mirror of
https://gitlab.freedesktop.org/monado/monado.git
synced 2025-01-11 17:35:27 +00:00
594 lines
16 KiB
C++
594 lines
16 KiB
C++
// Copyright 2019, Collabora, Ltd.
|
|
// SPDX-License-Identifier: BSL-1.0
|
|
/*!
|
|
* @file
|
|
* @brief Calibration code.
|
|
* @author Pete Black <pblack@collabora.com>
|
|
* @author Jakob Bornecrantz <jakob@collabora.com>
|
|
* @ingroup aux_tracking
|
|
*/
|
|
|
|
#include "util/u_sink.h"
|
|
#include "util/u_misc.h"
|
|
#include "util/u_debug.h"
|
|
#include "util/u_frame.h"
|
|
#include "util/u_format.h"
|
|
#include "tracking/t_tracking.h"
|
|
|
|
#include <opencv2/opencv.hpp>
|
|
#include "tracking/t_calibration_opencv.h"
|
|
#include <sys/stat.h>
|
|
|
|
DEBUG_GET_ONCE_BOOL_OPTION(hsv_filter, "T_DEBUG_HSV_FILTER", false)
|
|
DEBUG_GET_ONCE_BOOL_OPTION(hsv_picker, "T_DEBUG_HSV_PICKER", false)
|
|
DEBUG_GET_ONCE_BOOL_OPTION(hsv_viewer, "T_DEBUG_HSV_VIEWER", false)
|
|
|
|
// we will use a number of samples spread across the frame
|
|
// to ensure a good calibration. must be > 9
|
|
#define CALIBRATION_SAMPLES 15
|
|
|
|
// set up our calibration rectangles, we will collect 9 chessboard samples
|
|
// that 'fill' these rectangular regions to get good coverage
|
|
#define COVERAGE_X 0.8f
|
|
#define COVERAGE_Y 0.8f
|
|
|
|
static cv::Rect2f calibration_rect[] = {
|
|
cv::Rect2f(
|
|
(1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f),
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f,
|
|
0.3f,
|
|
0.3f),
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f,
|
|
0.3f,
|
|
0.3f),
|
|
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
|
|
0.3f,
|
|
0.3f),
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
|
|
0.3f,
|
|
0.3f),
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
|
|
0.3f,
|
|
0.3f),
|
|
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
|
|
0.3f,
|
|
0.3f),
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
|
|
0.3f,
|
|
0.3f),
|
|
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
|
|
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
|
|
0.3f,
|
|
0.3f),
|
|
};
|
|
|
|
|
|
/*
|
|
*
|
|
* Structs
|
|
*
|
|
*/
|
|
|
|
struct ViewState
|
|
{
|
|
std::vector<std::vector<cv::Point2f>> measured = {};
|
|
cv::Mat current = {};
|
|
|
|
cv::Rect brect;
|
|
cv::Rect pre_rect;
|
|
cv::Rect post_rect;
|
|
};
|
|
|
|
class Calibration
|
|
{
|
|
public:
|
|
struct xrt_frame_sink base = {};
|
|
|
|
struct
|
|
{
|
|
cv::Mat rgb = {};
|
|
struct xrt_frame *frame = {};
|
|
struct xrt_frame_sink *sink = {};
|
|
} gui;
|
|
|
|
std::vector<cv::Point3f> chessboard_model;
|
|
cv::Size chessboard_size;
|
|
|
|
struct
|
|
{
|
|
ViewState view[2] = {};
|
|
|
|
std::vector<std::vector<cv::Point3f>> chessboards_model;
|
|
|
|
uint32_t calibration_count;
|
|
bool calibrated;
|
|
|
|
} state;
|
|
|
|
bool subpixel_enable;
|
|
bool subpixel_size;
|
|
|
|
bool clear_frame = false;
|
|
|
|
cv::Mat grey;
|
|
|
|
char text[512];
|
|
};
|
|
|
|
|
|
/*
|
|
*
|
|
* Small helpers.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
refresh_gui_frame(class Calibration &c, int rows, int cols)
|
|
{
|
|
// Also dereferences the old frame.
|
|
u_frame_create_one_off(XRT_FORMAT_R8G8B8, cols, rows, &c.gui.frame);
|
|
|
|
c.gui.rgb = cv::Mat(rows, cols, CV_8UC3, c.gui.frame->data,
|
|
c.gui.frame->stride);
|
|
}
|
|
|
|
static void
|
|
send_rgb_frame(class Calibration &c)
|
|
{
|
|
c.gui.sink->push_frame(c.gui.sink, c.gui.frame);
|
|
|
|
refresh_gui_frame(c, c.gui.rgb.rows, c.gui.rgb.cols);
|
|
}
|
|
|
|
static void
|
|
ensure_buffers_are_allocated(class Calibration &c, int rows, int cols)
|
|
{
|
|
if (c.gui.rgb.cols == cols && c.gui.rgb.rows == rows) {
|
|
return;
|
|
}
|
|
|
|
c.grey = cv::Mat(rows, cols, CV_8UC1, cv::Scalar(0));
|
|
|
|
refresh_gui_frame(c, rows, cols);
|
|
}
|
|
|
|
static void
|
|
print_txt(cv::Mat &rgb, const char *text, double fontScale)
|
|
{
|
|
int fontFace = 0;
|
|
int thickness = 2;
|
|
cv::Size textSize =
|
|
cv::getTextSize(text, fontFace, fontScale, thickness, NULL);
|
|
|
|
cv::Point textOrg((rgb.cols - textSize.width) / 2, textSize.height * 2);
|
|
|
|
cv::putText(rgb, text, textOrg, fontFace, fontScale,
|
|
cv::Scalar(192, 192, 192), thickness);
|
|
}
|
|
|
|
static void
|
|
make_gui_str(class Calibration &c)
|
|
{
|
|
auto &rgb = c.gui.rgb;
|
|
|
|
int cols = 800;
|
|
int rows = 100;
|
|
ensure_buffers_are_allocated(c, rows, cols);
|
|
|
|
cv::rectangle(rgb, cv::Point2f(0, 0), cv::Point2f(cols, rows),
|
|
cv::Scalar(0, 0, 0), -1, 0);
|
|
|
|
print_txt(rgb, c.text, 1.0);
|
|
|
|
send_rgb_frame(c);
|
|
}
|
|
|
|
/*!
|
|
* Simple helper to draw a bounding rect.
|
|
*/
|
|
static void
|
|
draw_rect(cv::Mat &rgb, const cv::Rect &rect, const cv::Scalar &colour)
|
|
{
|
|
cv::rectangle(rgb, rect.tl(), rect.br(), colour);
|
|
}
|
|
|
|
static bool
|
|
do_view(class Calibration &c,
|
|
struct ViewState &view,
|
|
cv::Mat &grey,
|
|
cv::Mat &rgb)
|
|
{
|
|
int flags = 0;
|
|
flags += cv::CALIB_CB_FAST_CHECK;
|
|
flags += cv::CALIB_CB_ADAPTIVE_THRESH;
|
|
flags += cv::CALIB_CB_NORMALIZE_IMAGE;
|
|
|
|
bool found = cv::findChessboardCorners(grey, // Image
|
|
c.chessboard_size, // patternSize
|
|
view.current, // corners
|
|
flags); // flags
|
|
|
|
// Compute our 'pre sample' coverage for this frame,
|
|
// for display and area threshold checking.
|
|
std::vector<cv::Point2f> coverage;
|
|
for (uint32_t i = 0; i < view.measured.size(); i++) {
|
|
cv::Rect brect = cv::boundingRect(view.measured[i]);
|
|
|
|
draw_rect(rgb, brect, cv::Scalar(0, 64, 32));
|
|
|
|
coverage.push_back(cv::Point2f(brect.tl()));
|
|
coverage.push_back(cv::Point2f(brect.br()));
|
|
}
|
|
|
|
// What area of the camera have we calibrated.
|
|
view.pre_rect = cv::boundingRect(coverage);
|
|
draw_rect(rgb, view.pre_rect, cv::Scalar(0, 255, 255));
|
|
|
|
if (found) {
|
|
view.brect = cv::boundingRect(view.current);
|
|
coverage.push_back(cv::Point2f(view.brect.tl()));
|
|
coverage.push_back(cv::Point2f(view.brect.br()));
|
|
|
|
// New area we cover.
|
|
view.post_rect = cv::boundingRect(coverage);
|
|
|
|
draw_rect(rgb, view.post_rect, cv::Scalar(0, 255, 0));
|
|
}
|
|
|
|
// Improve the corner positions.
|
|
if (found && c.subpixel_enable) {
|
|
cv::TermCriteria tcrit(cv::TermCriteria::Type::COUNT +
|
|
cv::TermCriteria::Type::EPS,
|
|
30, 0.1);
|
|
|
|
cv::Size size(c.subpixel_size, c.subpixel_size);
|
|
cv::Size zero(-1, -1);
|
|
|
|
cv::cornerSubPix(grey, view.current, size, zero, tcrit);
|
|
}
|
|
|
|
// Draw the checker board, will also draw partial hits.
|
|
cv::drawChessboardCorners(rgb, c.chessboard_size, view.current, found);
|
|
|
|
return found;
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* Stereo calibration
|
|
*
|
|
*/
|
|
|
|
#define P(...) snprintf(c.text, sizeof(c.text), __VA_ARGS__)
|
|
|
|
static void
|
|
process_stereo_samples(class Calibration &c, int cols, int rows)
|
|
{
|
|
c.state.calibrated = true;
|
|
|
|
cv::Size image_size(cols, rows);
|
|
cv::Size new_image_size(cols, rows);
|
|
|
|
CalibrationRawData raw = {};
|
|
assert(raw.isDataStorageValid());
|
|
|
|
raw.image_size_pixels.w = image_size.width;
|
|
raw.image_size_pixels.h = image_size.height;
|
|
raw.new_image_size_pixels.w = new_image_size.width;
|
|
raw.new_image_size_pixels.h = new_image_size.height;
|
|
|
|
// TODO: handle both fisheye and normal cameras -right
|
|
// now I only have the normal, for the PS4 camera
|
|
#if 0
|
|
float rp_error = cv::fisheye::stereoCalibrate(
|
|
internal->chessboards_model, internal->l_measured,
|
|
internal->r_measured, l_intrinsics,
|
|
l_distortion_fisheye, r_intrinsics, r_distortion_fisheye,
|
|
image_size, camera_rotation, camera_translation,
|
|
cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC);
|
|
#endif
|
|
|
|
// non-fisheye version
|
|
float rp_error =
|
|
cv::stereoCalibrate(c.state.chessboards_model, // objectPoints
|
|
c.state.view[0].measured, // inagePoints1
|
|
c.state.view[1].measured, // imagePoints2,
|
|
raw.l_intrinsics_mat, // cameraMatrix1
|
|
raw.l_distortion_mat, // distCoeffs1
|
|
raw.r_intrinsics_mat, // cameraMatrix2
|
|
raw.r_distortion_mat, // distCoeffs2
|
|
image_size, // imageSize
|
|
raw.camera_rotation_mat, // R
|
|
raw.camera_translation_mat, // T
|
|
raw.camera_essential_mat, // E
|
|
raw.camera_fundamental_mat, // F
|
|
0); // flags
|
|
|
|
assert(raw.camera_rotation_mat.size() == cv::Size(3, 3));
|
|
assert(raw.camera_translation_mat.size() == cv::Size(1, 3));
|
|
assert(raw.camera_essential_mat.size() == cv::Size(3, 3));
|
|
assert(raw.camera_fundamental_mat.size() == cv::Size(3, 3));
|
|
|
|
// We currently don't change the image size or remove invalid pixels.
|
|
cv::stereoRectify(raw.l_intrinsics_mat, // cameraMatrix1
|
|
cv::noArray(), // distCoeffs1
|
|
raw.r_intrinsics_mat, // cameraMatrix2
|
|
cv::noArray(), // distCoeffs2
|
|
image_size, // imageSize
|
|
raw.camera_rotation_mat, // R
|
|
raw.camera_translation_mat, // T
|
|
raw.l_rotation_mat, // R1
|
|
raw.r_rotation_mat, // R2
|
|
raw.l_projection_mat, // P1
|
|
raw.r_projection_mat, // P2
|
|
raw.disparity_to_depth_mat, // Q
|
|
cv::CALIB_ZERO_DISPARITY, // flags
|
|
-1, // alpha
|
|
new_image_size, // newImageSize
|
|
NULL, // validPixROI1
|
|
NULL); // validPixROI2
|
|
|
|
// Validate that nothing has been re-allocated.
|
|
assert(raw.isDataStorageValid());
|
|
|
|
P("CALIBRATION DONE RP ERROR %f", rp_error);
|
|
|
|
// clang-format off
|
|
std::cout << "calibration rp_error: " << rp_error << "\n";
|
|
std::cout << "camera_rotation:\n" << raw.camera_rotation_mat << "\n";
|
|
std::cout << "camera_translation:\n" << raw.camera_translation_mat << "\n";
|
|
std::cout << "camera_essential:\n" << raw.camera_essential_mat << "\n";
|
|
std::cout << "camera_fundamental:\n" << raw.camera_fundamental_mat << "\n";
|
|
// clang-format on
|
|
|
|
t_file_save_raw_data_hack(&raw);
|
|
}
|
|
|
|
|
|
static void
|
|
make_calibration_frame(class Calibration &c)
|
|
{
|
|
auto &rgb = c.gui.rgb;
|
|
auto &grey = c.grey;
|
|
|
|
// This should not happen.
|
|
if (rgb.rows == 0 || rgb.cols == 0) {
|
|
return;
|
|
}
|
|
|
|
// Don't do anything if we are done.
|
|
if (c.state.calibrated) {
|
|
print_txt(rgb, c.text, 1.5);
|
|
|
|
send_rgb_frame(c);
|
|
return;
|
|
}
|
|
|
|
// Clear our gui frame.
|
|
if (c.clear_frame) {
|
|
cv::rectangle(rgb, cv::Point2f(0, 0),
|
|
cv::Point2f(rgb.cols, rgb.rows),
|
|
cv::Scalar(0, 0, 0), -1, 0);
|
|
}
|
|
|
|
int cols = rgb.cols / 2;
|
|
int rows = rgb.rows;
|
|
|
|
// Split left and right eyes, don't make any copies.
|
|
cv::Mat l_grey(rows, cols, CV_8UC1, grey.data, grey.cols);
|
|
cv::Mat r_grey(rows, cols, CV_8UC1, grey.data + cols, grey.cols);
|
|
cv::Mat l_rgb(rows, cols, CV_8UC3, c.gui.frame->data,
|
|
c.gui.frame->stride);
|
|
cv::Mat r_rgb(rows, cols, CV_8UC3, c.gui.frame->data + 3 * cols,
|
|
c.gui.frame->stride);
|
|
|
|
bool found_left = do_view(c, c.state.view[0], l_grey, l_rgb);
|
|
bool found_right = do_view(c, c.state.view[1], r_grey, r_rgb);
|
|
|
|
// Draw our current calibration guide box.
|
|
cv::Point2f bound_tl = calibration_rect[c.state.calibration_count].tl();
|
|
bound_tl.x *= cols;
|
|
bound_tl.y *= rows;
|
|
|
|
cv::Point2f bound_br = calibration_rect[c.state.calibration_count].br();
|
|
bound_br.x *= cols;
|
|
bound_br.y *= rows;
|
|
|
|
// Draw the target rect last so it is the most visible.
|
|
cv::rectangle(c.gui.rgb, bound_tl, bound_br, cv::Scalar(255, 0, 0));
|
|
|
|
// If we have a valid sample (left and right).
|
|
if (found_left && found_right) {
|
|
cv::Rect brect = c.state.view[0].brect;
|
|
cv::Rect pre_rect = c.state.view[0].pre_rect;
|
|
cv::Rect post_rect = c.state.view[0].post_rect;
|
|
|
|
/*
|
|
* Determine if we should add this sample to our list. Either we
|
|
* are still taking the first 9 samples and the chessboard is in
|
|
* the box, or we have exceeded 9 samples and now want to 'push
|
|
* out the edges'.
|
|
*/
|
|
|
|
bool add_sample = false;
|
|
int coverage_threshold = cols * 0.3f * rows * 0.3f;
|
|
|
|
if (c.state.calibration_count < 9 &&
|
|
brect.tl().x >= bound_tl.x && brect.tl().y >= bound_tl.y &&
|
|
brect.br().x <= bound_br.x && brect.br().y <= bound_br.y) {
|
|
add_sample = true;
|
|
}
|
|
|
|
if (c.state.calibration_count >= 9 &&
|
|
brect.area() > coverage_threshold &&
|
|
post_rect.area() >
|
|
pre_rect.area() + coverage_threshold / 5) {
|
|
add_sample = true;
|
|
}
|
|
|
|
if (add_sample) {
|
|
c.state.chessboards_model.push_back(c.chessboard_model);
|
|
c.state.view[0].measured.push_back(
|
|
c.state.view[0].current);
|
|
c.state.view[1].measured.push_back(
|
|
c.state.view[1].current);
|
|
c.state.calibration_count++;
|
|
|
|
printf("SAMPLE: %ld\n",
|
|
c.state.view[0].measured.size());
|
|
}
|
|
}
|
|
|
|
// Are we done or do we need to inform the user what they should do.
|
|
if (c.state.calibration_count >= CALIBRATION_SAMPLES) {
|
|
process_stereo_samples(c, cols, rows);
|
|
} else if (c.state.calibration_count < 9) {
|
|
P("POSITION CHESSBOARD IN BOX");
|
|
} else {
|
|
P("TRY TO 'PUSH OUT EDGES' WITH LARGE BOARD IMAGES");
|
|
}
|
|
|
|
// Draw text and finally send the frame off.
|
|
print_txt(rgb, c.text, 1.5);
|
|
send_rgb_frame(c);
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* Main functions.
|
|
*
|
|
*/
|
|
|
|
XRT_NO_INLINE static void
|
|
process_frame_yuv(class Calibration &c, struct xrt_frame *xf)
|
|
{
|
|
|
|
int w = (int)xf->width;
|
|
int h = (int)xf->height;
|
|
|
|
cv::Mat data(h, w, CV_8UC3, xf->data, xf->stride);
|
|
ensure_buffers_are_allocated(c, data.rows, data.cols);
|
|
c.gui.frame->source_sequence = xf->source_sequence;
|
|
|
|
cv::cvtColor(data, c.gui.rgb, cv::COLOR_YUV2RGB);
|
|
cv::cvtColor(c.gui.rgb, c.grey, cv::COLOR_RGB2GRAY);
|
|
}
|
|
|
|
XRT_NO_INLINE static void
|
|
process_frame_yuyv(class Calibration &c, struct xrt_frame *xf)
|
|
{
|
|
/*
|
|
* Cleverly extract the different channels.
|
|
* Cr/Cb are extracted at half width.
|
|
*/
|
|
int w = (int)xf->width;
|
|
int h = (int)xf->height;
|
|
|
|
cv::Mat data_full(h, w, CV_8UC2, xf->data, xf->stride);
|
|
ensure_buffers_are_allocated(c, data_full.rows, data_full.cols);
|
|
c.gui.frame->source_sequence = xf->source_sequence;
|
|
|
|
cv::cvtColor(data_full, c.gui.rgb, cv::COLOR_YUV2RGB_YUYV);
|
|
cv::cvtColor(data_full, c.grey, cv::COLOR_YUV2GRAY_YUYV);
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* Interface functions.
|
|
*
|
|
*/
|
|
|
|
extern "C" void
|
|
t_calibration_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf)
|
|
{
|
|
auto &c = *(class Calibration *)xsink;
|
|
|
|
//! @todo Add single view support.
|
|
if (xf->stereo_format != XRT_STEREO_FORMAT_SBS) {
|
|
P("ERROR: Not side by side stereo!");
|
|
make_gui_str(c);
|
|
return;
|
|
}
|
|
|
|
// Fill both c.gui.rgb and c.grey with the data we got.
|
|
switch (xf->format) {
|
|
case XRT_FORMAT_YUV888: process_frame_yuv(c, xf); break;
|
|
case XRT_FORMAT_YUV422: process_frame_yuyv(c, xf); break;
|
|
default:
|
|
P("ERROR: Bad format '%s'", u_format_str(xf->format));
|
|
make_gui_str(c);
|
|
return;
|
|
}
|
|
|
|
make_calibration_frame(c);
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* Exported functions.
|
|
*
|
|
*/
|
|
|
|
extern "C" int
|
|
t_calibration_stereo_create(struct xrt_frame_context *xfctx,
|
|
struct t_calibration_params *params,
|
|
struct xrt_frame_sink *gui,
|
|
struct xrt_frame_sink **out_sink)
|
|
{
|
|
auto &c = *(new Calibration());
|
|
|
|
c.gui.sink = gui;
|
|
c.base.push_frame = t_calibration_frame;
|
|
c.subpixel_enable = params->subpixel_enable;
|
|
c.subpixel_size = params->subpixel_size;
|
|
|
|
*out_sink = &c.base;
|
|
|
|
P("Waiting for camera");
|
|
make_gui_str(c);
|
|
|
|
int ret = 0;
|
|
if (debug_get_bool_option_hsv_filter()) {
|
|
ret = t_debug_hsv_filter_create(xfctx, *out_sink, out_sink);
|
|
}
|
|
|
|
if (debug_get_bool_option_hsv_picker()) {
|
|
ret = t_debug_hsv_picker_create(xfctx, *out_sink, out_sink);
|
|
}
|
|
|
|
if (debug_get_bool_option_hsv_viewer()) {
|
|
ret = t_debug_hsv_viewer_create(xfctx, *out_sink, out_sink);
|
|
}
|
|
|
|
// Ensure we only get yuv or yuyv frames.
|
|
u_sink_create_to_yuv_or_yuyv(xfctx, *out_sink, out_sink);
|
|
|
|
int cross_cols_num = params->checker_cols_num - 1;
|
|
int cross_rows_num = params->checker_rows_num - 1;
|
|
int num_crosses = cross_cols_num * cross_rows_num;
|
|
|
|
c.chessboard_size = cv::Size(cross_cols_num, cross_rows_num);
|
|
for (int i = 0; i < num_crosses; i++) {
|
|
float x = (i / cross_cols_num) * params->checker_size_meters;
|
|
float y = (i % cross_cols_num) * params->checker_size_meters;
|
|
|
|
cv::Point3f p(x, y, 0.0f);
|
|
c.chessboard_model.push_back(p);
|
|
}
|
|
|
|
return ret;
|
|
}
|