monado/src/xrt/auxiliary/os/os_time.h

257 lines
5.7 KiB
C

// Copyright 2019-2020, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Wrapper around OS native time functions.
*
* These should be preferred over directly using native OS time functions in
* potentially-portable code. Additionally, in most cases these are preferred
* over timepoints from @ref time_state for general usage in drivers, etc.
*
* @author Drew DeVault <sir@cmpwn.com>
* @author Jakob Bornecrantz <jakob@collabora.com>
*
* @ingroup aux_os
*/
#pragma once
#include "xrt/xrt_config_os.h"
#include "xrt/xrt_compiler.h"
#include "util/u_time.h"
#ifdef XRT_OS_LINUX
#include <time.h>
#include <sys/time.h>
#define XRT_HAVE_TIMESPEC
#define XRT_HAVE_TIMEVAL
#elif defined(XRT_OS_WINDOWS)
#include <time.h>
#define XRT_HAVE_TIMESPEC
#elif defined(XRT_DOXYGEN)
#include <time.h>
#define XRT_HAVE_TIMESPEC
#define XRT_HAVE_TIMEVAL
#else
#error "No time support on non-Linux platforms yet."
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*!
* @defgroup aux_os_time Portable Timekeeping
* @ingroup aux_os
*
* @brief Unifying wrapper around system time retrieval functions.
*/
/*!
* @defgroup aux_os_time_extra Extra Timekeeping Utilities
* @ingroup aux_os_time
*
* @brief Less-portable utility functions for manipulating system time, for
* interoperation with platform APIs.
*/
/*!
* @brief Sleep the given number of nanoseconds.
*
* Note that on some platforms, this may be somewhat less accurate than you might want.
* On all platforms, the system scheduler has the final say.
*
* @ingroup aux_os_time
*/
static inline void
os_nanosleep(int32_t nsec)
{
#if defined(XRT_OS_LINUX)
struct timespec spec;
spec.tv_sec = (nsec / U_1_000_000_000);
spec.tv_nsec = (nsec % U_1_000_000_000);
nanosleep(&spec, NULL);
#elif defined(XRT_OS_WINDOWS)
Sleep(nsec / 1000);
#endif
}
/*!
* @brief A structure for storing state as needed for more precise sleeping, mostly for compositor use.
* @ingroup aux_os_time
*/
struct os_precise_sleeper
{
#if defined(XRT_OS_WINDOWS)
HANDLE timer;
#else
int unused_;
#endif
};
/*!
* @brief Initialize members of @ref os_precise_sleeper.
* @public @memberof os_precise_sleeper
*/
static inline void
os_precise_sleeper_init(struct os_precise_sleeper *ops)
{
#if defined(XRT_OS_WINDOWS)
ops->timer = CreateWaitableTimer(NULL, TRUE, NULL);
#endif
}
/*!
* @brief De-initialize members of @ref os_precise_sleeper, and free resources, without actually freeing the given
* pointer.
* @public @memberof os_precise_sleeper
*/
static inline void
os_precise_sleeper_deinit(struct os_precise_sleeper *ops)
{
#if defined(XRT_OS_WINDOWS)
if (ops->timer) {
CloseHandle(ops->timer);
ops->timer = NULL;
}
#endif
}
/*!
* @brief Sleep the given number of nanoseconds, trying harder to be precise.
*
* On some platforms, there is no way to improve sleep precision easily with some OS-specific state, so we just forward
* to os_nanosleep().
*
* Note that on all platforms, the system scheduler has the final say.
*
* @public @memberof os_precise_sleeper
*/
static inline void
os_precise_sleeper_nanosleep(struct os_precise_sleeper *ops, int32_t nsec)
{
#if defined(XRT_OS_WINDOWS)
if (ops->timer) {
LARGE_INTEGER timeperiod;
timeperiod.QuadPart = -(nsec / 100);
if (SetWaitableTimer(ops->timer, &timeperiod, 0, NULL, NULL, FALSE)) {
// OK we could set up the timer, now let's wait.
WaitForSingleObject(ops->timer, INFINITE);
return;
}
}
#endif
// If we fall through from an implementation, or there's no implementation needed for a platform, we just
// delegate to the regular os_nanosleep.
os_nanosleep(nsec);
}
#if defined(XRT_HAVE_TIMESPEC)
/*!
* @brief Convert a timespec struct to nanoseconds.
*
* Note that this just does the value combining, no adjustment for epochs is performed.
*
* @ingroup aux_os_time_extra
*/
static inline uint64_t
os_timespec_to_ns(const struct timespec *spec)
{
uint64_t ns = 0;
ns += (uint64_t)spec->tv_sec * U_1_000_000_000;
ns += (uint64_t)spec->tv_nsec;
return ns;
}
/*!
* @brief Convert an nanosecond integer to a timespec struct.
*
* Note that this just does the value splitting, no adjustment for epochs is performed.
* @ingroup aux_os_time_extra
*/
static inline void
os_ns_to_timespec(uint64_t ns, struct timespec *spec)
{
spec->tv_sec = (ns / U_1_000_000_000);
spec->tv_nsec = (ns % U_1_000_000_000);
}
#endif // XRT_HAVE_TIMESPEC
#if defined(XRT_HAVE_TIMEVAL) && defined(XRT_OS_LINUX)
#define OS_NS_PER_USEC (1000)
/*!
* @brief Convert a timeval struct to nanoseconds.
* @ingroup aux_os_time_extra
*/
static inline uint64_t
os_timeval_to_ns(struct timeval *val)
{
uint64_t ns = 0;
ns += (uint64_t)val->tv_sec * U_1_000_000_000;
ns += (uint64_t)val->tv_usec * OS_NS_PER_USEC;
return ns;
}
#endif // XRT_HAVE_TIMEVAL
/*!
* @brief Return a monotonic clock in nanoseconds.
* @ingroup aux_os_time
*/
static inline uint64_t
os_monotonic_get_ns(void)
{
#if defined(XRT_OS_LINUX)
struct timespec ts;
int ret = clock_gettime(CLOCK_MONOTONIC, &ts);
if (ret != 0) {
return 0;
}
return os_timespec_to_ns(&ts);
#elif defined(XRT_OS_WINDOWS)
static int64_t ns_per_qpc_tick = 0;
if (ns_per_qpc_tick == 0) {
// Fixed at startup, so we can cache this.
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
ns_per_qpc_tick = U_1_000_000_000 / freq.QuadPart;
}
LARGE_INTEGER qpc;
QueryPerformanceCounter(&qpc);
return qpc.QuadPart * ns_per_qpc_tick;
#else
#error "need port"
#endif
}
#ifdef XRT_OS_LINUX
/*!
* @brief Return a realtime clock in nanoseconds.
* @ingroup aux_os_time
*/
static inline uint64_t
os_realtime_get_ns(void)
{
struct timespec ts;
int ret = clock_gettime(CLOCK_REALTIME, &ts);
if (ret != 0) {
return 0;
}
return os_timespec_to_ns(&ts);
}
#endif
#ifdef __cplusplus
}
#endif