monado/src/xrt/auxiliary/math/m_base.cpp
2023-02-05 20:19:52 +00:00

929 lines
24 KiB
C++

// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Base implementations for math library.
* @author Jakob Bornecrantz <jakob@collabora.com>
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
* @author Moses Turner <mosesturner@protonmail.com>
* @author Nis Madsen <nima_zero_one@protonmail.com>
* @ingroup aux_math
*/
#include "math/m_api.h"
#include "math/m_eigen_interop.hpp"
#include "math/m_vec3.h"
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <assert.h>
using namespace xrt::auxiliary::math;
/*
*
* Copy helpers.
*
*/
static inline Eigen::Quaternionf
copy(const struct xrt_quat &q)
{
// Eigen constructor order is different from XRT, OpenHMD and OpenXR!
// Eigen: `float w, x, y, z`.
// OpenXR: `float x, y, z, w`.
return Eigen::Quaternionf(q.w, q.x, q.y, q.z);
}
static inline Eigen::Quaternionf
copy(const struct xrt_quat *q)
{
return copy(*q);
}
XRT_MAYBE_UNUSED static inline Eigen::Quaterniond
copyd(const struct xrt_quat &q)
{
// Eigen constructor order is different from XRT, OpenHMD and OpenXR!
// Eigen: `float w, x, y, z`.
// OpenXR: `float x, y, z, w`.
return Eigen::Quaterniond(q.w, q.x, q.y, q.z);
}
XRT_MAYBE_UNUSED static inline Eigen::Quaterniond
copyd(const struct xrt_quat *q)
{
return copyd(*q);
}
static inline Eigen::Vector3f
copy(const struct xrt_vec3 &v)
{
return Eigen::Vector3f(v.x, v.y, v.z);
}
static inline Eigen::Vector3f
copy(const struct xrt_vec3 *v)
{
return copy(*v);
}
static inline Eigen::Vector3d
copy(const struct xrt_vec3_f64 &v)
{
return Eigen::Vector3d(v.x, v.y, v.z);
}
static inline Eigen::Vector3d
copy(const struct xrt_vec3_f64 *v)
{
return copy(*v);
}
XRT_MAYBE_UNUSED static inline Eigen::Vector3d
copyd(const struct xrt_vec3 &v)
{
return Eigen::Vector3d(v.x, v.y, v.z);
}
XRT_MAYBE_UNUSED static inline Eigen::Vector3d
copyd(const struct xrt_vec3 *v)
{
return copyd(*v);
}
static inline Eigen::Matrix3f
copy(const struct xrt_matrix_3x3 *m)
{
Eigen::Matrix3f res;
// clang-format off
res << m->v[0], m->v[3], m->v[6],
m->v[1], m->v[4], m->v[7],
m->v[2], m->v[5], m->v[8];
// clang-format on
return res;
}
static inline Eigen::Matrix4f
copy(const struct xrt_matrix_4x4 *m)
{
Eigen::Matrix4f res;
// clang-format off
res << m->v[0], m->v[4], m->v[8], m->v[12],
m->v[1], m->v[5], m->v[9], m->v[13],
m->v[2], m->v[6], m->v[10], m->v[14],
m->v[3], m->v[7], m->v[11], m->v[15];
// clang-format on
return res;
}
/*
*
* Exported vector functions.
*
*/
extern "C" bool
math_vec3_validate(const struct xrt_vec3 *vec3)
{
assert(vec3 != NULL);
return map_vec3(*vec3).allFinite();
}
extern "C" void
math_vec3_accum(const struct xrt_vec3 *additional, struct xrt_vec3 *inAndOut)
{
assert(additional != NULL);
assert(inAndOut != NULL);
map_vec3(*inAndOut) += map_vec3(*additional);
}
extern "C" void
math_vec3_subtract(const struct xrt_vec3 *subtrahend, struct xrt_vec3 *inAndOut)
{
assert(subtrahend != NULL);
assert(inAndOut != NULL);
map_vec3(*inAndOut) -= map_vec3(*subtrahend);
}
extern "C" void
math_vec3_scalar_mul(float scalar, struct xrt_vec3 *inAndOut)
{
assert(inAndOut != NULL);
map_vec3(*inAndOut) *= scalar;
}
extern "C" void
math_vec3_cross(const struct xrt_vec3 *l, const struct xrt_vec3 *r, struct xrt_vec3 *result)
{
map_vec3(*result) = map_vec3(*l).cross(map_vec3(*r));
}
extern "C" void
math_vec3_normalize(struct xrt_vec3 *in)
{
map_vec3(*in) = map_vec3(*in).normalized();
}
extern "C" void
math_vec3_f64_normalize(struct xrt_vec3_f64 *in)
{
map_vec3_f64(*in) = map_vec3_f64(*in).normalized();
}
/*
*
* Exported quaternion functions.
*
*/
extern "C" void
math_quat_from_angle_vector(float angle_rads, const struct xrt_vec3 *vector, struct xrt_quat *result)
{
map_quat(*result) = Eigen::AngleAxisf(angle_rads, copy(vector));
}
void
math_quat_from_euler_angles(const struct xrt_vec3 *angles, struct xrt_quat *result)
{
map_quat(*result) = Eigen::AngleAxisf(angles->z, Eigen::Vector3f::UnitZ()) *
Eigen::AngleAxisf(angles->y, Eigen::Vector3f::UnitY()) *
Eigen::AngleAxisf(angles->x, Eigen::Vector3f::UnitX());
}
extern "C" void
math_quat_from_matrix_3x3(const struct xrt_matrix_3x3 *mat, struct xrt_quat *result)
{
Eigen::Matrix3f m;
m << mat->v[0], mat->v[1], mat->v[2], mat->v[3], mat->v[4], mat->v[5], mat->v[6], mat->v[7], mat->v[8];
Eigen::Quaternionf q(m);
map_quat(*result) = q;
}
extern "C" void
math_quat_from_plus_x_z(const struct xrt_vec3 *plus_x, const struct xrt_vec3 *plus_z, struct xrt_quat *result)
{
xrt_vec3 plus_y;
math_vec3_cross(plus_z, plus_x, &plus_y);
xrt_matrix_3x3 m = {{
plus_x->x,
plus_y.x,
plus_z->x,
plus_x->y,
plus_y.y,
plus_z->y,
plus_x->z,
plus_y.z,
plus_z->z,
}};
math_quat_from_matrix_3x3(&m, result);
}
static bool
quat_validate(const float precision, const struct xrt_quat *quat)
{
assert(quat != NULL);
auto rot = copy(*quat);
/*
* This was originally squaredNorm, but that could result in a norm
* value that was further from 1.0f then FLOAT_EPSILON (two).
*
* Our tracking system would produce such orientations and looping those
* back into say a quad layer would cause this to fail. And even
* normalizing the quat would not fix this as normalizations uses
* non-squared "length" which does fall into the range and doesn't
* change the elements of the quat.
*/
auto norm = rot.norm();
if (norm > 1.0f + precision || norm < 1.0f - precision) {
return false;
}
// Technically not yet a required check, but easier to stop problems
// now than once denormalized numbers pollute the rest of our state.
// see https://gitlab.khronos.org/openxr/openxr/issues/922
if (!rot.coeffs().allFinite()) {
return false;
}
return true;
}
extern "C" bool
math_quat_validate(const struct xrt_quat *quat)
{
const float FLOAT_EPSILON = Eigen::NumTraits<float>::epsilon();
return quat_validate(FLOAT_EPSILON, quat);
}
extern "C" bool
math_quat_validate_within_1_percent(const struct xrt_quat *quat)
{
return quat_validate(0.01f, quat);
}
extern "C" void
math_quat_invert(const struct xrt_quat *quat, struct xrt_quat *out_quat)
{
map_quat(*out_quat) = map_quat(*quat).conjugate();
}
extern "C" float
math_quat_len(const struct xrt_quat *quat)
{
return map_quat(*quat).norm();
}
extern "C" void
math_quat_normalize(struct xrt_quat *inout)
{
assert(inout != NULL);
map_quat(*inout).normalize();
}
extern "C" bool
math_quat_ensure_normalized(struct xrt_quat *inout)
{
assert(inout != NULL);
if (math_quat_validate(inout))
return true;
const float FLOAT_EPSILON = Eigen::NumTraits<float>::epsilon();
const float TOLERANCE = FLOAT_EPSILON * 5;
auto rot = copy(*inout);
auto norm = rot.norm();
if (norm > 1.0f + TOLERANCE || norm < 1.0f - TOLERANCE) {
return false;
}
map_quat(*inout).normalize();
return true;
}
extern "C" void
math_quat_rotate(const struct xrt_quat *left, const struct xrt_quat *right, struct xrt_quat *result)
{
assert(left != NULL);
assert(right != NULL);
assert(result != NULL);
auto l = copy(left);
auto r = copy(right);
auto q = l * r;
map_quat(*result) = q;
}
extern "C" void
math_quat_unrotate(const struct xrt_quat *left, const struct xrt_quat *right, struct xrt_quat *result)
{
assert(left != NULL);
assert(right != NULL);
assert(result != NULL);
auto l = copy(left);
auto r = copy(right);
auto q = l.inverse() * r;
map_quat(*result) = q;
}
extern "C" void
math_quat_rotate_vec3(const struct xrt_quat *left, const struct xrt_vec3 *right, struct xrt_vec3 *result)
{
assert(left != NULL);
assert(right != NULL);
assert(result != NULL);
auto l = copy(left);
auto r = copy(right);
auto v = l * r;
map_vec3(*result) = v;
}
extern "C" void
math_quat_rotate_derivative(const struct xrt_quat *quat, const struct xrt_vec3 *deriv, struct xrt_vec3 *result)
{
assert(quat != NULL);
assert(deriv != NULL);
assert(result != NULL);
auto l = copy(quat);
auto m = Eigen::Quaternionf(0.0f, deriv->x, deriv->y, deriv->z);
auto r = l.conjugate();
auto v = l * m * r;
struct xrt_vec3 ret = {v.x(), v.y(), v.z()};
*result = ret;
}
extern "C" void
math_quat_slerp(const struct xrt_quat *left, const struct xrt_quat *right, float t, struct xrt_quat *result)
{
assert(left != NULL);
assert(right != NULL);
assert(result != NULL);
auto l = copy(left);
auto r = copy(right);
map_quat(*result) = l.slerp(t, r);
}
extern "C" void
math_quat_from_swing(const struct xrt_vec2 *swing, struct xrt_quat *result)
{
assert(swing != NULL);
assert(result != NULL);
const float *a0 = &swing->x;
const float *a1 = &swing->y;
const float theta_squared = *a0 * *a0 + *a1 * *a1;
if (theta_squared > 0.f) {
const float theta = sqrt(theta_squared);
const float half_theta = theta * 0.5f;
const float k = sin(half_theta) / theta;
result->w = cos(half_theta);
result->x = *a0 * k;
result->y = *a1 * k;
result->z = 0.f;
} else {
// lim(x->0) (sin(x/2)/x) = 0.5, but sin(0)/0 is undefined, so we need to catch this with a conditional.
const float k = 0.5f;
result->w = 1.0f;
result->x = *a0 * k;
result->y = *a1 * k;
result->z = 0.f;
}
}
// See https://gitlab.freedesktop.org/slitcch/rotation_visualizer/-/blob/main/lm_rotations_story.inl for the derivation
extern "C" void
math_quat_from_swing_twist(const struct xrt_vec2 *swing, const float twist, struct xrt_quat *result)
{
assert(swing != NULL);
assert(result != NULL);
float swing_x = swing->x;
float swing_y = swing->y;
float theta_squared_swing = swing_x * swing_x + swing_y * swing_y;
if (theta_squared_swing > float(0.0)) {
// theta_squared_swing is nonzero, so we the regular derived conversion.
float theta = sqrt(theta_squared_swing);
float half_theta = theta * float(0.5);
// the "other" theta
float half_twist = twist * float(0.5);
float cos_half_theta = cos(half_theta);
float cos_half_twist = cos(half_twist);
float sin_half_theta = sin(half_theta);
float sin_half_twist = sin(half_twist);
float sin_half_theta_over_theta = sin_half_theta / theta;
result->w = cos_half_theta * cos_half_twist;
float x_part_1 = (swing_x * cos_half_twist * sin_half_theta_over_theta);
float x_part_2 = (swing_y * sin_half_twist * sin_half_theta_over_theta);
result->x = x_part_1 + x_part_2;
float y_part_1 = (swing_y * cos_half_twist * sin_half_theta_over_theta);
float y_part_2 = (swing_x * sin_half_twist * sin_half_theta_over_theta);
result->y = y_part_1 - y_part_2;
result->z = cos_half_theta * sin_half_twist;
} else {
// sin_half_theta/theta would be undefined, but
// the limit approaches 0.5, so we do this.
// Note the differences w/ lm_rotations.inl - we can skip some things as we're not using this to compute
// a jacobian.
float half_twist = twist * float(0.5);
float cos_half_twist = cos(half_twist);
float sin_half_twist = sin(half_twist);
float sin_half_theta_over_theta = float(0.5);
// cos(0) is 1 so no cos_half_theta necessary
result->w = cos_half_twist;
float x_part_1 = (swing_x * cos_half_twist * sin_half_theta_over_theta);
float x_part_2 = (swing_y * sin_half_twist * sin_half_theta_over_theta);
result->x = x_part_1 + x_part_2;
float y_part_1 = (swing_y * cos_half_twist * sin_half_theta_over_theta);
float y_part_2 = (swing_x * sin_half_twist * sin_half_theta_over_theta);
result->y = y_part_1 - y_part_2;
result->z = sin_half_twist;
}
}
/*!
* Converts a quaternion to XY-swing and Z-twist
*
* @relates xrt_quat
* @ingroup aux_math
*/
extern "C" void
math_quat_to_swing_twist(const struct xrt_quat *in, struct xrt_vec2 *out_swing, float *out_twist)
{
Eigen::Quaternionf rot = map_quat(*in);
Eigen::Vector3f our_z = rot * (Eigen::Vector3f::UnitZ());
Eigen::Quaternionf swing = Eigen::Quaternionf().setFromTwoVectors(Eigen::Vector3f::UnitZ(), our_z);
Eigen::Quaternionf twist = swing.inverse() * rot;
Eigen::AngleAxisf twist_aax = Eigen::AngleAxisf(twist);
Eigen::AngleAxisf swing_aax = Eigen::AngleAxisf(swing);
out_swing->x = swing_aax.axis().x() * swing_aax.angle();
out_swing->y = swing_aax.axis().y() * swing_aax.angle();
assert(swing_aax.axis().z() < 0.001);
*out_twist = twist_aax.axis().z() * twist_aax.angle();
}
/*
*
* Exported matrix functions.
*
*/
extern "C" void
math_matrix_3x3_identity(struct xrt_matrix_3x3 *mat)
{
map_matrix_3x3(*mat) = Eigen::Matrix3f::Identity();
}
extern "C" void
math_matrix_3x3_from_quat(const struct xrt_quat *q, struct xrt_matrix_3x3 *result_out)
{
struct xrt_matrix_3x3 result = {{
1 - 2 * q->y * q->y - 2 * q->z * q->z,
2 * q->x * q->y - 2 * q->w * q->z,
2 * q->x * q->z + 2 * q->w * q->y,
2 * q->x * q->y + 2 * q->w * q->z,
1 - 2 * q->x * q->x - 2 * q->z * q->z,
2 * q->y * q->z - 2 * q->w * q->x,
2 * q->x * q->z - 2 * q->w * q->y,
2 * q->y * q->z + 2 * q->w * q->x,
1 - 2 * q->x * q->x - 2 * q->y * q->y,
}};
*result_out = result;
}
extern "C" void
math_matrix_3x3_f64_identity(struct xrt_matrix_3x3_f64 *mat)
{
map_matrix_3x3_f64(*mat) = Eigen::Matrix3d::Identity();
}
extern "C" void
math_matrix_3x3_f64_transform_vec3_f64(const struct xrt_matrix_3x3_f64 *left,
const struct xrt_vec3_f64 *right,
struct xrt_vec3_f64 *result_out)
{
Eigen::Matrix3d m;
m << left->v[0], left->v[1], left->v[2], // 1
left->v[3], left->v[4], left->v[5], // 2
left->v[6], left->v[7], left->v[8]; // 3
map_vec3_f64(*result_out) = m * copy(right);
}
extern "C" void
math_matrix_3x3_f64_from_plus_x_z(const struct xrt_vec3_f64 *plus_x,
const struct xrt_vec3_f64 *plus_z,
struct xrt_matrix_3x3_f64 *result)
{
xrt_vec3_f64 plus_y;
math_vec3_f64_cross(plus_z, plus_x, &plus_y);
result->v[0] = plus_x->x;
result->v[1] = plus_y.x;
result->v[2] = plus_z->x;
result->v[3] = plus_x->y;
result->v[4] = plus_y.y;
result->v[5] = plus_z->y;
result->v[6] = plus_x->z;
result->v[7] = plus_y.z;
result->v[8] = plus_z->z;
}
extern "C" void
math_matrix_3x3_rotation_from_isometry(const struct xrt_matrix_4x4 *isometry, struct xrt_matrix_3x3 *result)
{
Eigen::Isometry3f transform{map_matrix_4x4(*isometry)};
map_matrix_3x3(*result) = transform.linear();
}
extern "C" void
math_matrix_3x3_transform_vec3(const struct xrt_matrix_3x3 *left,
const struct xrt_vec3 *right,
struct xrt_vec3 *result_out)
{
Eigen::Matrix3f m;
m << left->v[0], left->v[1], left->v[2], // 1
left->v[3], left->v[4], left->v[5], // 2
left->v[6], left->v[7], left->v[8]; // 3
map_vec3(*result_out) = m * copy(right);
}
extern "C" void
math_matrix_4x4_transform_vec3(const struct xrt_matrix_4x4 *left,
const struct xrt_vec3 *right,
struct xrt_vec3 *result_out)
{
Eigen::Matrix4f m = copy(left);
Eigen::Vector4f v;
v << right->x, right->y, right->z, 1.0;
Eigen::Vector4f res;
res = m * v;
result_out->x = res.x();
result_out->y = res.y();
result_out->z = res.z();
}
extern "C" void
math_matrix_3x3_multiply(const struct xrt_matrix_3x3 *left,
const struct xrt_matrix_3x3 *right,
struct xrt_matrix_3x3 *result_out)
{
const struct xrt_matrix_3x3 l = *left;
const struct xrt_matrix_3x3 r = *right;
struct xrt_matrix_3x3 result = {{
l.v[0] * r.v[0] + l.v[1] * r.v[3] + l.v[2] * r.v[6],
l.v[0] * r.v[1] + l.v[1] * r.v[4] + l.v[2] * r.v[7],
l.v[0] * r.v[2] + l.v[1] * r.v[5] + l.v[2] * r.v[8],
l.v[3] * r.v[0] + l.v[4] * r.v[3] + l.v[5] * r.v[6],
l.v[3] * r.v[1] + l.v[4] * r.v[4] + l.v[5] * r.v[7],
l.v[3] * r.v[2] + l.v[4] * r.v[5] + l.v[5] * r.v[8],
l.v[6] * r.v[0] + l.v[7] * r.v[3] + l.v[8] * r.v[6],
l.v[6] * r.v[1] + l.v[7] * r.v[4] + l.v[8] * r.v[7],
l.v[6] * r.v[2] + l.v[7] * r.v[5] + l.v[8] * r.v[8],
}};
*result_out = result;
}
extern "C" void
math_matrix_3x3_inverse(const struct xrt_matrix_3x3 *in, struct xrt_matrix_3x3 *result)
{
Eigen::Matrix3f m = copy(in);
map_matrix_3x3(*result) = m.inverse();
}
extern "C" void
math_matrix_3x3_transpose(const struct xrt_matrix_3x3 *in, struct xrt_matrix_3x3 *result)
{
Eigen::Matrix3f m = copy(in);
map_matrix_3x3(*result) = m.transpose();
}
extern "C" void
math_matrix_4x4_identity(struct xrt_matrix_4x4 *result)
{
map_matrix_4x4(*result) = Eigen::Matrix4f::Identity();
}
extern "C" void
math_matrix_4x4_multiply(const struct xrt_matrix_4x4 *left,
const struct xrt_matrix_4x4 *right,
struct xrt_matrix_4x4 *result)
{
map_matrix_4x4(*result) = copy(left) * copy(right);
}
extern "C" void
math_matrix_4x4_inverse(const struct xrt_matrix_4x4 *in, struct xrt_matrix_4x4 *result)
{
Eigen::Matrix4f m = copy(in);
map_matrix_4x4(*result) = m.inverse();
}
extern "C" void
math_matrix_4x4_transpose(const struct xrt_matrix_4x4 *in, struct xrt_matrix_4x4 *result)
{
Eigen::Matrix4f m = copy(in);
map_matrix_4x4(*result) = m.transpose();
}
extern "C" void
math_matrix_4x4_isometry_inverse(const struct xrt_matrix_4x4 *in, struct xrt_matrix_4x4 *result)
{
Eigen::Isometry3f m{copy(in)};
map_matrix_4x4(*result) = m.inverse().matrix();
}
extern "C" void
math_matrix_4x4_view_from_pose(const struct xrt_pose *pose, struct xrt_matrix_4x4 *result)
{
Eigen::Vector3f position = copy(&pose->position);
Eigen::Quaternionf orientation = copy(&pose->orientation);
Eigen::Translation3f translation(position);
Eigen::Isometry3f transformation = translation * orientation;
map_matrix_4x4(*result) = transformation.inverse().matrix();
}
extern "C" void
math_matrix_4x4_isometry_from_rt(const struct xrt_matrix_3x3 *rotation,
const struct xrt_vec3 *translation,
struct xrt_matrix_4x4 *result)
{
Eigen::Isometry3f transformation = Eigen::Isometry3f::Identity();
transformation.linear() = map_matrix_3x3(*rotation);
transformation.translation() = map_vec3(*translation);
map_matrix_4x4(*result) = transformation.matrix();
}
extern "C" void
math_matrix_4x4_isometry_from_pose(const struct xrt_pose *pose, struct xrt_matrix_4x4 *result)
{
Eigen::Isometry3f transform{Eigen::Translation3f{position(*pose)} * orientation(*pose)};
map_matrix_4x4(*result) = transform.matrix();
}
extern "C" void
math_matrix_4x4_model(const struct xrt_pose *pose, const struct xrt_vec3 *size, struct xrt_matrix_4x4 *result)
{
Eigen::Vector3f position = copy(&pose->position);
Eigen::Quaternionf orientation = copy(&pose->orientation);
auto scale = Eigen::Scaling(size->x, size->y, size->z);
Eigen::Translation3f translation(position);
Eigen::Affine3f transformation = translation * orientation * scale;
map_matrix_4x4(*result) = transformation.matrix();
}
extern "C" void
math_matrix_4x4_inverse_view_projection(const struct xrt_matrix_4x4 *view,
const struct xrt_matrix_4x4 *projection,
struct xrt_matrix_4x4 *result)
{
Eigen::Matrix4f v = copy(view);
Eigen::Matrix4f v3 = Eigen::Matrix4f::Identity();
v3.block<3, 3>(0, 0) = v.block<3, 3>(0, 0);
Eigen::Matrix4f vp = copy(projection) * v3;
map_matrix_4x4(*result) = vp.inverse();
}
/*
*
* Exported Matrix 4x4 functions.
*
*/
extern "C" void
m_mat4_f64_identity(struct xrt_matrix_4x4_f64 *result)
{
map_matrix_4x4_f64(*result) = Eigen::Matrix4d::Identity();
}
extern "C" void
m_mat4_f64_invert(const struct xrt_matrix_4x4_f64 *matrix, struct xrt_matrix_4x4_f64 *result)
{
Eigen::Matrix4d m = map_matrix_4x4_f64(*matrix);
map_matrix_4x4_f64(*result) = m.inverse();
}
extern "C" void
m_mat4_f64_multiply(const struct xrt_matrix_4x4_f64 *left,
const struct xrt_matrix_4x4_f64 *right,
struct xrt_matrix_4x4_f64 *result)
{
Eigen::Matrix4d l = map_matrix_4x4_f64(*left);
Eigen::Matrix4d r = map_matrix_4x4_f64(*right);
map_matrix_4x4_f64(*result) = l * r;
}
extern "C" void
math_vec3_f64_cross(const struct xrt_vec3_f64 *l, const struct xrt_vec3_f64 *r, struct xrt_vec3_f64 *result)
{
map_vec3_f64(*result) = map_vec3_f64(*l).cross(map_vec3_f64(*r));
}
extern "C" void
math_vec3_translation_from_isometry(const struct xrt_matrix_4x4 *transform, struct xrt_vec3 *result)
{
Eigen::Isometry3f isometry{map_matrix_4x4(*transform)};
map_vec3(*result) = isometry.translation();
}
extern "C" void
m_mat4_f64_orientation(const struct xrt_quat *quat, struct xrt_matrix_4x4_f64 *result)
{
map_matrix_4x4_f64(*result) = Eigen::Affine3d(copyd(*quat)).matrix();
}
extern "C" void
m_mat4_f64_model(const struct xrt_pose *pose, const struct xrt_vec3 *size, struct xrt_matrix_4x4_f64 *result)
{
Eigen::Vector3d position = copyd(pose->position);
Eigen::Quaterniond orientation = copyd(pose->orientation);
auto scale = Eigen::Scaling(copyd(size));
Eigen::Translation3d translation(position);
Eigen::Affine3d transformation = translation * orientation * scale;
map_matrix_4x4_f64(*result) = transformation.matrix();
}
extern "C" void
m_mat4_f64_view(const struct xrt_pose *pose, struct xrt_matrix_4x4_f64 *result)
{
Eigen::Vector3d position = copyd(pose->position);
Eigen::Quaterniond orientation = copyd(pose->orientation);
Eigen::Translation3d translation(position);
Eigen::Isometry3d transformation = translation * orientation;
map_matrix_4x4_f64(*result) = transformation.inverse().matrix();
}
/*
*
* Exported pose functions.
*
*/
extern "C" bool
math_pose_validate(const struct xrt_pose *pose)
{
assert(pose != NULL);
return math_vec3_validate(&pose->position) && math_quat_validate(&pose->orientation);
}
extern "C" void
math_pose_invert(const struct xrt_pose *pose, struct xrt_pose *outPose)
{
Eigen::Isometry3f transform{Eigen::Translation3f{position(*pose)} * orientation(*pose)};
Eigen::Isometry3f inverse = transform.inverse();
position(*outPose) = inverse.translation();
orientation(*outPose) = inverse.rotation();
}
extern "C" void
math_pose_from_isometry(const struct xrt_matrix_4x4 *transform, struct xrt_pose *result)
{
Eigen::Isometry3f isometry{map_matrix_4x4(*transform)};
position(*result) = isometry.translation();
orientation(*result) = isometry.rotation();
}
extern "C" void
math_pose_interpolate(const struct xrt_pose *a, const struct xrt_pose *b, float t, struct xrt_pose *outPose)
{
math_quat_slerp(&a->orientation, &b->orientation, t, &outPose->orientation);
outPose->position = m_vec3_lerp(a->position, b->position, t);
}
extern "C" void
math_pose_identity(struct xrt_pose *pose)
{
pose->position.x = 0.0;
pose->position.y = 0.0;
pose->position.z = 0.0;
pose->orientation.x = 0.0;
pose->orientation.y = 0.0;
pose->orientation.z = 0.0;
pose->orientation.w = 1.0;
}
/*!
* Return the result of transforming a point by a pose/transform.
*/
static inline Eigen::Vector3f
transform_point(const xrt_pose &transform, const xrt_vec3 &point)
{
return orientation(transform) * map_vec3(point) + position(transform);
}
/*!
* Return the result of transforming a pose by a pose/transform.
*/
static inline xrt_pose
transform_pose(const xrt_pose &transform, const xrt_pose &pose)
{
xrt_pose ret;
position(ret) = transform_point(transform, pose.position);
orientation(ret) = orientation(transform) * orientation(pose);
return ret;
}
extern "C" void
math_pose_transform(const struct xrt_pose *transform, const struct xrt_pose *pose, struct xrt_pose *outPose)
{
assert(pose != NULL);
assert(transform != NULL);
assert(outPose != NULL);
xrt_pose newPose = transform_pose(*transform, *pose);
memcpy(outPose, &newPose, sizeof(xrt_pose));
}
extern "C" void
math_pose_transform_point(const struct xrt_pose *transform, const struct xrt_vec3 *point, struct xrt_vec3 *out_point)
{
assert(transform != NULL);
assert(point != NULL);
assert(out_point != NULL);
map_vec3(*out_point) = transform_point(*transform, *point);
}