mirror of
https://gitlab.freedesktop.org/monado/monado.git
synced 2025-01-11 01:15:30 +00:00
578 lines
15 KiB
C
578 lines
15 KiB
C
// Copyright 2016-2019, Philipp Zabel
|
|
// Copyright 2020, Collabora, Ltd.
|
|
// SPDX-License-Identifier: BSL-1.0
|
|
/*!
|
|
* @file
|
|
* @brief Vive Lighthouse Watchman implementation
|
|
* @author Lubosz Sarnecki <lubosz.sarnecki@collabora.com>
|
|
* @ingroup drv_vive
|
|
*/
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <zlib.h>
|
|
#include <stdio.h>
|
|
|
|
#include "math/m_api.h"
|
|
#include "util/u_debug.h"
|
|
#include "util/u_logging.h"
|
|
|
|
#include "vive_lighthouse.h"
|
|
|
|
static enum u_logging_level ll;
|
|
|
|
#define LH_TRACE(...) U_LOG_IFL_T(ll, __VA_ARGS__)
|
|
#define LH_DEBUG(...) U_LOG_IFL_D(ll, __VA_ARGS__)
|
|
#define LH_INFO(...) U_LOG_IFL_I(ll, __VA_ARGS__)
|
|
#define LH_WARN(...) U_LOG_IFL_W(ll, __VA_ARGS__)
|
|
#define LH_ERROR(...) U_LOG_IFL_E(ll, __VA_ARGS__)
|
|
|
|
DEBUG_GET_ONCE_LOG_OPTION(vive_log, "VIVE_LOG", U_LOGGING_WARN)
|
|
|
|
struct lighthouse_ootx_report
|
|
{
|
|
__le16 version;
|
|
__le32 serial;
|
|
__le16 phase[2];
|
|
__le16 tilt[2];
|
|
__u8 reset_count;
|
|
__u8 model_id;
|
|
__le16 curve[2];
|
|
__s8 gravity[3];
|
|
__le16 gibphase[2];
|
|
__le16 gibmag[2];
|
|
} __attribute__((packed));
|
|
|
|
static unsigned int watchman_id;
|
|
|
|
float
|
|
_f16_to_float(uint16_t f16)
|
|
{
|
|
unsigned int sign = f16 >> 15;
|
|
unsigned int exponent = (f16 >> 10) & 0x1f;
|
|
unsigned int mantissa = f16 & 0x3ff;
|
|
union {
|
|
float f32;
|
|
uint32_t u32;
|
|
} u;
|
|
|
|
if (exponent == 0) {
|
|
if (!mantissa) {
|
|
/* zero */
|
|
u.u32 = sign << 31;
|
|
} else {
|
|
/* subnormal */
|
|
exponent = 127 - 14;
|
|
mantissa <<= 23 - 10;
|
|
/*
|
|
* convert to normal representation:
|
|
* shift up mantissa and drop MSB
|
|
*/
|
|
while (!(mantissa & (1 << 23))) {
|
|
mantissa <<= 1;
|
|
exponent--;
|
|
}
|
|
mantissa &= 0x7fffffu;
|
|
u.u32 = (sign << 31) | (exponent << 23) | mantissa;
|
|
}
|
|
} else if (exponent < 31) {
|
|
/* normal */
|
|
exponent += 127 - 15;
|
|
mantissa <<= 23 - 10;
|
|
u.u32 = (sign << 31) | (exponent << 23) | mantissa;
|
|
} else if (mantissa == 0) {
|
|
/* infinite */
|
|
u.u32 = (sign << 31) | (255 << 23);
|
|
} else {
|
|
/* NaN */
|
|
u.u32 = 0x7fffffffu;
|
|
}
|
|
return u.f32;
|
|
}
|
|
|
|
static inline float
|
|
__le16_to_float(__le16 le16)
|
|
{
|
|
return _f16_to_float(__le16_to_cpu(le16));
|
|
}
|
|
|
|
static inline bool
|
|
pulse_in_this_sync_window(int32_t dt, uint16_t duration)
|
|
{
|
|
return dt > -duration && (dt + duration) < (6500 + 250);
|
|
}
|
|
|
|
static inline bool
|
|
pulse_in_next_sync_window(int32_t dt, uint16_t duration)
|
|
{
|
|
int32_t dt_end = dt + duration;
|
|
|
|
/*
|
|
* Allow 2000 pulses (40 µs) deviation from the expected interval
|
|
* between bases, and 1000 pulses (20 µs) for a single base.
|
|
*/
|
|
return (dt > (20000 - 2000) && (dt_end) < (20000 + 6500 + 2000)) ||
|
|
(dt > (380000 - 2000) && (dt_end) < (380000 + 6500 + 2000)) ||
|
|
(dt > (400000 - 1000) && (dt_end) < (400000 + 6500 + 1000));
|
|
}
|
|
|
|
static inline bool
|
|
pulse_in_sweep_window(int32_t dt, uint16_t duration)
|
|
{
|
|
/*
|
|
* The J axis (horizontal) sweep starts 71111 ticks after the sync
|
|
* pulse start (32°) and ends at 346667 ticks (156°).
|
|
* The K axis (vertical) sweep starts at 55555 ticks (23°) and ends
|
|
* at 331111 ticks (149°).
|
|
*/
|
|
return dt > (55555 - 1000) && (dt + duration) < (346667 + 1000);
|
|
}
|
|
|
|
static void
|
|
_handle_ootx_frame(struct lighthouse_base *base)
|
|
{
|
|
struct lighthouse_ootx_report *report = (void *)(base->ootx + 2);
|
|
uint16_t len = (__le16)*base->ootx;
|
|
uint32_t crc = crc32(0L, Z_NULL, 0);
|
|
bool serial_changed = false;
|
|
uint32_t ootx_crc;
|
|
uint16_t version;
|
|
int ootx_version;
|
|
struct xrt_vec3 gravity;
|
|
int i;
|
|
|
|
if (len != 33) {
|
|
LH_WARN(
|
|
"Lighthouse Base %X: unexpected OOTX payload length: %d",
|
|
base->serial, len);
|
|
return;
|
|
}
|
|
|
|
ootx_crc = (__le32) * ((__le32 *)(base->ootx + 36)); /* (len+3)/4*4 */
|
|
|
|
crc = crc32(crc, base->ootx + 2, 33);
|
|
if (ootx_crc != crc) {
|
|
LH_ERROR("Lighthouse Base %X: CRC error: %08x != %08x",
|
|
base->serial, crc, ootx_crc);
|
|
return;
|
|
}
|
|
|
|
version = __le16_to_cpu(report->version);
|
|
ootx_version = version & 0x3f;
|
|
if (ootx_version != 6) {
|
|
LH_ERROR(
|
|
"Lighthouse Base %X: unexpected OOTX frame version: %d",
|
|
base->serial, ootx_version);
|
|
return;
|
|
}
|
|
|
|
base->firmware_version = version >> 6;
|
|
|
|
if (base->serial != __le32_to_cpu(report->serial)) {
|
|
base->serial = __le32_to_cpu(report->serial);
|
|
serial_changed = true;
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct lighthouse_rotor_calibration *rotor;
|
|
|
|
rotor = &base->calibration.rotor[i];
|
|
rotor->tilt = __le16_to_float(report->tilt[i]);
|
|
rotor->phase = __le16_to_float(report->phase[i]);
|
|
rotor->curve = __le16_to_float(report->curve[i]);
|
|
rotor->gibphase = __le16_to_float(report->gibphase[i]);
|
|
rotor->gibmag = __le16_to_float(report->gibmag[i]);
|
|
}
|
|
|
|
base->model_id = report->model_id;
|
|
|
|
if (serial_changed) {
|
|
LH_INFO(
|
|
"Lighthouse Base %X: firmware version: %d, model id: %d, "
|
|
"channel: %c",
|
|
base->serial, base->firmware_version, base->model_id,
|
|
base->channel);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct lighthouse_rotor_calibration *rotor;
|
|
|
|
rotor = &base->calibration.rotor[i];
|
|
|
|
LH_INFO(
|
|
"Lighthouse Base %X: rotor %d: [ %12.9f %12.9f "
|
|
"%12.9f %12.9f %12.9f ]",
|
|
base->serial, i, rotor->tilt, rotor->phase,
|
|
rotor->curve, rotor->gibphase, rotor->gibmag);
|
|
}
|
|
}
|
|
|
|
gravity.x = report->gravity[0];
|
|
gravity.y = report->gravity[1];
|
|
gravity.z = report->gravity[2];
|
|
math_vec3_normalize(&gravity);
|
|
if (gravity.x != base->gravity.x || gravity.y != base->gravity.y ||
|
|
gravity.z != base->gravity.z) {
|
|
base->gravity = gravity;
|
|
LH_INFO("Lighthouse Base %X: gravity: [ %9.6f %9.6f %9.6f ]",
|
|
base->serial, gravity.x, gravity.y, gravity.z);
|
|
}
|
|
|
|
if (base->reset_count != report->reset_count) {
|
|
base->reset_count = report->reset_count;
|
|
LH_INFO("Lighthouse Base %X: reset count: %d", base->serial,
|
|
base->reset_count);
|
|
}
|
|
}
|
|
|
|
static void
|
|
lighthouse_base_reset(struct lighthouse_base *base)
|
|
{
|
|
base->data_sync = 0;
|
|
base->data_word = -1;
|
|
base->data_bit = 0;
|
|
memset(base->ootx, 0, sizeof(base->ootx));
|
|
}
|
|
|
|
static void
|
|
_handle_ootx_data_word(struct lighthouse_watchman *watchman,
|
|
struct lighthouse_base *base)
|
|
{
|
|
uint16_t len = (__le16)*base->ootx;
|
|
|
|
/* After 4 OOTX words we have received the base station serial number */
|
|
if (base->data_word == 4) {
|
|
struct lighthouse_ootx_report *report =
|
|
(void *)(base->ootx + 2);
|
|
uint16_t ootx_version = __le16_to_cpu(report->version) & 0x3f;
|
|
uint32_t serial = __le32_to_cpu(report->serial);
|
|
|
|
if (len != 33) {
|
|
LH_WARN("%s: unexpected OOTX frame length %d",
|
|
watchman->name, len);
|
|
return;
|
|
}
|
|
|
|
if (ootx_version == 6 && serial != base->serial) {
|
|
LH_DEBUG("%s: spotted Lighthouse Base %X",
|
|
watchman->name, serial);
|
|
}
|
|
}
|
|
if (len == 33 && base->data_word == 20) { /* (len + 3)/4 * 2 + 2 */
|
|
_handle_ootx_frame(base);
|
|
}
|
|
}
|
|
|
|
static void
|
|
lighthouse_base_handle_ootx_data_bit(struct lighthouse_watchman *watchman,
|
|
struct lighthouse_base *base,
|
|
bool data)
|
|
{
|
|
if (base->data_word >= (int)sizeof(base->ootx) / 2) {
|
|
base->data_word = -1;
|
|
} else if (base->data_word >= 0) {
|
|
if (base->data_bit == 16) {
|
|
/* Sync bit */
|
|
base->data_bit = 0;
|
|
if (data) {
|
|
base->data_word++;
|
|
_handle_ootx_data_word(watchman, base);
|
|
} else {
|
|
LH_WARN("%s: Missed a sync bit, restarting",
|
|
watchman->name);
|
|
/* Missing sync bit, restart */
|
|
base->data_word = -1;
|
|
}
|
|
} else if (base->data_bit < 16) {
|
|
/*
|
|
* Each 16-bit payload word contains two bytes,
|
|
* transmitted MSB-first.
|
|
*/
|
|
if (data) {
|
|
int idx =
|
|
2 * base->data_word + (base->data_bit >> 3);
|
|
|
|
base->ootx[idx] |= 0x80 >> (base->data_bit % 8);
|
|
}
|
|
base->data_bit++;
|
|
}
|
|
}
|
|
|
|
/* Preamble detection */
|
|
if (data) {
|
|
if (base->data_sync > 16) {
|
|
/* Preamble detected, restart bit capture */
|
|
memset(base->ootx, 0, sizeof(base->ootx));
|
|
base->data_word = 0;
|
|
base->data_bit = 0;
|
|
}
|
|
base->data_sync = 0;
|
|
} else {
|
|
base->data_sync++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
lighthouse_base_handle_frame(struct lighthouse_watchman *watchman,
|
|
struct lighthouse_base *base,
|
|
uint32_t sync_timestamp)
|
|
{
|
|
struct lighthouse_frame *frame = &base->frame[base->active_rotor];
|
|
|
|
(void)watchman;
|
|
|
|
if (!frame->sweep_ids)
|
|
return;
|
|
|
|
frame->frame_duration = sync_timestamp - frame->sync_timestamp;
|
|
|
|
/*
|
|
* If a single base station is running in 'B' mode, skipped frames
|
|
* will still contain old data.
|
|
*/
|
|
if (frame->frame_duration > 1000000)
|
|
return;
|
|
|
|
// telemetry_send_lighthouse_frame(watchman->id, frame);
|
|
}
|
|
|
|
/*
|
|
* The pulse length encodes three bits. The skip bit indicates whether the
|
|
* emitting base will enable the sweeping laser in the next sweep window.
|
|
* The data bit is collected to eventually assemble the OOTX frame. The rotor
|
|
* bit indicates whether the next sweep will be horizontal (0) or vertical (1):
|
|
*
|
|
* duration 3000 3500 4000 4500 5000 5500 6000 6500 (in 48 MHz ticks)
|
|
* skip 0 0 0 0 1 1 1 1
|
|
* data 0 0 1 1 0 0 1 1
|
|
* rotor 0 1 0 1 0 1 0 1
|
|
*/
|
|
#define SKIP_BIT 4
|
|
#define DATA_BIT 2
|
|
#define ROTOR_BIT 1
|
|
|
|
static void
|
|
_handle_sync_pulse(struct lighthouse_watchman *watchman,
|
|
struct lighthouse_pulse *sync)
|
|
{
|
|
struct lighthouse_base *base;
|
|
unsigned char channel;
|
|
int32_t dt;
|
|
unsigned int code;
|
|
|
|
if (!sync->duration)
|
|
return;
|
|
|
|
if (sync->duration < 2750 || sync->duration > 6750) {
|
|
LH_WARN("%s: Unknown pulse length: %d", watchman->name,
|
|
sync->duration);
|
|
return;
|
|
}
|
|
code = (sync->duration - 2750) / 500;
|
|
|
|
dt = sync->timestamp - watchman->last_timestamp;
|
|
|
|
/* 48 MHz / 120 Hz = 400000 cycles per sync pulse */
|
|
if (dt > (400000 - 1000) && dt < (400000 + 1000)) {
|
|
/* Observing a single base station, channel A (or B, actually)
|
|
*/
|
|
channel = 'A';
|
|
} else if (dt > (380000 - 1000) && dt < (380000 + 1000)) {
|
|
/* Observing two base stations, this is channel B */
|
|
channel = 'B';
|
|
} else if (dt > (20000 - 1000) && dt < (20000 + 1000)) {
|
|
/* Observing two base stations, this is channel C */
|
|
channel = 'C';
|
|
} else {
|
|
if (dt > -1000 && dt < 1000) {
|
|
/*
|
|
* Ignore, this means we prematurely finished
|
|
* assembling the last sync pulse.
|
|
*/
|
|
} else {
|
|
/* Irregular sync pulse */
|
|
if (watchman->last_timestamp)
|
|
LH_WARN(
|
|
"%s: Irregular sync pulse: %08x -> %08x "
|
|
"(%+d)",
|
|
watchman->name, watchman->last_timestamp,
|
|
sync->timestamp, dt);
|
|
lighthouse_base_reset(&watchman->base[0]);
|
|
lighthouse_base_reset(&watchman->base[1]);
|
|
}
|
|
|
|
watchman->last_timestamp = sync->timestamp;
|
|
return;
|
|
}
|
|
|
|
base = &watchman->base[channel == 'C'];
|
|
base->channel = channel;
|
|
base->last_sync_timestamp = sync->timestamp;
|
|
lighthouse_base_handle_ootx_data_bit(watchman, base, (code & DATA_BIT));
|
|
lighthouse_base_handle_frame(watchman, base, sync->timestamp);
|
|
|
|
base->active_rotor = (code & ROTOR_BIT);
|
|
if (!(code & SKIP_BIT)) {
|
|
struct lighthouse_frame *frame = &base->frame[code & ROTOR_BIT];
|
|
|
|
watchman->active_base = base;
|
|
frame->sync_timestamp = sync->timestamp;
|
|
frame->sync_duration = sync->duration;
|
|
frame->sweep_ids = 0;
|
|
}
|
|
|
|
watchman->last_timestamp = sync->timestamp;
|
|
}
|
|
|
|
static void
|
|
_handle_sweep_pulse(struct lighthouse_watchman *watchman,
|
|
uint8_t id,
|
|
uint32_t timestamp,
|
|
uint16_t duration)
|
|
{
|
|
struct lighthouse_base *base = watchman->active_base;
|
|
struct lighthouse_frame *frame;
|
|
int32_t offset;
|
|
|
|
(void)id;
|
|
|
|
if (!base) {
|
|
LH_WARN("%s: sweep without sync", watchman->name);
|
|
return;
|
|
}
|
|
|
|
frame = &base->frame[base->active_rotor];
|
|
|
|
offset = timestamp - base->last_sync_timestamp;
|
|
|
|
/* Ignore short sync pulses or sweeps without a corresponding sync */
|
|
if (offset > 379000)
|
|
return;
|
|
|
|
if (!pulse_in_sweep_window(offset, duration)) {
|
|
LH_WARN(
|
|
"%s: sweep offset out of range: rotor %u offset %u "
|
|
"duration %u",
|
|
watchman->name, base->active_rotor, offset, duration);
|
|
return;
|
|
}
|
|
|
|
if (frame->sweep_ids & (1 << id)) {
|
|
LH_WARN(
|
|
"%s: sensor %u hit twice per frame, assuming reflection",
|
|
watchman->name, id);
|
|
return;
|
|
}
|
|
|
|
frame->sweep_duration[id] = duration;
|
|
frame->sweep_offset[id] = offset;
|
|
frame->sweep_ids |= (1 << id);
|
|
}
|
|
|
|
static void
|
|
accumulate_sync_pulse(struct lighthouse_watchman *watchman,
|
|
uint8_t id,
|
|
uint32_t timestamp,
|
|
uint16_t duration)
|
|
{
|
|
int32_t dt = timestamp - watchman->last_sync.timestamp;
|
|
|
|
if (dt > watchman->last_sync.duration ||
|
|
watchman->last_sync.duration == 0) {
|
|
watchman->seen_by = 1 << id;
|
|
watchman->last_sync.timestamp = timestamp;
|
|
watchman->last_sync.duration = duration;
|
|
watchman->last_sync.id = id;
|
|
} else {
|
|
watchman->seen_by |= 1 << id;
|
|
if (timestamp < watchman->last_sync.timestamp) {
|
|
watchman->last_sync.duration +=
|
|
watchman->last_sync.timestamp - timestamp;
|
|
watchman->last_sync.timestamp = timestamp;
|
|
}
|
|
if (duration > watchman->last_sync.duration)
|
|
watchman->last_sync.duration = duration;
|
|
watchman->last_sync.duration = duration;
|
|
}
|
|
}
|
|
|
|
void
|
|
lighthouse_watchman_handle_pulse(struct lighthouse_watchman *watchman,
|
|
uint8_t id,
|
|
uint16_t duration,
|
|
uint32_t timestamp)
|
|
{
|
|
int32_t dt;
|
|
|
|
dt = timestamp - watchman->last_sync.timestamp;
|
|
|
|
if (watchman->sync_lock) {
|
|
if (watchman->seen_by && dt > watchman->last_sync.duration) {
|
|
_handle_sync_pulse(watchman, &watchman->last_sync);
|
|
watchman->seen_by = 0;
|
|
}
|
|
|
|
if (pulse_in_this_sync_window(dt, duration) ||
|
|
pulse_in_next_sync_window(dt, duration)) {
|
|
accumulate_sync_pulse(watchman, id, timestamp,
|
|
duration);
|
|
} else if (pulse_in_sweep_window(dt, duration)) {
|
|
_handle_sweep_pulse(watchman, id, timestamp, duration);
|
|
} else {
|
|
/*
|
|
* Spurious pulse - this could be due to a reflection or
|
|
* misdetected sync. If dt > period, drop the sync lock.
|
|
* Maybe we should ignore a single missed sync.
|
|
*/
|
|
if (dt > 407500) {
|
|
watchman->sync_lock = false;
|
|
LH_WARN("%s: late pulse, lost sync",
|
|
watchman->name);
|
|
} else {
|
|
LH_WARN("%s: spurious pulse: %08x (%02x %d %u)",
|
|
watchman->name, timestamp, id, dt,
|
|
duration);
|
|
}
|
|
watchman->seen_by = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* If we've not locked onto the periodic sync signals, try to
|
|
* treat all pulses within the right duration range as potential
|
|
* sync pulses.
|
|
* This is still a bit naive. If the sensors are moved too
|
|
* close to the lighthouse base station, sweep pulse durations
|
|
* may fall into this range and sweeps may be misdetected as
|
|
* sync floods.
|
|
*/
|
|
if (duration >= 2750 && duration <= 6750) {
|
|
/*
|
|
* Decide we've locked on if the pulse falls into any
|
|
* of the expected time windows from the last
|
|
* accumulated sync pulse.
|
|
*/
|
|
if (pulse_in_next_sync_window(dt, duration)) {
|
|
LH_WARN("%s: sync locked", watchman->name);
|
|
watchman->sync_lock = true;
|
|
}
|
|
|
|
accumulate_sync_pulse(watchman, id, timestamp,
|
|
duration);
|
|
} else {
|
|
/* Assume this is a sweep, ignore it until we lock */
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
lighthouse_watchman_init(struct lighthouse_watchman *watchman, const char *name)
|
|
{
|
|
watchman->id = watchman_id++;
|
|
watchman->name = name;
|
|
watchman->seen_by = 0;
|
|
watchman->last_timestamp = 0;
|
|
watchman->last_sync.timestamp = 0;
|
|
watchman->last_sync.duration = 0;
|
|
ll = debug_get_log_option_vive_log();
|
|
}
|