monado/src/xrt/auxiliary/math/m_base.cpp
2020-11-27 16:50:55 +01:00

456 lines
11 KiB
C++

// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Base implementations for math library.
* @author Jakob Bornecrantz <jakob@collabora.com>
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
* @ingroup aux_math
*/
#include "math/m_api.h"
#include "math/m_eigen_interop.hpp"
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <assert.h>
/*
*
* Copy helpers.
*
*/
static inline Eigen::Quaternionf
copy(const struct xrt_quat &q)
{
// Eigen constructor order is different from XRT, OpenHMD and OpenXR!
// Eigen: `float w, x, y, z`.
// OpenXR: `float x, y, z, w`.
return Eigen::Quaternionf(q.w, q.x, q.y, q.z);
}
static inline Eigen::Quaternionf
copy(const struct xrt_quat *q)
{
return copy(*q);
}
static inline Eigen::Vector3f
copy(const struct xrt_vec3 &v)
{
return Eigen::Vector3f(v.x, v.y, v.z);
}
static inline Eigen::Vector3f
copy(const struct xrt_vec3 *v)
{
return copy(*v);
}
static inline Eigen::Matrix4f
copy(const struct xrt_matrix_4x4 *m)
{
Eigen::Matrix4f res;
// clang-format off
res << m->v[0], m->v[4], m->v[8], m->v[12],
m->v[1], m->v[5], m->v[9], m->v[13],
m->v[2], m->v[6], m->v[10], m->v[14],
m->v[3], m->v[7], m->v[11], m->v[15];
// clang-format on
return res;
}
/*
*
* Exported vector functions.
*
*/
extern "C" bool
math_vec3_validate(const struct xrt_vec3 *vec3)
{
assert(vec3 != NULL);
return map_vec3(*vec3).allFinite();
}
extern "C" void
math_vec3_accum(const struct xrt_vec3 *additional, struct xrt_vec3 *inAndOut)
{
assert(additional != NULL);
assert(inAndOut != NULL);
map_vec3(*inAndOut) += map_vec3(*additional);
}
extern "C" void
math_vec3_subtract(const struct xrt_vec3 *subtrahend, struct xrt_vec3 *inAndOut)
{
assert(subtrahend != NULL);
assert(inAndOut != NULL);
map_vec3(*inAndOut) -= map_vec3(*subtrahend);
}
extern "C" void
math_vec3_scalar_mul(float scalar, struct xrt_vec3 *inAndOut)
{
assert(inAndOut != NULL);
map_vec3(*inAndOut) *= scalar;
}
extern "C" void
math_vec3_cross(const struct xrt_vec3 *l,
const struct xrt_vec3 *r,
struct xrt_vec3 *result)
{
map_vec3(*result) = map_vec3(*l).cross(map_vec3(*r));
}
extern "C" void
math_vec3_normalize(struct xrt_vec3 *in)
{
map_vec3(*in) = map_vec3(*in).normalized();
}
/*
*
* Exported quaternion functions.
*
*/
extern "C" void
math_quat_from_angle_vector(float angle_rads,
const struct xrt_vec3 *vector,
struct xrt_quat *result)
{
map_quat(*result) = Eigen::AngleAxisf(angle_rads, copy(vector));
}
extern "C" void
math_quat_from_matrix_3x3(const struct xrt_matrix_3x3 *mat,
struct xrt_quat *result)
{
Eigen::Matrix3f m;
m << mat->v[0], mat->v[1], mat->v[2], mat->v[3], mat->v[4], mat->v[5],
mat->v[6], mat->v[7], mat->v[8];
Eigen::Quaternionf q(m);
map_quat(*result) = q;
}
extern "C" void
math_quat_from_plus_x_z(const struct xrt_vec3 *plus_x,
const struct xrt_vec3 *plus_z,
struct xrt_quat *result)
{
xrt_vec3 plus_y;
math_vec3_cross(plus_z, plus_x, &plus_y);
xrt_matrix_3x3 m = {{
plus_x->x,
plus_y.x,
plus_z->x,
plus_x->y,
plus_y.y,
plus_z->y,
plus_x->z,
plus_y.z,
plus_z->z,
}};
math_quat_from_matrix_3x3(&m, result);
}
extern "C" bool
math_quat_validate(const struct xrt_quat *quat)
{
assert(quat != NULL);
auto rot = copy(*quat);
const float FLOAT_EPSILON = Eigen::NumTraits<float>::epsilon();
/*
* This was originally squaredNorm, but that could result in a norm
* value that was further from 1.0f then FLOAT_EPSILON (two).
*
* Our tracking system would produce such orientations and looping those
* back into say a quad layer would cause this to fail. And even
* normalizing the quat would not fix this as normalizations uses
* non-squared "length" which does fall into the range and doesn't
* change the elements of the quat.
*/
auto norm = rot.norm();
if (norm > 1.0f + FLOAT_EPSILON || norm < 1.0f - FLOAT_EPSILON) {
return false;
}
// Technically not yet a required check, but easier to stop problems
// now than once denormalized numbers pollute the rest of our state.
// see https://gitlab.khronos.org/openxr/openxr/issues/922
if (!rot.coeffs().allFinite()) {
return false;
}
return true;
}
extern "C" void
math_quat_invert(const struct xrt_quat *quat, struct xrt_quat *out_quat)
{
map_quat(*out_quat) = map_quat(*quat).conjugate();
}
extern "C" void
math_quat_normalize(struct xrt_quat *inout)
{
assert(inout != NULL);
map_quat(*inout).normalize();
}
extern "C" bool
math_quat_ensure_normalized(struct xrt_quat *inout)
{
assert(inout != NULL);
if (math_quat_validate(inout))
return true;
const float FLOAT_EPSILON = Eigen::NumTraits<float>::epsilon();
const float TOLERANCE = FLOAT_EPSILON * 5;
auto rot = copy(*inout);
auto norm = rot.norm();
if (norm > 1.0f + TOLERANCE || norm < 1.0f - TOLERANCE) {
return false;
}
map_quat(*inout).normalize();
return true;
}
extern "C" void
math_quat_rotate(const struct xrt_quat *left,
const struct xrt_quat *right,
struct xrt_quat *result)
{
assert(left != NULL);
assert(right != NULL);
assert(result != NULL);
auto l = copy(left);
auto r = copy(right);
auto q = l * r;
map_quat(*result) = q;
}
extern "C" void
math_quat_rotate_vec3(const struct xrt_quat *left,
const struct xrt_vec3 *right,
struct xrt_vec3 *result)
{
assert(left != NULL);
assert(right != NULL);
assert(result != NULL);
auto l = copy(left);
auto r = copy(right);
auto v = l * r;
map_vec3(*result) = v;
}
extern "C" void
math_quat_rotate_derivative(const struct xrt_quat *quat,
const struct xrt_vec3 *deriv,
struct xrt_vec3 *result)
{
assert(quat != NULL);
assert(deriv != NULL);
assert(result != NULL);
auto l = copy(quat);
auto m = Eigen::Quaternionf(0.0f, deriv->x, deriv->y, deriv->z);
auto r = l.conjugate();
auto v = l * m * r;
struct xrt_vec3 ret = {v.x(), v.y(), v.z()};
*result = ret;
}
/*
*
* Exported matrix functions.
*
*/
void
math_matrix_2x2_multiply(const struct xrt_matrix_2x2 *left,
const struct xrt_matrix_2x2 *right,
struct xrt_matrix_2x2 *result)
{
result->v[0] = left->v[0] * right->v[0] + left->v[1] * right->v[2];
result->v[1] = left->v[0] * right->v[1] + left->v[1] * right->v[3];
result->v[2] = left->v[2] * right->v[0] + left->v[3] * right->v[2];
result->v[3] = left->v[2] * right->v[1] + left->v[3] * right->v[3];
}
extern "C" void
math_matrix_3x3_transform_vec3(const struct xrt_matrix_3x3 *left,
const struct xrt_vec3 *right,
struct xrt_vec3 *result)
{
Eigen::Matrix3f m;
m << left->v[0], left->v[1], left->v[2], // 1
left->v[3], left->v[4], left->v[5], // 2
left->v[6], left->v[7], left->v[8]; // 3
map_vec3(*result) = m * copy(right);
}
void
math_matrix_4x4_identity(struct xrt_matrix_4x4 *result)
{
map_matrix_4x4(*result) = Eigen::Matrix4f::Identity();
}
void
math_matrix_4x4_multiply(const struct xrt_matrix_4x4 *left,
const struct xrt_matrix_4x4 *right,
struct xrt_matrix_4x4 *result)
{
map_matrix_4x4(*result) = copy(left) * copy(right);
}
void
math_matrix_4x4_view_from_pose(const struct xrt_pose *pose,
struct xrt_matrix_4x4 *result)
{
Eigen::Vector3f position = copy(&pose->position);
Eigen::Quaternionf orientation = copy(&pose->orientation);
Eigen::Translation3f translation(position);
Eigen::Affine3f transformation = translation * orientation;
map_matrix_4x4(*result) = transformation.matrix().inverse();
}
void
math_matrix_4x4_model(const struct xrt_pose *pose,
const struct xrt_vec3 *size,
struct xrt_matrix_4x4 *result)
{
Eigen::Vector3f position = copy(&pose->position);
Eigen::Quaternionf orientation = copy(&pose->orientation);
auto scale = Eigen::Scaling(size->x, size->y, size->z);
Eigen::Translation3f translation(position);
Eigen::Affine3f transformation = translation * orientation * scale;
map_matrix_4x4(*result) = transformation.matrix();
}
void
math_matrix_4x4_inverse_view_projection(const struct xrt_matrix_4x4 *view,
const struct xrt_matrix_4x4 *projection,
struct xrt_matrix_4x4 *result)
{
Eigen::Matrix4f v = copy(view);
Eigen::Matrix4f v3 = Eigen::Matrix4f::Identity();
v3.block<3, 3>(0, 0) = v.block<3, 3>(0, 0);
Eigen::Matrix4f vp = copy(projection) * v3;
map_matrix_4x4(*result) = vp.inverse();
}
/*
*
* Exported pose functions.
*
*/
extern "C" bool
math_pose_validate(const struct xrt_pose *pose)
{
assert(pose != NULL);
return math_vec3_validate(&pose->position) &&
math_quat_validate(&pose->orientation);
}
extern "C" void
math_pose_invert(const struct xrt_pose *pose, struct xrt_pose *outPose)
{
assert(pose != NULL);
assert(outPose != NULL);
// Store results to temporary locals so we can do this "in-place"
// (pose == outPose) if desired. Pure copies here.
Eigen::Vector3f newPosition = position(*pose);
Eigen::Quaternionf newOrientation = orientation(*pose);
// Conjugate legal here since pose must be normalized/unit length.
newOrientation = newOrientation.conjugate();
// Use the newly inverted rotation, to rotate position.
newPosition = -(newOrientation * newPosition);
position(*outPose) = newPosition;
orientation(*outPose) = newOrientation;
}
/*!
* Return the result of transforming a point by a pose/transform.
*/
static inline Eigen::Vector3f
transform_point(const xrt_pose &transform, const xrt_vec3 &point)
{
return orientation(transform) * map_vec3(point) + position(transform);
}
/*!
* Return the result of transforming a pose by a pose/transform.
*/
static inline xrt_pose
transform_pose(const xrt_pose &transform, const xrt_pose &pose)
{
xrt_pose ret;
position(ret) = transform_point(transform, pose.position);
orientation(ret) = orientation(transform) * orientation(pose);
return ret;
}
extern "C" void
math_pose_transform(const struct xrt_pose *transform,
const struct xrt_pose *pose,
struct xrt_pose *outPose)
{
assert(pose != NULL);
assert(transform != NULL);
assert(outPose != NULL);
xrt_pose newPose = transform_pose(*transform, *pose);
memcpy(outPose, &newPose, sizeof(xrt_pose));
}
extern "C" void
math_pose_transform_point(const struct xrt_pose *transform,
const struct xrt_vec3 *point,
struct xrt_vec3 *out_point)
{
assert(transform != NULL);
assert(point != NULL);
assert(out_point != NULL);
map_vec3(*out_point) = transform_point(*transform, *point);
}