mirror of
https://gitlab.freedesktop.org/monado/monado.git
synced 2025-01-12 18:05:28 +00:00
167 lines
5 KiB
C++
167 lines
5 KiB
C++
// Copyright 2019, Collabora, Ltd.
|
||
// Copyright 2016, Sensics, Inc.
|
||
// SPDX-License-Identifier: Apache-2.0
|
||
/*!
|
||
* @file
|
||
* @brief Base implementations for math library.
|
||
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
|
||
*
|
||
* Based in part on inc/osvr/Util/EigenQuatExponentialMap.h in OSVR-Core
|
||
*/
|
||
|
||
#include <Eigen/Core>
|
||
#include <Eigen/Geometry>
|
||
|
||
#include <assert.h>
|
||
|
||
#include "math/m_api.h"
|
||
#include "math/m_eigen_interop.h"
|
||
|
||
// anonymous namespace for internal types
|
||
namespace {
|
||
template <typename Scalar> struct FourthRootMachineEps;
|
||
template <> struct FourthRootMachineEps<double>
|
||
{
|
||
/// machine epsilon is 1e-53, so fourth root is roughly 1e-13
|
||
static double
|
||
get()
|
||
{
|
||
return 1.e-13;
|
||
}
|
||
};
|
||
template <> struct FourthRootMachineEps<float>
|
||
{
|
||
/// machine epsilon is 1e-24, so fourth root is 1e-6
|
||
static float
|
||
get()
|
||
{
|
||
return 1.e-6f;
|
||
}
|
||
};
|
||
/// Computes the "historical" (un-normalized) sinc(Theta)
|
||
/// (sine(theta)/theta for theta != 0, defined as the limit value of 0
|
||
/// at theta = 0)
|
||
template <typename Scalar>
|
||
inline Scalar
|
||
sinc(Scalar theta)
|
||
{
|
||
/// fourth root of machine epsilon is recommended cutoff for taylor
|
||
/// series expansion vs. direct computation per
|
||
/// Grassia, F. S. (1998). Practical Parameterization of Rotations
|
||
/// Using the Exponential Map. Journal of Graphics Tools, 3(3),
|
||
/// 29-48. http://doi.org/10.1080/10867651.1998.10487493
|
||
Scalar ret;
|
||
if (theta < FourthRootMachineEps<Scalar>::get()) {
|
||
// taylor series expansion.
|
||
ret = Scalar(1.f) - theta * theta / Scalar(6.f);
|
||
return ret;
|
||
}
|
||
// direct computation.
|
||
ret = std::sin(theta) / theta;
|
||
return ret;
|
||
}
|
||
|
||
/// fully-templated free function for quaternion expontiation
|
||
template <typename Derived>
|
||
inline Eigen::Quaternion<typename Derived::Scalar>
|
||
quat_exp(Eigen::MatrixBase<Derived> const &vec)
|
||
{
|
||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3);
|
||
using Scalar = typename Derived::Scalar;
|
||
/// Implementation inspired by
|
||
/// Grassia, F. S. (1998). Practical Parameterization of Rotations
|
||
/// Using the Exponential Map. Journal of Graphics Tools, 3(3),
|
||
/// 29–48. http://doi.org/10.1080/10867651.1998.10487493
|
||
///
|
||
/// However, that work introduced a factor of 1/2 which I could not
|
||
/// derive from the definition of quaternion exponentiation and
|
||
/// whose absence thus distinguishes this implementation. Without
|
||
/// that factor of 1/2, the exp and ln functions successfully
|
||
/// round-trip and match other implementations.
|
||
Scalar theta = vec.norm();
|
||
Scalar vecscale = sinc(theta);
|
||
Eigen::Quaternion<Scalar> ret;
|
||
ret.vec() = vecscale * vec;
|
||
ret.w() = std::cos(theta);
|
||
return ret.normalized();
|
||
}
|
||
|
||
/// Taylor series expansion of theta over sin(theta), aka cosecant, for
|
||
/// use near 0 when you want continuity and validity at 0.
|
||
template <typename Scalar>
|
||
inline Scalar
|
||
cscTaylorExpansion(Scalar theta)
|
||
{
|
||
return Scalar(1) +
|
||
// theta ^ 2 / 6
|
||
(theta * theta) / Scalar(6) +
|
||
// 7 theta^4 / 360
|
||
(Scalar(7) * theta * theta * theta * theta) / Scalar(360) +
|
||
// 31 theta^6/15120
|
||
(Scalar(31) * theta * theta * theta * theta * theta * theta) /
|
||
Scalar(15120);
|
||
}
|
||
|
||
/// fully-templated free function for quaternion log map.
|
||
///
|
||
/// Assumes a unit quaternion.
|
||
template <typename Scalar>
|
||
inline Eigen::Matrix<Scalar, 3, 1>
|
||
quat_ln(Eigen::Quaternion<Scalar> const &quat)
|
||
{
|
||
// ln q = ( (phi)/(norm of vec) vec, ln(norm of quat))
|
||
// When we assume a unit quaternion, ln(norm of quat) = 0
|
||
// so then we just scale the vector part by phi/sin(phi) to get the
|
||
// result (i.e., ln(qv, qw) = (phi/sin(phi)) * qv )
|
||
Scalar vecnorm = quat.vec().norm();
|
||
|
||
// "best for numerical stability" vs asin or acos
|
||
Scalar phi = std::atan2(vecnorm, quat.w());
|
||
|
||
// Here is where we compute the coefficient to scale the vector part
|
||
// by, which is nominally phi / std::sin(phi).
|
||
// When the angle approaches zero, we compute the coefficient
|
||
// differently, since it gets a bit like sinc in that we want it
|
||
// continuous but 0 is undefined.
|
||
Scalar phiOverSin = vecnorm < 1e-4 ? cscTaylorExpansion<Scalar>(phi)
|
||
: (phi / std::sin(phi));
|
||
return quat.vec() * phiOverSin;
|
||
}
|
||
|
||
} // namespace
|
||
|
||
void
|
||
math_quat_integrate_velocity(const struct xrt_quat *quat,
|
||
const struct xrt_vec3 *ang_vel,
|
||
const float dt,
|
||
struct xrt_quat *result)
|
||
{
|
||
assert(quat != NULL);
|
||
assert(ang_vel != NULL);
|
||
assert(result != NULL);
|
||
assert(dt != 0);
|
||
|
||
|
||
Eigen::Quaternionf q = map_quat(*quat);
|
||
Eigen::Quaternionf incremental_rotation =
|
||
quat_exp(map_vec3(*ang_vel) * dt * 0.5f).normalized();
|
||
map_quat(*result) = q * incremental_rotation;
|
||
}
|
||
|
||
void
|
||
math_quat_finite_difference(const struct xrt_quat *quat0,
|
||
const struct xrt_quat *quat1,
|
||
const float dt,
|
||
struct xrt_vec3 *out_ang_vel)
|
||
{
|
||
assert(quat0 != NULL);
|
||
assert(quat1 != NULL);
|
||
assert(out_ang_vel != NULL);
|
||
assert(dt != 0);
|
||
|
||
|
||
Eigen::Quaternionf inc_quat =
|
||
map_quat(*quat1) * map_quat(*quat0).conjugate();
|
||
map_vec3(*out_ang_vel) = 2.f * quat_ln(inc_quat);
|
||
}
|