monado/src/xrt/auxiliary/tracking/t_file.cpp
2019-11-17 22:09:01 +00:00

443 lines
12 KiB
C++

// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Handling of files and calibration data.
* @author Pete Black <pblack@collabora.com>
* @author Jakob Bornecrantz <jakob@collabora.com>
* @ingroup aux_tracking
*/
#include "t_calibration_opencv.h"
/*
*
* Pre-declar functions.
*
*/
static int
mkpath(char *path);
static bool
read_cv_mat(FILE *f, cv::Mat *m, const char *name);
static bool
write_cv_mat(FILE *f, cv::Mat *m);
/*
*
* Free functions.
*
*/
extern "C" void
t_settings_stereo_free(struct t_settings_stereo **data_ptr)
{
CalibrationData *cd = (CalibrationData *)*data_ptr;
if (cd == NULL) {
return;
}
delete cd;
*data_ptr = NULL;
}
extern "C" void
t_settings_stereo_raw_free(struct t_settings_stereo_raw **raw_data_ptr)
{
CalibrationRawData *crd = (CalibrationRawData *)*raw_data_ptr;
if (crd == NULL) {
return;
}
delete crd;
*raw_data_ptr = NULL;
}
/*
*
* Refine and create functions.
*
*/
extern "C" void
t_settings_stereo_refine(struct t_settings_stereo_raw *raw_data,
struct t_settings_stereo **out_data)
{
CalibrationRawData &raw = *(CalibrationRawData *)raw_data;
CalibrationData &data = *(new CalibrationData());
assert(raw.isDataStorageValid());
assert(data.isDataStorageValid());
// No processing needed.
data.image_size_pixels = raw.image_size_pixels;
data.new_image_size_pixels = raw.new_image_size_pixels;
raw.disparity_to_depth_mat.copyTo(data.disparity_to_depth_mat);
//! @todo Load from file.
bool use_fisheye = false;
//! @todo Scale Our intrinsics if the frame size we request
// calibration for does not match what was saved
cv::Size image_size(raw.image_size_pixels.w, raw.image_size_pixels.h);
// Generate undistortion maps - handle fisheye or rectilinear sources
if (use_fisheye) {
cv::fisheye::initUndistortRectifyMap(
raw.l_intrinsics_mat, // cameraMatrix
raw.l_distortion_fisheye_mat, // distCoeffs
cv::noArray(), // R
raw.l_intrinsics_mat, // newCameraMatrix
image_size, // size
CV_32FC1, // m1type
data.l_undistort_map_x, // map1
data.l_undistort_map_y); // map2
cv::fisheye::initUndistortRectifyMap(
raw.r_intrinsics_mat, // cameraMatrix
raw.r_distortion_fisheye_mat, // distCoeffs
cv::noArray(), // R
raw.r_intrinsics_mat, // newCameraMatrix
image_size, // size
CV_32FC1, // m1type
data.r_undistort_map_x, // map1
data.r_undistort_map_y); // map2
} else {
cv::initUndistortRectifyMap(
raw.l_intrinsics_mat, // cameraMatrix
raw.l_distortion_mat, // distCoeffs
cv::noArray(), // R
raw.l_intrinsics_mat, // newCameraMatrix
image_size, // size
CV_32FC1, // m1type
data.l_undistort_map_x, // map1
data.l_undistort_map_y); // map2
cv::initUndistortRectifyMap(
raw.r_intrinsics_mat, // cameraMatrix
raw.r_distortion_mat, // distCoeffs
cv::noArray(), // R
raw.r_intrinsics_mat, // newCameraMatrix
image_size, // size
CV_32FC1, // m1type
data.r_undistort_map_x, // map1
data.r_undistort_map_y); // map2
}
/*
* Generate our rectification maps
*
* Here cv::noArray() means zero distortion.
*/
cv::initUndistortRectifyMap(raw.l_intrinsics_mat, // cameraMatrix
cv::noArray(), // distCoeffs
raw.l_rotation_mat, // R
raw.l_projection_mat, // newCameraMatrix
image_size, // size
CV_32FC1, // m1type
data.l_rectify_map_x, // map1
data.l_rectify_map_y); // map2
cv::initUndistortRectifyMap(raw.r_intrinsics_mat, // cameraMatrix
cv::noArray(), // distCoeffs
raw.r_rotation_mat, // R
raw.r_projection_mat, // newCameraMatrix
image_size, // size
CV_32FC1, // m1type
data.r_rectify_map_x, // map1
data.r_rectify_map_y); // map2
assert(data.isDataStorageValid());
*out_data = &data;
}
extern "C" void
t_settings_stereo_raw_create(struct t_settings_stereo_raw **out_raw_data)
{
*out_raw_data = new CalibrationRawData();
}
/*
*
* Load functions.
*
*/
extern "C" bool
t_settings_stereo_load_v1(FILE *calib_file,
struct t_settings_stereo_raw **out_raw_data)
{
CalibrationRawData &raw = *(new CalibrationRawData());
assert(raw.isDataStorageValid());
// Dummies
cv::Mat l_translation_dummy;
cv::Mat r_translation_dummy;
// Read our calibration from this file
// clang-format off
read_cv_mat(calib_file, &raw.l_intrinsics_mat, "l_intrinsics"); // 3 x 3
read_cv_mat(calib_file, &raw.r_intrinsics_mat, "r_intrinsics"); // 3 x 3
read_cv_mat(calib_file, &raw.l_distortion_mat, "l_distortion"); // 1 x 5
read_cv_mat(calib_file, &raw.r_distortion_mat, "r_distortion"); // 1 x 5
read_cv_mat(calib_file, &raw.l_distortion_fisheye_mat, "l_distortion_fisheye");
read_cv_mat(calib_file, &raw.r_distortion_fisheye_mat, "r_distortion_fisheye");
read_cv_mat(calib_file, &raw.l_rotation_mat, "l_rotation"); // 3 x 3
read_cv_mat(calib_file, &raw.r_rotation_mat, "r_rotation"); // 3 x 3
read_cv_mat(calib_file, &l_translation_dummy, "l_translation"); // empty
read_cv_mat(calib_file, &r_translation_dummy, "r_translation"); // empty
read_cv_mat(calib_file, &raw.l_projection_mat, "l_projection"); // 3 x 4
read_cv_mat(calib_file, &raw.r_projection_mat, "r_projection"); // 3 x 4
read_cv_mat(calib_file, &raw.disparity_to_depth_mat, "disparity_to_depth"); // 4 x 4
cv::Mat mat_image_size = {};
read_cv_mat(calib_file, &mat_image_size, "mat_image_size");
raw.image_size_pixels.w = uint32_t(mat_image_size.at<float>(0, 0));
raw.image_size_pixels.h = uint32_t(mat_image_size.at<float>(0, 1));
cv::Mat mat_new_image_size = {};
if (read_cv_mat(calib_file, &mat_new_image_size, "mat_new_image_size")) {
raw.new_image_size_pixels.w = uint32_t(mat_new_image_size.at<float>(0, 0));
raw.new_image_size_pixels.h = uint32_t(mat_new_image_size.at<float>(0, 1));
} else {
raw.new_image_size_pixels.w = raw.image_size_pixels.w;
raw.new_image_size_pixels.h = raw.image_size_pixels.h;
}
if (!read_cv_mat(calib_file, &raw.camera_translation_mat, "translation")) {
fprintf(stderr, "\tRe-run calibration!\n");
}
if (!read_cv_mat(calib_file, &raw.camera_rotation_mat, "rotation")) {
fprintf(stderr, "\tRe-run calibration!\n");
}
if (!read_cv_mat(calib_file, &raw.camera_essential_mat, "essential")) {
fprintf(stderr, "\tRe-run calibration!\n");
}
if (!read_cv_mat(calib_file, &raw.camera_fundamental_mat, "fundamental")) {
fprintf(stderr, "\tRe-run calibration!\n");
}
// clang-format on
if (raw.camera_translation_mat.size() == cv::Size(3, 1)) {
fprintf(stderr,
"Radjusting translation, re-run calibration.\n");
raw.camera_translation[0] =
raw.camera_translation_mat.at<double>(0, 0);
raw.camera_translation[1] =
raw.camera_translation_mat.at<double>(0, 1);
raw.camera_translation[2] =
raw.camera_translation_mat.at<double>(0, 2);
raw.camera_translation_mat =
cv::Mat(3, 1, CV_64F, &raw.camera_translation[0]);
}
assert(raw.isDataStorageValid());
*out_raw_data = &raw;
return true;
}
/*
*
* Save functions.
*
*/
extern "C" bool
t_file_save_raw_data(FILE *calib_file, struct t_settings_stereo_raw *raw_data)
{
CalibrationRawData &raw = *(CalibrationRawData *)raw_data;
cv::Mat l_translation_dummy;
cv::Mat r_translation_dummy;
write_cv_mat(calib_file, &raw.l_intrinsics_mat);
write_cv_mat(calib_file, &raw.r_intrinsics_mat);
write_cv_mat(calib_file, &raw.l_distortion_mat);
write_cv_mat(calib_file, &raw.r_distortion_mat);
write_cv_mat(calib_file, &raw.l_distortion_fisheye_mat);
write_cv_mat(calib_file, &raw.r_distortion_fisheye_mat);
write_cv_mat(calib_file, &raw.l_rotation_mat);
write_cv_mat(calib_file, &raw.r_rotation_mat);
write_cv_mat(calib_file, &l_translation_dummy);
write_cv_mat(calib_file, &r_translation_dummy);
write_cv_mat(calib_file, &raw.l_projection_mat);
write_cv_mat(calib_file, &raw.r_projection_mat);
write_cv_mat(calib_file, &raw.disparity_to_depth_mat);
cv::Mat mat_image_size;
mat_image_size.create(1, 2, CV_32F);
mat_image_size.at<float>(0, 0) = raw.image_size_pixels.w;
mat_image_size.at<float>(0, 1) = raw.image_size_pixels.h;
write_cv_mat(calib_file, &mat_image_size);
cv::Mat mat_new_image_size;
mat_new_image_size.create(1, 2, CV_32F);
mat_new_image_size.at<float>(0, 0) = raw.new_image_size_pixels.w;
mat_new_image_size.at<float>(0, 1) = raw.new_image_size_pixels.h;
write_cv_mat(calib_file, &mat_new_image_size);
write_cv_mat(calib_file, &raw.camera_translation_mat);
write_cv_mat(calib_file, &raw.camera_rotation_mat);
write_cv_mat(calib_file, &raw.camera_essential_mat);
write_cv_mat(calib_file, &raw.camera_fundamental_mat);
return true;
}
/*
*
* Hack functions.
*
*/
extern "C" bool
t_settings_stereo_load_v1_hack(struct t_settings_stereo_raw **out_raw_data)
{
const char *configuration_filename = "PS4_EYE";
char path_string[256]; //! @todo 256 maybe not enough
//! @todo Use multiple env vars?
char *config_path = secure_getenv("HOME");
snprintf(path_string, 256, "%s/.config/monado/%s.calibration",
config_path, configuration_filename); //! @todo Hardcoded 256
FILE *calib_file = fopen(path_string, "rb");
if (calib_file == NULL) {
return false;
}
bool ret = t_settings_stereo_load_v1(calib_file, out_raw_data);
fclose(calib_file);
return ret;
}
extern "C" bool
t_file_save_raw_data_hack(struct t_settings_stereo_raw *raw_data)
{
char path_string[PATH_MAX];
char file_string[PATH_MAX];
// TODO: centralise this - use multiple env vars?
char *config_path = secure_getenv("HOME");
snprintf(path_string, PATH_MAX, "%s/.config/monado", config_path);
snprintf(file_string, PATH_MAX, "%s/.config/monado/%s.calibration",
config_path, "PS4_EYE");
FILE *calib_file = fopen(file_string, "wb");
if (!calib_file) {
// try creating it
mkpath(path_string);
}
calib_file = fopen(file_string, "wb");
if (!calib_file) {
printf(
"ERROR. could not create calibration file "
"%s\n",
file_string);
return false;
}
t_file_save_raw_data(calib_file, raw_data);
fclose(calib_file);
return true;
}
/*
*
* Helpers
*
*/
//! @todo Move this as it is a generic helper
static int
mkpath(char *path)
{
char tmp[PATH_MAX]; //!< @todo PATH_MAX probably not strictly correct
char *p = nullptr;
size_t len;
snprintf(tmp, sizeof(tmp), "%s", path);
len = strlen(tmp) - 1;
if (tmp[len] == '/') {
tmp[len] = 0;
}
for (p = tmp + 1; *p; p++) {
if (*p == '/') {
*p = 0;
if (mkdir(tmp, S_IRWXU) < 0 && errno != EEXIST)
return -1;
*p = '/';
}
}
if (mkdir(tmp, S_IRWXU) < 0 && errno != EEXIST) {
return -1;
}
return 0;
}
static bool
write_cv_mat(FILE *f, cv::Mat *m)
{
uint32_t header[3];
header[0] = static_cast<uint32_t>(m->elemSize());
header[1] = static_cast<uint32_t>(m->rows);
header[2] = static_cast<uint32_t>(m->cols);
fwrite(static_cast<void *>(header), sizeof(uint32_t), 3, f);
fwrite(static_cast<void *>(m->data), header[0], header[1] * header[2],
f);
return true;
}
static bool
read_cv_mat(FILE *f, cv::Mat *m, const char *name)
{
uint32_t header[3] = {};
size_t read = 0;
read = fread(static_cast<void *>(header), sizeof(uint32_t), 3, f);
if (read != 3) {
printf("Failed to read mat header: '%i' '%s'\n", (int)read,
name);
return false;
}
if (header[1] == 0 && header[2] == 0) {
return true;
}
//! @todo We may have written things other than CV_32F and CV_64F.
if (header[0] == 4) {
m->create(static_cast<int>(header[1]),
static_cast<int>(header[2]), CV_32F);
} else {
m->create(static_cast<int>(header[1]),
static_cast<int>(header[2]), CV_64F);
}
read = fread(static_cast<void *>(m->data), header[0],
header[1] * header[2], f);
if (read != (header[1] * header[2])) {
printf("Failed to read mat body: '%i' '%s'\n", (int)read, name);
return false;
}
return true;
}