index = meas_pose->at(i).vertex_index;
for (uint32_t j = 0; j < last_pose->size(); j++) {
uint32_t last_index = last_pose->at(j).vertex_index;
if (last_index == meas_index) {
float d = fabs(
dist_3d(meas_pose->at(meas_index).position, last_pose->at(last_index).position));
diff += d;
}
}
}
return diff / meas_pose->size();
}
static void
remove_outliers(std::vector<blob_point_t> *orig_points, std::vector<blob_point_t> *pruned_points, float outlier_thresh)
{
if (orig_points->empty()) {
return;
}
std::vector<blob_point_t> temp_points;
// immediately prune anything that is measured as
// 'behind' the camera - often reflections or lights in the room etc.
for (uint32_t i = 0; i < orig_points->size(); i++) {
cv::Point3f p = orig_points->at(i).p;
if (p.z < 0) {
temp_points.push_back(orig_points->at(i));
}
}
if (temp_points.empty()) {
return;
}
// compute the 3d median of the points, and reject anything further away
// than a
// threshold distance
std::vector<float> x_values;
std::vector<float> y_values;
std::vector<float> z_values;
for (uint32_t i = 0; i < temp_points.size(); i++) {
x_values.push_back(temp_points[i].p.x);
y_values.push_back(temp_points[i].p.y);
z_values.push_back(temp_points[i].p.z);
}
std::nth_element(x_values.begin(), x_values.begin() + x_values.size() / 2, x_values.end());
float median_x = x_values[x_values.size() / 2];
std::nth_element(y_values.begin(), y_values.begin() + y_values.size() / 2, y_values.end());
float median_y = y_values[y_values.size() / 2];
std::nth_element(z_values.begin(), z_values.begin() + z_values.size() / 2, z_values.end());
float median_z = z_values[z_values.size() / 2];
for (uint32_t i = 0; i < temp_points.size(); i++) {
float error_x = temp_points[i].p.x - median_x;
float error_y = temp_points[i].p.y - median_y;
float error_z = temp_points[i].p.z - median_z;
float rms_error = sqrt((error_x * error_x) + (error_y * error_y) + (error_z * error_z));
// U_LOG_D("%f %f %f %f %f %f", temp_points[i].p.x,
// temp_points[i].p.y, temp_points[i].p.z, error_x,
// error_y, error_z);
if (rms_error < outlier_thresh) {
pruned_points->push_back(temp_points[i]);
}
}
}
struct close_pair
{
int index_a;
int index_b;
float dist;
};
static void
merge_close_points(std::vector<blob_point_t> *orig_points, std::vector<blob_point_t> *merged_points, float merge_thresh)
{
// if a pair of points in the supplied lists are closer than the
// threshold, discard one of them.
//@todo - merge the 2d blob extents when we merge a pair of points
std::vector<struct close_pair> pairs;
for (uint32_t i = 0; i < orig_points->size(); i++) {
for (uint32_t j = 0; j < orig_points->size(); j++) {
if (i != j) {
float d = dist_3d_cv(orig_points->at(i).p, orig_points->at(j).p);
if (d < merge_thresh) {
struct close_pair p;
p.index_a = i;
p.index_b = j;
p.dist = d;
pairs.push_back(p);
}
}
}
}
std::vector<int> indices_to_remove;
for (uint32_t i = 0; i < pairs.size(); i++) {
if (pairs[i].index_a < pairs[i].index_b) {
indices_to_remove.push_back(pairs[i].index_a);
} else {
indices_to_remove.push_back(pairs[i].index_b);
}
}
for (int i = 0; i < (int)orig_points->size(); i++) {
bool remove_index = false;
for (int j = 0; j < (int)indices_to_remove.size(); j++) {
if (i == indices_to_remove[j]) {
remove_index = true;
}
}
if (!remove_index) {
merged_points->push_back(orig_points->at(i));
}
}
}
static void
match_triangles(Eigen::Matrix4f *t1_mat,
Eigen::Matrix4f *t1_to_t2_mat,
const Eigen::Vector4f &t1_a,
const Eigen::Vector4f &t1_b,
const Eigen::Vector4f &t1_c,
const Eigen::Vector4f &t2_a,
const Eigen::Vector4f &t2_b,
const Eigen::Vector4f &t2_c)
{
// given 3 vertices in 'model space', and a corresponding 3 vertices
// in 'world space', compute the transformation matrix to map one
// to the other
*t1_mat = Eigen::Matrix4f().Identity();
Eigen::Matrix4f t2_mat = Eigen::Matrix4f().Identity();
Eigen::Vector3f t1_x_vec = (t1_b - t1_a).head<3>().normalized();
Eigen::Vector3f t1_z_vec = (t1_c - t1_a).head<3>().cross((t1_b - t1_a).head<3>()).normalized();
Eigen::Vector3f t1_y_vec = t1_x_vec.cross(t1_z_vec).normalized();
Eigen::Vector3f t2_x_vec = (t2_b - t2_a).head<3>().normalized();
Eigen::Vector3f t2_z_vec = (t2_c - t2_a).head<3>().cross((t2_b - t2_a).head<3>()).normalized();
Eigen::Vector3f t2_y_vec = t2_x_vec.cross(t2_z_vec).normalized();
t1_mat->col(0) << t1_x_vec[0], t1_x_vec[1], t1_x_vec[2], 0.0f;
t1_mat->col(1) << t1_y_vec[0], t1_y_vec[1], t1_y_vec[2], 0.0f;
t1_mat->col(2) << t1_z_vec[0], t1_z_vec[1], t1_z_vec[2], 0.0f;
t1_mat->col(3) << t1_a[0], t1_a[1], t1_a[2], 1.0f;
t2_mat.col(0) << t2_x_vec[0], t2_x_vec[1], t2_x_vec[2], 0.0f;
t2_mat.col(1) << t2_y_vec[0], t2_y_vec[1], t2_y_vec[2], 0.0f;
t2_mat.col(2) << t2_z_vec[0], t2_z_vec[1], t2_z_vec[2], 0.0f;
t2_mat.col(3) << t2_a[0], t2_a[1], t2_a[2], 1.0f;
*t1_to_t2_mat = t1_mat->inverse() * t2_mat;
}
static Eigen::Matrix4f
solve_for_measurement(TrackerPSVR *t, std::vector<match_data_t> *measurement, std::vector<match_data_t> *solved)
{
// use the vertex positions (at least 3) in the measurement to
// construct a pair of triangles which are used to calculate the
// pose of the tracked HMD,
// based on the corresponding model vertices
// @todo: compute all possible unique triangles, and average the result
Eigen::Matrix4f tri_basis;
Eigen::Matrix4f model_to_measurement;
Eigen::Vector4f meas_ref_a = measurement->at(0).position;
Eigen::Vector4f meas_ref_b = measurement->at(1).position;
int meas_index_a = measurement->at(0).vertex_index;
int meas_index_b = measurement->at(1).vertex_index;
Eigen::Vector4f model_ref_a = t->model_vertices[meas_index_a].position;
Eigen::Vector4f model_ref_b = t->model_vertices[meas_index_b].position;
float highest_length = 0.0f;
int best_model_index = 0;
int most_distant_index = 0;
for (uint32_t i = 0; i < measurement->size(); i++) {
int model_tag_index = measurement->at(i).vertex_index;
Eigen::Vector4f model_vert = t->model_vertices[model_tag_index].position;
if (most_distant_index > 1 && dist_3d(model_vert, model_ref_a) > highest_length) {
best_model_index = most_distant_index;
}
most_distant_index++;
}
Eigen::Vector4f meas_ref_c = measurement->at(best_model_index).position;
int meas_index_c = measurement->at(best_model_index).vertex_index;
Eigen::Vector4f model_ref_c = t->model_vertices[meas_index_c].position;
match_triangles(&tri_basis, &model_to_measurement, model_ref_a, model_ref_b, model_ref_c, meas_ref_a,
meas_ref_b, meas_ref_c);
Eigen::Matrix4f model_center_transform_f = tri_basis * model_to_measurement * tri_basis.inverse();
// now reverse the order of our verts to contribute to a more accurate
// estimate.
meas_ref_a = measurement->at(measurement->size() - 1).position;
meas_ref_b = measurement->at(measurement->size() - 2).position;
meas_index_a = measurement->at(measurement->size() - 1).vertex_index;
meas_index_b = measurement->at(measurement->size() - 2).vertex_index;
model_ref_a = t->model_vertices[meas_index_a].position;
model_ref_b = t->model_vertices[meas_index_b].position;
highest_length = 0.0f;
best_model_index = 0;
most_distant_index = 0;
for (uint32_t i = 0; i < measurement->size(); i++) {
int model_tag_index = measurement->at(i).vertex_index;
Eigen::Vector4f model_vert = t->model_vertices[model_tag_index].position;
if (most_distant_index < (int)measurement->size() - 2 &&
dist_3d(model_vert, model_ref_a) > highest_length) {
best_model_index = most_distant_index;
}
most_distant_index++;
}
meas_ref_c = measurement->at(best_model_index).position;
meas_index_c = measurement->at(best_model_index).vertex_index;
model_ref_c = t->model_vertices[meas_index_c].position;
match_triangles(&tri_basis, &model_to_measurement, model_ref_a, model_ref_b, model_ref_c, meas_ref_a,
meas_ref_b, meas_ref_c);
Eigen::Matrix4f model_center_transform_r = tri_basis * model_to_measurement * tri_basis.inverse();
// decompose our transforms and slerp between them to get the avg of the
// rotation determined from the first 2 + most distant , and last 2 +
// most distant verts
Eigen::Matrix3f r = model_center_transform_f.block(0, 0, 3, 3);
Eigen::Quaternionf f_rot_part = Eigen::Quaternionf(r);
Eigen::Vector4f f_trans_part = model_center_transform_f.col(3);
r = model_center_transform_r.block(0, 0, 3, 3);
Eigen::Quaternionf r_rot_part = Eigen::Quaternionf(r);
Eigen::Vector4f r_trans_part = model_center_transform_r.col(3);
Eigen::Matrix4f pose = Eigen::Matrix4f().Identity();
pose.block(0, 0, 3, 3) = f_rot_part.slerp(0.5, r_rot_part).toRotationMatrix();
pose.col(3) = (f_trans_part + r_trans_part) / 2.0f;
solved->clear();
for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) {
match_data_t md;
md.vertex_index = i;
md.position = pose * t->model_vertices[i].position;
solved->push_back(md);
}
return pose;
}
typedef struct proximity_data
{
Eigen::Vector4f position;
float lowest_distance;
int vertex_index;
} proximity_data_t;
static Eigen::Matrix4f
solve_with_imu(TrackerPSVR &t,
std::vector<match_data_t> *measurements,
std::vector<match_data_t> *match_measurements,
std::vector<match_data_t> *solved,
float search_radius)
{
// use the hungarian algorithm to find the closest set of points to the
// match measurement
// a 7x7 matrix of costs e.g distances between our points and the match
// measurements we will initialise to zero because we will not have
// distances for points we don't have
std::vector<vector<double> > costMatrix = {
{0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0},
};
HungarianAlgorithm HungAlgo;
vector<int> assignment;
// lets fill in our cost matrix with distances
// @todo: could use squared distance to save a handful of sqrts.
// @todo: artificially boost cost where distance from last exceeds
// search threshold
// @todo: artificially boost cost where blob type differs from match
// measurement
for (uint32_t i = 0; i < measurements->size(); i++) {
for (uint32_t j = 0; j < match_measurements->size(); j++) {
costMatrix[i][j] = dist_3d(measurements->at(i).position, match_measurements->at(j).position);
if (measurements->at(i).src_blob.btype == BLOB_TYPE_SIDE &&
match_measurements->at(j).src_blob.btype == BLOB_TYPE_FRONT) {
costMatrix[i][j] += 10.0f;
}
if (measurements->at(i).src_blob.btype == BLOB_TYPE_FRONT &&
match_measurements->at(j).src_blob.btype == BLOB_TYPE_SIDE) {
costMatrix[i][j] += 10.0f;
}
}
}
double cost = HungAlgo.Solve(costMatrix, assignment);
(void)cost;
for (uint32_t i = 0; i < measurements->size(); i++) {
measurements->at(i).vertex_index = assignment[i];
}
std::vector<proximity_data_t> proximity_data;
for (uint32_t i = 0; i < measurements->size(); i++) {
float lowest_distance = 65535.0;
int closest_index = 0;
(void)lowest_distance;
(void)closest_index;
proximity_data_t p;
match_data_t measurement = measurements->at(i);
p.position = measurement.position;
p.vertex_index = measurement.vertex_index;
p.lowest_distance = 0.0f;
proximity_data.push_back(p);
}
if (!proximity_data.empty()) {
// use the IMU rotation and the measured points in
// world space to compute a transform from model to world space.
// use each measured led individually and average the resulting
// positions
std::vector<match_model_t> temp_measurement_list;
for (uint32_t i = 0; i < proximity_data.size(); i++) {
proximity_data_t p = proximity_data[i];
Eigen::Vector4f model_vertex = t.model_vertices[p.vertex_index].position;
Eigen::Vector4f measurement_vertex = p.position;
Eigen::Vector4f measurement_offset = t.corrected_imu_rotation * model_vertex;
Eigen::Affine3f translation(
Eigen::Translation3f((measurement_vertex - measurement_offset).head<3>()));
Eigen::Matrix4f model_to_measurement = translation.matrix() * t.corrected_imu_rotation;
match_model_t temp_measurement;
for (uint32_t j = 0; j < PSVR_NUM_LEDS; j++) {
match_data_t md;
md.position = model_to_measurement * t.model_vertices[j].position;
md.vertex_index = j;
temp_measurement.measurements.push_back(md);
}
temp_measurement_list.push_back(temp_measurement);
}
for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) {
match_data_t avg_data;
avg_data.position = Eigen::Vector4f(0.0f, 0.0f, 0.0f, 1.0f);
for (uint32_t j = 0; j < temp_measurement_list.size(); j++) {
avg_data.position += temp_measurement_list[j].measurements[i].position;
}
avg_data.position /= float(temp_measurement_list.size());
avg_data.vertex_index = i;
solved->push_back(avg_data);
}
std::vector<match_data_t> _solved;
Eigen::Matrix4f pose = solve_for_measurement(&t, solved, &_solved) * t.corrected_imu_rotation;
t.last_pose = pose;
return pose;
}
PSVR_INFO("LOST TRACKING - RETURNING LAST POSE");
t.max_correction = PSVR_SLOW_CORRECTION;
return t.last_pose;
}
static Eigen::Matrix4f
disambiguate(TrackerPSVR &t,
std::vector<match_data_t> *measured_points,
std::vector<match_data_t> *last_measurement,
std::vector<match_data_t> *solved,
uint32_t frame_no)
{
// main disambiguation routine - if we have enough points, use
// optical matching, otherwise solve with imu.
// do our imu-based solve up front - we can use this to compute a more
// likely match (currently disabled)
Eigen::Matrix4f imu_solved_pose =
solve_with_imu(t, measured_points, last_measurement, solved, PSVR_SEARCH_RADIUS);
if (measured_points->size() < PSVR_OPTICAL_SOLVE_THRESH && !last_measurement->empty()) {
return imu_solved_pose;
}
if (measured_points->size() < 3) {
return imu_solved_pose;
}
// optical matching.
float lowest_error = 65535.0f;
int32_t best_model = -1;
uint32_t matched_vertex_indices[PSVR_NUM_LEDS];
// we can early-out if we are 'close enough' to our last match model.
// if we hold the previous led configuration, this increases
// performance and should cut down on jitter.
if (t.last_optical_model > 0 && t.done_correction) {
match_model_t m = t.matches[t.last_optical_model];
for (uint32_t i = 0; i < measured_points->size(); i++) {
measured_points->at(i).vertex_index = m.measurements.at(i).vertex_index;
}
Eigen::Matrix4f res = solve_for_measurement(&t, measured_points, solved);
float diff = last_diff(t, solved, &t.last_vertices);
if (diff < PSVR_HOLD_THRESH) {
// U_LOG_D("diff from last: %f", diff);
return res;
}
}
for (uint32_t i = 0; i < t.matches.size(); i++) {
match_model_t m = t.matches[i];
float error_sum = 0.0f;
float sign_diff = 0.0f;
(void)sign_diff;
// we have 2 measurements per vertex (distance and
// angle) and we are comparing only the 'non-basis
// vector' elements
// fill in our 'proposed' vertex indices from the model
// data (this will be overwritten once our best model is
// selected
for (uint32_t j = 0; j < measured_points->size(); j++) {
measured_points->at(j).vertex_index = m.measurements.at(j).vertex_index;
}
bool ignore = false;
// use the information we gathered on blob shapes to
// reject matches that would not fit
//@todo: use tags instead of numeric vertex indices
for (uint32_t j = 0; j < measured_points->size(); j++) {
if (measured_points->at(j).src_blob.btype == BLOB_TYPE_FRONT &&
measured_points->at(j).vertex_index > 4) {
error_sum += 50.0f;
}
if (measured_points->at(j).src_blob.btype == BLOB_TYPE_SIDE &&
measured_points->at(j).vertex_index < 5) {
error_sum += 50.0f;
}
// if the distance is between a measured point
// and its last-known position is significantly
// different, discard this
float dist = fabs(measured_points->at(j).distance - m.measurements.at(j).distance);
if (dist > PSVR_DISAMBIG_REJECT_DIST) {
error_sum += 50.0f;
} else {
error_sum += fabs(measured_points->at(j).distance - m.measurements.at(j).distance);
}
// if the angle is significantly different,
// discard this
float angdiff = fabs(measured_points->at(j).angle - m.measurements.at(j).angle);
if (angdiff > PSVR_DISAMBIG_REJECT_ANG) {
error_sum += 50.0f;
} else {
error_sum += fabs(measured_points->at(j).angle - m.measurements.at(j).angle);
}
}
float avg_error = (error_sum / measured_points->size());
if (error_sum < 50) {
std::vector<match_data_t> meas_solved;
solve_for_measurement(&t, measured_points, &meas_solved);
float prev_diff = last_diff(t, &meas_solved, &t.last_vertices);
float imu_diff = last_diff(t, &meas_solved, solved);
Eigen::Vector4f tl_pos;
Eigen::Vector4f tr_pos;
Eigen::Vector4f bl_pos;
Eigen::Vector4f br_pos;
bool has_bl = false;
bool has_br = false;
bool has_tl = false;
bool has_tr = false;
for (uint32_t j = 0; j < meas_solved.size(); j++) {
match_data_t *md = &meas_solved.at(j);
if (md->vertex_index == TAG_BL) {
bl_pos = md->position;
has_bl = true;
}
if (md->vertex_index == TAG_BR) {
br_pos = md->position;
has_br = true;
}
if (md->vertex_index == TAG_TL) {
tl_pos = md->position;
has_tl = true;
}
if (md->vertex_index == TAG_TR) {
tr_pos = md->position;
has_tr = true;
}
}
// reject any configuration where 'top' is below
// 'bottom
if (has_bl && has_tl && bl_pos.y() > tl_pos.y()) {
// U_LOG_D("IGNORING BL > TL %f %f",
// bl_pos.y(),
// br_pos.y());
// ignore = true;
}
if (has_br && has_tr && br_pos.y() > tr_pos.y()) {
// U_LOG_D("IGNORING TL > TR %f %f",
// tl_pos.y(),
// tr_pos.y());
// ignore = true;
}
// once we have a lock, bias the detected
// configuration using the imu-solved result,
// and the solve from the previous frame
if (t.done_correction) {
avg_error += prev_diff;
avg_error += imu_diff;
}
// useful for debugging
// U_LOG_D(
// "match %d dist to last: %f dist to imu: %f "
// "rmsError: %f squaredSum:%f %d",
// i, prev_diff, imu_diff, avg_error, error_sum,
// ignore);
}
if (avg_error <= lowest_error && !ignore) {
lowest_error = avg_error;
best_model = i;
for (uint32_t i = 0; i < measured_points->size(); i++) {
matched_vertex_indices[i] = measured_points->at(i).vertex_index;
}
}
}
// U_LOG_D("lowest_error %f", lowest_error);
if (best_model == -1) {
PSVR_INFO("COULD NOT MATCH MODEL!");
return Eigen::Matrix4f().Identity();
}
t.last_optical_model = best_model;
for (uint32_t i = 0; i < measured_points->size(); i++) {
measured_points->at(i).vertex_index = matched_vertex_indices[i];
cv::putText(
t.debug.rgb[0],
cv::format("%d %d", measured_points->at(i).vertex_index, measured_points->at(i).src_blob.btype),
measured_points->at(i).src_blob.lkp.pt, cv::FONT_HERSHEY_SIMPLEX, 1.0f, cv::Scalar(0, 255, 0));
}
t.last_pose = solve_for_measurement(&t, measured_points, solved);
return t.last_pose;
}
static void
create_model(TrackerPSVR &t)
{
// this is the model we use to match our measurements against.
// these vertices came out of the blender prototype.
// NOTE: this is not an accurate measurement of the PSVRs
// physical dimensions, rather an approximate model that serves
// to minimize the incidence of incorrect led matches.
t.model_vertices[0] = {
0,
Eigen::Vector4f(-0.06502f, 0.04335f, 0.01861f, 1.0f),
TAG_BL,
true,
};
t.model_vertices[1] = {
1,
Eigen::Vector4f(0.06502f, 0.04335f, 0.01861f, 1.0f),
TAG_BR,
true,
};
t.model_vertices[2] = {
2,
Eigen::Vector4f(0.0f, 0.0f, 0.04533f, 1.0f),
TAG_C,
true,
};
t.model_vertices[3] = {
3,
Eigen::Vector4f(-0.06502f, -0.04335f, 0.01861f, 1.0f),
TAG_TL,
true,
};
t.model_vertices[4] = {
4,
Eigen::Vector4f(0.06502f, -0.04335f, 0.01861f, 1.0f),
TAG_TR,
true,
};
t.model_vertices[5] = {
5,
Eigen::Vector4f(-0.07802f, 0.0f, -0.02671f, 1.0f),
TAG_SL,
true,
};
t.model_vertices[6] = {
6,
Eigen::Vector4f(0.07802f, 0.0f, -0.02671f, 1.0f),
TAG_SR,
true,
};
}
struct Helper
{
public:
m_permutator mp = {};
model_vertex_t vec[PSVR_NUM_LEDS] = {};
uint32_t indices[PSVR_NUM_LEDS];
~Helper()
{
m_permutator_reset(&mp);
}
bool
step(TrackerPSVR &t)
{
bool ret = m_permutator_step(&mp, &indices[0], PSVR_NUM_LEDS);
if (!ret) {
return false;
}
for (size_t i = 0; i < PSVR_NUM_LEDS; i++) {
vec[i] = t.model_vertices[indices[i]];
}
return true;
}
};
static void
create_match_list(TrackerPSVR &t)
{
// create our permutation list for matching
// compute the distance and angles between a reference
// vector, constructed from the first two vertices in
// the permutation.
Helper mp = {};
while (mp.step(t)) {
match_model_t m;
model_vertex_t ref_pt_a = mp.vec[0];
model_vertex_t ref_pt_b = mp.vec[1];
Eigen::Vector3f ref_vec3 = (ref_pt_b.position - ref_pt_a.position).head<3>();
float normScale = dist_3d(ref_pt_a.position, ref_pt_b.position);
match_data_t md;
for (auto &&i : mp.vec) {
Eigen::Vector3f point_vec3 = (i.position - ref_pt_a.position).head<3>();
md.vertex_index = i.vertex_index;
md.distance = dist_3d(i.position, ref_pt_a.position) / normScale;
if (i.position.head<3>().dot(Eigen::Vector3f(0.0, 0.0, 1.0f)) < 0) {
md.distance *= -1;
}
Eigen::Vector3f plane_norm = ref_vec3.cross(point_vec3).normalized();
if (ref_pt_a.position != i.position) {
if (plane_norm.normalized().z() > 0) {
md.angle = -1 * acos((point_vec3).normalized().dot(ref_vec3.normalized()));
} else {
md.angle = acos(point_vec3.normalized().dot(ref_vec3.normalized()));
}
} else {
md.angle = 0.0f;
}
// fix up any NaNs
if (md.angle != md.angle) {
md.angle = 0.0f;
}
if (md.distance != md.distance) {
md.distance = 0.0f;
}
m.measurements.push_back(md);
}
if (match_possible(&m)) {
t.matches.push_back(m);
}
}
}
static void
do_view(TrackerPSVR &t, View &view, cv::Mat &grey, cv::Mat &rgb)
{
// Undistort and rectify the whole image.
cv::remap(grey, // src
view.frame_undist_rectified, // dst
view.undistort_rectify_map_x, // map1
view.undistort_rectify_map_y, // map2
cv::INTER_NEAREST, // interpolation - LINEAR seems
// very slow on my setup
cv::BORDER_CONSTANT, // borderMode
cv::Scalar(0, 0, 0)); // borderValue
cv::threshold(view.frame_undist_rectified, // src
view.frame_undist_rectified, // dst
32.0, // thresh
255.0, // maxval
0);
t.sbd->detect(view.frame_undist_rectified, // image
view.keypoints, // keypoints
cv::noArray()); // mask
// Debug is wanted, draw the keypoints.
if (rgb.cols > 0) {
cv::drawKeypoints(view.frame_undist_rectified, // image
view.keypoints, // keypoints
rgb, // outImage
cv::Scalar(255, 0, 0), // color
cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); // flags
}
}
typedef struct blob_data
{
int tc_to_bc; // top center to bottom center
int lc_to_rc; // left center to right center
int tl_to_br; // top left to bottom right
int bl_to_tr; // bottom left to top right
int diff_a;
int diff_b;
bool ignore;
} blob_data_t;
static void
sample_line(cv::Mat &src, const cv::Point2i &start, const cv::Point2i &end, int *inside_length)
{
// use bresenhams algorithm to sample the
// pixels between two points in an image
*inside_length = 0;
int curr_x = start.x;
int curr_y = start.y;
int slope_x = start.x < end.x ? 1 : -1;
int slope_y = start.y < end.y ? 1 : -1;
int dx = end.x - start.x;
int dy = -1 * abs(end.y - start.y);
int e_xy = dx + dy; /* error value e_xy */
while (1) {
// sample our pixel and see if it is in the interior
if (curr_x > 0 && curr_y > 0 && curr_x < src.cols && curr_y < src.rows) {
// cv is row, column
uint8_t *val = src.ptr(curr_y, curr_x);
/// @todo: we are counting pixels rather than measuring length - bresenhams may introduce some
/// inaccuracy here.
if (*val > 128) {
(*inside_length) += 1;
}
}
if (curr_x == end.x && curr_y == end.y) {
break;
}
int err2 = 2 * e_xy;
if (err2 >= dy) {
e_xy += dy;
curr_x += slope_x;
}
if (err2 <= dx) {
e_xy += dx;
curr_y += slope_y;
}
}
}
static void
blob_intersections(cv::Mat &src, cv::KeyPoint *kp, struct blob_data *bd)
{
// compute the intersections in 4 'directions' between the
// extents of the 'square' region we get from the opencv blob
// detector
// compute the difference between the 'axis pairs' - the
// relative magnitude and signs of these diffs can differentiate
// between front and side blobs, as we can only ever see one
// 'side' blob at a time, and its orientation will be opposite
// to the others
int radius = kp->size / 2;
cv::Rect2i sq_b(kp->pt.x - radius, kp->pt.y - radius, kp->size, kp->size);
sample_line(src, cv::Point2i(sq_b.x, sq_b.y), cv::Point2i(sq_b.x + sq_b.width, sq_b.y + sq_b.height),
&bd->tl_to_br);
sample_line(src, cv::Point2i(sq_b.x, sq_b.y + sq_b.height), cv::Point2i(sq_b.x + sq_b.width, sq_b.y),
&bd->bl_to_tr);
sample_line(src, cv::Point2i(sq_b.x, sq_b.y + sq_b.height / 2),
cv::Point2i(sq_b.x + sq_b.width, sq_b.y + sq_b.height / 2), &bd->tc_to_bc);
sample_line(src, cv::Point2i(sq_b.x + sq_b.width / 2, sq_b.y),
cv::Point2i(sq_b.x + sq_b.width / 2, sq_b.y + sq_b.height), &bd->lc_to_rc);
bd->diff_a = bd->tl_to_br - bd->bl_to_tr;
bd->diff_b = bd->tc_to_bc - bd->lc_to_rc;
bd->ignore = false;
}
static void
tag_points(TrackerPSVR &t, std::vector<blob_data_t> *blob_datas)
{
// determine the 'channel' horiz/vert or 45 deg offset - with
// the highest signal - and calculate the lower bound below
// which we will ignore the blob, as it is not sufficiently
// 'long' to identify
int channel_a_total = 0;
int channel_b_total = 0;
int channel_a_min = INT_MAX;
int channel_b_min = INT_MAX;
int channel_a_max = INT_MIN;
int channel_b_max = INT_MIN;
int channel_a_pos = 0;
int channel_a_neg = 0;
int channel_b_pos = 0;
int channel_b_neg = 0;
for (uint32_t i = 0; i < blob_datas->size(); i++) {
blob_data_t b = blob_datas->at(i);
channel_a_total += abs(b.diff_a);
if (abs(b.diff_a) < channel_a_min) {
channel_a_min = b.diff_a;
}
if (abs(b.diff_a) > channel_a_max) {
channel_a_min = b.diff_a;
}
if (b.diff_a < 0) {
channel_a_neg++;
} else {
channel_a_pos++;
}
if (b.diff_b < 0) {
channel_b_neg++;
} else {
channel_b_pos++;
}
channel_b_total += abs(b.diff_b);
if (abs(b.diff_b) < channel_b_min) {
channel_b_min = b.diff_b;
}
if (abs(b.diff_b) > channel_b_max) {
channel_b_min = b.diff_b;
}
}
int side_count = 0;
if (channel_a_total > channel_b_total) {
// use channel a
float channel_dev = (channel_a_total / float(blob_datas->size())) / 2.0f;
int usable_count = 0;
for (uint32_t i = 0; i < blob_datas->size(); i++) {
if (abs(blob_datas->at(i).diff_a) > channel_dev) {
usable_count++;
} else {
if (blob_datas->at(i).diff_a < 0) {
channel_a_neg--;
blob_datas->at(i).ignore = true;
} else {
channel_a_pos--;
blob_datas->at(i).ignore = true;
}
}
}
if (usable_count > 2) {
// we can now check the signs, and identify the
// 'odd one out' as the side LED - if we have a
// consensus of directions, we can identify them
// all as 'front' LEDs.
for (uint32_t i = 0; i < blob_datas->size(); i++) {
if (!blob_datas->at(i).ignore) {
if (channel_a_pos > channel_a_neg) {
// we can tag all the
// positive ones with
// FRONT and all the
// negative ones with
// SIDE
if (blob_datas->at(i).diff_a >= 0) {
t.world_points[i].btype = BLOB_TYPE_FRONT;
} else {
t.world_points[i].btype = BLOB_TYPE_SIDE;
side_count++;
}
} else {
if (blob_datas->at(i).diff_a < 0) {
t.world_points[i].btype = BLOB_TYPE_FRONT;
} else {
t.world_points[i].btype = BLOB_TYPE_SIDE;
side_count++;
}
}
}
}
}
} else {
// use channel b
float channel_dev = (channel_b_total / float(blob_datas->size())) / 2.0f;
int usable_count = 0;
for (uint32_t i = 0; i < blob_datas->size(); i++) {
if (abs(blob_datas->at(i).diff_b) > channel_dev) {
usable_count++;
} else {
if (blob_datas->at(i).diff_b < 0) {
channel_b_neg--;
blob_datas->at(i).ignore = true;
} else {
channel_b_pos--;
blob_datas->at(i).ignore = true;
}
}
}
if (usable_count > 2) {
// we can now check the signs, and identify the
// 'odd one out' as the side LED - if we have a
// consensus of directions, we can identify them
// all as 'front' LEDs.
for (uint32_t i = 0; i < blob_datas->size(); i++) {
if (blob_datas->at(i).ignore) {
continue;
}
if (channel_b_pos > channel_b_neg) {
// we can tag all the positive ones with
// FRONT and all the egative ones with
// SIDE
if (blob_datas->at(i).diff_b >= 0) {
t.world_points[i].btype = BLOB_TYPE_FRONT;
} else {
t.world_points[i].btype = BLOB_TYPE_SIDE;
side_count++;
}
} else {
if (blob_datas->at(i).diff_b < 0) {
t.world_points[i].btype = BLOB_TYPE_FRONT;
} else {
t.world_points[i].btype = BLOB_TYPE_SIDE;
side_count++;
}
}
}
}
}
if (side_count > 1) {
PSVR_INFO("FOUND MULTIPLE SIDE LEDS. should never happen!");
for (uint32_t i = 0; i < t.world_points.size(); i++) {
t.world_points.at(i).btype = BLOB_TYPE_UNKNOWN;
}
}
}
static void
process(TrackerPSVR &t, struct xrt_frame *xf)
{
// No frame supplied, early-out.
if (xf == NULL) {
return;
}
t.debug.refresh(xf);
// compute a dt for our filter(s)
//@todo - use a more precise measurement here
float dt = xf->source_sequence - t.last_frame;
if (dt > 10.0f) {
dt = 1.0f;
}
std::vector<match_data_t> predicted_pose;
filter_predict(&predicted_pose, t.track_filters, dt / 2.0f);
model_vertex_t measured_pose[PSVR_NUM_LEDS];
(void)measured_pose;
// get our raw measurements
t.view[0].keypoints.clear();
t.view[1].keypoints.clear();
t.l_blobs.clear();
t.r_blobs.clear();
t.world_points.clear();
int cols = xf->width / 2;
int rows = xf->height;
int stride = xf->stride;
cv::Mat l_grey(rows, cols, CV_8UC1, xf->data, stride);
cv::Mat r_grey(rows, cols, CV_8UC1, xf->data + cols, stride);
do_view(t, t.view[0], l_grey, t.debug.rgb[0]);
do_view(t, t.view[1], r_grey, t.debug.rgb[1]);
// if we wish to confirm our camera input contents, dump frames
// to disk
// cv::imwrite("/tmp/l_view.png", t.view[0].frame_undist_rectified);
// cv::imwrite("/tmp/r_view.png", t.view[1].frame_undist_rectified);
// do some basic matching to come up with likely
// disparity-pairs.
for (uint32_t i = 0; i < t.view[0].keypoints.size(); i++) {
cv::KeyPoint l_blob = t.view[0].keypoints[i];
int l_index = -1;
int r_index = -1;
for (uint32_t j = 0; j < t.view[1].keypoints.size(); j++) {
float lowest_dist = 65535.0f;
cv::KeyPoint r_blob = t.view[1].keypoints[j];
// find closest point on same-ish scanline
float xdiff = r_blob.pt.x - l_blob.pt.x;
float ydiff = r_blob.pt.y - l_blob.pt.y;
if ((ydiff < 3.0f) && (ydiff > -3.0f) && (abs(xdiff) < lowest_dist)) {
lowest_dist = abs(xdiff);
r_index = j;
l_index = i;
}
}
if (l_index > -1 && r_index > -1) {
cv::KeyPoint lkp = t.view[0].keypoints.at(l_index);
cv::KeyPoint rkp = t.view[1].keypoints.at(r_index);
t.l_blobs.push_back(lkp);
t.r_blobs.push_back(rkp);
// U_LOG_D("2D coords: LX %f LY %f RX %f RY %f",
// lkp.pt.x,
// lkp.pt.y, rkp.pt.x, rkp.pt.y);
}
}
// Convert our 2d point + disparities into 3d points.
std::vector<blob_data_t> blob_datas;
if (!t.l_blobs.empty()) {
for (uint32_t i = 0; i < t.l_blobs.size(); i++) {
float disp = t.r_blobs[i].pt.x - t.l_blobs[i].pt.x;
cv::Vec4d xydw(t.l_blobs[i].pt.x, t.l_blobs[i].pt.y, disp, 1.0f);
// Transform
cv::Vec4d h_world = (cv::Matx44d)t.disparity_to_depth * xydw;
// Divide by scale to get 3D vector from
// homogeneous coordinate. we also invert x here
blob_point_t bp;
bp.p =
cv::Point3f(-h_world[0] / h_world[3], h_world[1] / h_world[3], (h_world[2] / h_world[3]));
bp.lkp = t.l_blobs[i];
bp.rkp = t.r_blobs[i];
bp.btype = BLOB_TYPE_UNKNOWN;
t.world_points.push_back(bp);
// compute the shape data for each blob
blob_data_t intersections;
blob_intersections(t.view[0].frame_undist_rectified, &bp.lkp, &intersections);
blob_datas.push_back(intersections);
}
}
tag_points(t, &blob_datas);
t.pruned_points.clear();
t.merged_points.clear();
// remove outliers from our measurement list
remove_outliers(&t.world_points, &t.pruned_points, PSVR_OUTLIER_THRESH);
// remove any points that are too close to be
// treated as separate leds
merge_close_points(&t.pruned_points, &t.merged_points, PSVR_MERGE_THRESH);
// uncomment to debug 'overpruning' or other issues
// that may be related to calibration scale
PSVR_INFO("world points: %d pruned points: %d merged points %d", (uint32_t)t.world_points.size(),
(uint32_t)t.pruned_points.size(), (uint32_t)t.merged_points.size());
// put our blob positions in a slightly more
// useful data structure
if (t.merged_points.size() > PSVR_NUM_LEDS) {
PSVR_INFO("Too many blobs to be a PSVR! %d", (uint32_t)t.merged_points.size());
} else {
// convert our points to match data,
// this tags our match_vertices with
// everything we need to solve the pose.
verts_to_measurement(&t.merged_points, &t.match_vertices);
}
#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS
// raw debug output for Blender algo development
for (size_t i = 0; i < t.merged_points.size(); i++) {
cv::Point3f unscaled = t.merged_points.at(i).p;
fprintf(t.dump_file, "P,%" PRIu64 ",%f,%f,%f\n", xf->source_sequence, unscaled.x, unscaled.y,
unscaled.z);
}
fprintf(t.dump_file, "\n");
#endif
// our primary solving technique - optical and
// fallback to imu-based is handled in the
// disambiguate function - solved will contain our
// best estimate of the position of the model vertices
// in world space, and model_center_transform will
// contain the pose matrix
std::vector<match_data_t> solved;
Eigen::Matrix4f model_center_transform = disambiguate(t, &t.match_vertices, &predicted_pose, &solved, 0);
// derive our optical rotation correction from the
// pose transform
Eigen::Matrix3f r = model_center_transform.block(0, 0, 3, 3);
Eigen::Quaternionf rot(r);
// we only do this if we are pretty confident we
// will have a 'good' optical pose i.e. front-5
// leds.
if (t.merged_points.size() >= PSVR_OPTICAL_SOLVE_THRESH) {
Eigen::Quaternionf correction =
rot * Eigen::Quaternionf(t.fusion.imu_3dof.rot.w, t.fusion.imu_3dof.rot.x, t.fusion.imu_3dof.rot.y,
t.fusion.imu_3dof.rot.z)
.inverse();
float correction_magnitude = t.target_optical_rotation_correction.angularDistance(correction);
// for corrections subsequent to the
// first, we never want to depart
// massively from the imu rotation, as
// such major adjustments are likely to
// be erroneous.
// uncomment to debug rotation correction convergence
// issues
PSVR_TRACE("Q1: %f %f %f %f Q2: %f %f %f %f", t.target_optical_rotation_correction.x(),
t.target_optical_rotation_correction.y(), t.target_optical_rotation_correction.z(),
t.target_optical_rotation_correction.w(), correction.x(), correction.y(), correction.z(),
correction.w());
PSVR_TRACE("correction mag: %f avg %f", correction_magnitude, t.avg_optical_correction);
// keep a running average of the last 10 corrections -
// so we can apply the correction only when we are
// relatively stable
t.avg_optical_correction -= t.avg_optical_correction / 10.0f;
t.avg_optical_correction += correction_magnitude / 10.0f;
PSVR_DEBUG("optical solve %f", t.avg_optical_correction);
// if we have not yet applied a 'converged' correction,
// our best chance of 'locking on' is to apply whatever
// correction we compute.
if (!t.done_correction) {
t.target_optical_rotation_correction = correction;
PSVR_INFO("RECORRECTING");
}
// only correct when we are stable
if (t.avg_optical_correction < PSVR_CORRECTION_THRESH) {
t.target_optical_rotation_correction = correction;
t.done_correction = true;
PSVR_INFO("LOCKED");
t.max_correction = PSVR_FAST_CORRECTION;
t.bad_correction_count = 0;
}
if (t.avg_optical_correction > PSVR_BAD_CORRECTION_THRESH) {
t.bad_correction_count++;
}
if (t.bad_correction_count > PSVR_MAX_BAD_CORR) {
t.max_correction = PSVR_SLOW_CORRECTION;
t.target_optical_rotation_correction =
t.target_optical_rotation_correction.slerp(t.max_correction, correction);
t.bad_correction_count = 0;
PSVR_INFO("TOO MANY BAD CORRECTIONS. DRIFTED?");
}
std::vector<match_data_t> resolved;
for (uint32_t i = 0; i < solved.size(); i++) {
resolved.push_back(solved[i]);
}
solved.clear();
model_center_transform = solve_with_imu(t, &resolved, &predicted_pose, &solved, PSVR_SEARCH_RADIUS);
}
// move our applied correction towards the
// target correction, rather than applying it
// immediately to smooth things out.
t.optical_rotation_correction =
t.optical_rotation_correction.slerp(t.max_correction, t.target_optical_rotation_correction);
#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS
fprintf(t.dump_file, "\n");
for (uint32_t i = 0; i < solved.size(); i++) {
fprintf(t.dump_file, "S,%" PRIu64 ",%f,%f,%f\n", xf->source_sequence, solved[i].position.x(),
solved[i].position.y(), solved[i].position.z());
}
fprintf(t.dump_file, "\n");
/*std::vector<match_data_t> alt_solved;
Eigen::Matrix4f f_pose = solve_with_imu(
t, &t.match_vertices, &t.last_vertices, &alt_solved, 10.0f);
for (uint32_t i = 0; i < alt_solved.size(); i++) {
fprintf(t.dump_file, "A,%" PRIu64 ",%f,%f,%f\n",
xf->source_sequence, alt_solved[i].position.x(),
alt_solved[i].position.y(),
alt_solved[i].position.z());
}
fprintf(t.dump_file, "\n");*/
#endif
// store our last vertices for continuity
// matching
t.last_vertices.clear();
for (uint32_t i = 0; i < solved.size(); i++) {
t.last_vertices.push_back(solved[i]);
}
if (!t.last_vertices.empty()) {
filter_update(&t.last_vertices, t.track_filters, dt / 1000.0f);
}
Eigen::Vector4f position = model_center_transform.col(3);
pose_filter_update(&position, &t.pose_filter, dt);
// NOTE: we will apply our rotation when we get imu
// data - applying our calculated optical
// correction at this time. We can update our
// position now.
Eigen::Vector4f filtered_pose;
pose_filter_predict(&filtered_pose, &t.pose_filter, dt / 1000.0f);
t.optical.pos.x = filtered_pose.x();
t.optical.pos.y = filtered_pose.y();
t.optical.pos.z = filtered_pose.z();
t.last_frame = xf->source_sequence;
t.debug.submit();
xrt_frame_reference(&xf, NULL);
}
static void
run(TrackerPSVR &t)
{
struct xrt_frame *frame = NULL;
os_thread_helper_lock(&t.oth);
while (os_thread_helper_is_running_locked(&t.oth)) {
// No data
if (!t.has_imu || t.frame == NULL) {
os_thread_helper_wait_locked(&t.oth);
}
if (!os_thread_helper_is_running_locked(&t.oth)) {
break;
}
// Take a reference on the current frame
frame = t.frame;
t.frame = NULL;
// Unlock the mutex when we do the work.
os_thread_helper_unlock(&t.oth);
process(t, frame);
// Have to lock it again.
os_thread_helper_lock(&t.oth);
}
os_thread_helper_unlock(&t.oth);
}
static void
get_pose(TrackerPSVR &t, timepoint_ns when_ns, struct xrt_space_relation *out_relation)
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
out_relation->pose.position = t.optical.pos;
out_relation->pose.orientation = t.optical.rot;
//! @todo assuming that orientation is actually
//! currently tracked.
out_relation->relation_flags = (enum xrt_space_relation_flags)(XRT_SPACE_RELATION_POSITION_VALID_BIT |
XRT_SPACE_RELATION_POSITION_TRACKED_BIT |
XRT_SPACE_RELATION_ORIENTATION_VALID_BIT);
if (t.done_correction) {
out_relation->relation_flags = (enum xrt_space_relation_flags)(
out_relation->relation_flags | XRT_SPACE_RELATION_ORIENTATION_TRACKED_BIT);
}
os_thread_helper_unlock(&t.oth);
}
static void
imu_data(TrackerPSVR &t, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample)
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
if (t.last_imu != 0) {
// Update 3DOF fusion
m_imu_3dof_update(&t.fusion.imu_3dof, timestamp_ns, &sample->accel_m_s2, &sample->gyro_rad_secs);
}
// apply our optical correction to imu rotation
// data
Eigen::Quaternionf corrected_rot_q =
t.optical_rotation_correction * Eigen::Quaternionf(t.fusion.imu_3dof.rot.w, t.fusion.imu_3dof.rot.x,
t.fusion.imu_3dof.rot.y, t.fusion.imu_3dof.rot.z);
Eigen::Matrix4f corrected_rot = Eigen::Matrix4f::Identity();
corrected_rot.block(0, 0, 3, 3) = corrected_rot_q.toRotationMatrix();
t.corrected_imu_rotation = corrected_rot;
if (t.done_correction) {
corrected_rot_q = t.axis_align_rot * corrected_rot_q;
}
t.optical.rot.x = corrected_rot_q.x();
t.optical.rot.y = corrected_rot_q.y();
t.optical.rot.z = corrected_rot_q.z();
t.optical.rot.w = corrected_rot_q.w();
t.last_imu = timestamp_ns;
#ifdef PSVR_DUMP_IMU_FOR_OFFLINE_ANALYSIS
fprintf(t.dump_file, "I,%" PRIu64 ", %f,%f,%f,%f\n\n", timestamp_ns, t.fusion.rot.x, t.fusion.rot.y,
t.fusion.rot.z, t.fusion.rot.w);
fprintf(t.dump_file, "C,%" PRIu64 ", %f,%f,%f,%f\n\n", timestamp_ns, corrected_rot_q.x(), corrected_rot_q.y(),
corrected_rot_q.z(), corrected_rot_q.w());
#endif
os_thread_helper_unlock(&t.oth);
}
static void
frame(TrackerPSVR &t, struct xrt_frame *xf)
{
os_thread_helper_lock(&t.oth);
// Don't do anything if we have stopped.
if (!os_thread_helper_is_running_locked(&t.oth)) {
os_thread_helper_unlock(&t.oth);
return;
}
xrt_frame_reference(&t.frame, xf);
// Wake up the thread.
os_thread_helper_signal_locked(&t.oth);
os_thread_helper_unlock(&t.oth);
}
static void
break_apart(TrackerPSVR &t)
{
os_thread_helper_stop_and_wait(&t.oth);
}
} // namespace xrt::auxiliary::tracking::psvr
using xrt::auxiliary::tracking::psvr::TrackerPSVR;
/*
*
* C wrapper functions.
*
*/
extern "C" void
t_psvr_push_imu(struct xrt_tracked_psvr *xtvr, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample)
{
auto &t = *container_of(xtvr, TrackerPSVR, base);
imu_data(t, timestamp_ns, sample);
}
extern "C" void
t_psvr_get_tracked_pose(struct xrt_tracked_psvr *xtvr, timepoint_ns when_ns, struct xrt_space_relation *out_relation)
{
auto &t = *container_of(xtvr, TrackerPSVR, base);
get_pose(t, when_ns, out_relation);
}
extern "C" void
t_psvr_fake_destroy(struct xrt_tracked_psvr *xtvr)
{
auto &t = *container_of(xtvr, TrackerPSVR, base);
(void)t;
// Not the real destroy function
}
extern "C" void
t_psvr_sink_push_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf)
{
auto &t = *container_of(xsink, TrackerPSVR, sink);
frame(t, xf);
}
extern "C" void
t_psvr_node_break_apart(struct xrt_frame_node *node)
{
auto &t = *container_of(node, TrackerPSVR, node);
break_apart(t);
}
extern "C" void
t_psvr_node_destroy(struct xrt_frame_node *node)
{
auto *t_ptr = container_of(node, TrackerPSVR, node);
os_thread_helper_destroy(&t_ptr->oth);
m_imu_3dof_close(&t_ptr->fusion.imu_3dof);
delete t_ptr;
}
extern "C" void *
t_psvr_run(void *ptr)
{
auto &t = *(TrackerPSVR *)ptr;
run(t);
return NULL;
}
/*
*
* Exported functions.
*
*/
extern "C" int
t_psvr_start(struct xrt_tracked_psvr *xtvr)
{
auto &t = *container_of(xtvr, TrackerPSVR, base);
int ret;
ret = os_thread_helper_start(&t.oth, t_psvr_run, &t);
if (ret != 0) {
return ret;
}
return ret;
}
extern "C" int
t_psvr_create(struct xrt_frame_context *xfctx,
struct t_stereo_camera_calibration *data,
struct xrt_tracked_psvr **out_xtvr,
struct xrt_frame_sink **out_sink)
{
auto &t = *(new TrackerPSVR());
t.log_level = debug_get_log_option_psvr_log();
PSVR_INFO("%s", __func__);
int ret;
using xrt::auxiliary::tracking::psvr::init_filter;
for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) {
init_filter(t.track_filters[i], PSVR_BLOB_PROCESS_NOISE, PSVR_BLOB_MEASUREMENT_NOISE, 1.0f);
}
init_filter(t.pose_filter, PSVR_POSE_PROCESS_NOISE, PSVR_POSE_MEASUREMENT_NOISE, 1.0f);
StereoRectificationMaps rectify(data);
t.view[0].populate_from_calib(data->view[0], rectify.view[0].rectify);
t.view[1].populate_from_calib(data->view[1], rectify.view[1].rectify);
t.disparity_to_depth = rectify.disparity_to_depth_mat;
StereoCameraCalibrationWrapper wrapped(data);
t.r_cam_rotation = wrapped.camera_rotation_mat;
t.r_cam_translation = wrapped.camera_translation_mat;
t.calibrated = true;
// clang-format off
cv::SimpleBlobDetector::Params blob_params;
blob_params.filterByArea = false;
blob_params.filterByConvexity = false;
blob_params.filterByInertia = false;
blob_params.filterByColor = true;
blob_params.blobColor = 255; // 0 or 255 - color comes from binarized image?
blob_params.minArea = 0;
blob_params.maxArea = 1000;
blob_params.maxThreshold = 51; // using a wide threshold span slows things down bigtime
blob_params.minThreshold = 50;
blob_params.thresholdStep = 1;
blob_params.minDistBetweenBlobs = 5;
blob_params.minRepeatability = 1; // need this to avoid error?
// clang-format on
t.sbd = cv::SimpleBlobDetector::create(blob_params);
t.target_optical_rotation_correction = Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f);
t.optical_rotation_correction = Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f);
t.axis_align_rot = Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f);
t.corrected_imu_rotation = Eigen::Matrix4f().Identity();
t.avg_optical_correction = 10.0f; // initialise to a high value, so we
// can converge to a low one.
t.max_correction = PSVR_FAST_CORRECTION;
t.bad_correction_count = 0;
Eigen::Quaternionf align(Eigen::AngleAxis<float>(-M_PI / 2, Eigen::Vector3f(0.0f, 0.0f, 1.0f)));
Eigen::Quaternionf align2(Eigen::AngleAxis<float>(M_PI, Eigen::Vector3f(0.0f, 1.0f, 0.0f)));
t.axis_align_rot = align2; // * align;
t.last_optical_model = 0;
// offset our models center of rotation
create_model(t);
create_match_list(t);
t.base.get_tracked_pose = t_psvr_get_tracked_pose;
t.base.push_imu = t_psvr_push_imu;
t.base.destroy = t_psvr_fake_destroy;
t.sink.push_frame = t_psvr_sink_push_frame;
t.node.break_apart = t_psvr_node_break_apart;
t.node.destroy = t_psvr_node_destroy;
ret = os_thread_helper_init(&t.oth);
if (ret != 0) {
delete (&t);
return ret;
}
t.fusion.pos.x = 0.0f;
t.fusion.pos.y = 0.0f;
t.fusion.pos.z = 0.0f;
m_imu_3dof_init(&t.fusion.imu_3dof, M_IMU_3DOF_USE_GRAVITY_DUR_20MS);
t.fusion.imu_3dof.rot.x = 0.0f;
t.fusion.imu_3dof.rot.y = 0.0f;
t.fusion.imu_3dof.rot.z = 0.0f;
t.fusion.imu_3dof.rot.w = 1.0f;
xrt_frame_context_add(xfctx, &t.node);
// Everything is safe, now setup the variable tracking.
u_var_add_root(&t, "PSVR Tracker", true);
u_var_add_log_level(&t, &t.log_level, "Log level");
u_var_add_sink_debug(&t, &t.debug.usd, "Debug");
*out_sink = &t.sink;
*out_xtvr = &t.base;
#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS
t.dump_file = fopen("/tmp/psvr_dump.txt", "w");
#endif
return 0;
}