// Copyright 2016, Joey Ferwerda. // Copyright 2019, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief PSVR device implementation, imported from OpenHMD. * @author Joey Ferwerda * @author Philipp Zabel * @author Jakob Bornecrantz * @ingroup drv_psvr */ #include "xrt/xrt_compiler.h" #include "xrt/xrt_tracking.h" #include "os/os_time.h" #include "math/m_api.h" #include "util/u_var.h" #include "util/u_misc.h" #include "util/u_time.h" #include "util/u_debug.h" #include "util/u_device.h" #include "tracking/t_imu.h" #include #include #include #include #include #include "psvr_device.h" #include "psvr_both_uvs.h" /* * * Structs and defines. * */ DEBUG_GET_ONCE_BOOL_OPTION(psvr_disco, "PSVR_DISCO", false) #define FEATURE_BUFFER_SIZE 256 /*! * Private struct for the @ref drv_psvr device. * * @ingroup drv_psvr */ struct psvr_device { struct xrt_device base; hid_device *hmd_handle; hid_device *hmd_control; struct xrt_tracked_psvr *tracker; struct psvr_parsed_sensor last; struct { uint8_t leds[9]; } wants; struct { uint8_t leds[9]; } state; struct { struct xrt_vec3 gyro; struct xrt_vec3 accel; } read; uint16_t buttons; bool powered_on; bool in_vr_mode; bool print_spew; bool print_debug; struct { union { uint8_t data[290]; }; int last_packet; } calibration; struct { bool last_frame; bool control; } gui; #if 0 struct imu_fusion *fusion; #else struct { struct xrt_quat rot; } fusion; #endif }; // Alternative way to turn on all of the leds. XRT_MAYBE_UNUSED static const unsigned char psvr_tracking_on[12] = { 0x11, 0x00, 0xaa, 0x08, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, }; #define PSVR_LED_POWER_OFF ((uint8_t)0x00) #define PSVR_LED_POWER_MAX ((uint8_t)0xff) #define PSVR_LED_POWER_WIRE_OFF ((uint8_t)0) #define PSVR_LED_POWER_WIRE_MAX ((uint8_t)100) enum psvr_leds { PSVR_LED_A = (1 << 0), PSVR_LED_B = (1 << 1), PSVR_LED_C = (1 << 2), PSVR_LED_D = (1 << 3), PSVR_LED_E = (1 << 4), PSVR_LED_F = (1 << 5), PSVR_LED_G = (1 << 6), PSVR_LED_H = (1 << 7), PSVR_LED_I = (1 << 8), PSVR_LED_FRONT = PSVR_LED_A | PSVR_LED_B | PSVR_LED_C | PSVR_LED_D | PSVR_LED_E | PSVR_LED_F | PSVR_LED_G, PSVR_LED_BACK = PSVR_LED_H | PSVR_LED_I, PSVR_LED_ALL = PSVR_LED_FRONT | PSVR_LED_BACK, }; /* * * Helpers and internal functions. * */ static inline struct psvr_device * psvr_device(struct xrt_device *p) { return (struct psvr_device *)p; } static int open_hid(struct psvr_device *p, struct hid_device_info *dev_info, hid_device **out_dev) { hid_device *dev = NULL; int ret; dev = hid_open_path(dev_info->path); if (dev == NULL) { PSVR_ERROR(p, "Failed to open '%s'", dev_info->path); return -1; } ret = hid_set_nonblocking(dev, 1); if (ret != 0) { PSVR_ERROR(p, "Failed to set non-blocking on device"); hid_close(dev); return -1; } *out_dev = dev; return 0; } static int send_to_control(struct psvr_device *psvr, const uint8_t *data, size_t size) { return hid_write(psvr->hmd_control, data, size); } static int send_request_data(struct psvr_device *psvr, int id, int num) { const uint8_t data[12] = { 0x81, 0x00, 0xaa, 0x08, id, num, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; return send_to_control(psvr, data, sizeof(data)); } /* * * Packet reading code. * */ static uint8_t scale_led_power(uint8_t power) { return (uint8_t)((power / 255.0f) * 100.0f); } static void accel_from_psvr_vec(const struct xrt_vec3_i32 *accel, struct xrt_vec3 *out_vec) { out_vec->x = accel->x * (MATH_GRAVITY_M_S2 / 16384.0); out_vec->y = accel->y * (MATH_GRAVITY_M_S2 / 16384.0); out_vec->z = accel->z * (MATH_GRAVITY_M_S2 / 16384.0); } static void gyro_from_psvr_vec(const struct xrt_vec3_i32 *gyro, struct xrt_vec3 *out_vec) { out_vec->x = gyro->x * 0.00105; out_vec->y = gyro->y * 0.00105; out_vec->z = gyro->z * 0.00105; } static void update_fusion(struct psvr_device *psvr, struct psvr_parsed_sample *sample, uint32_t tick_delta) { struct xrt_vec3 mag = {0.0f, 0.0f, 0.0f}; (void)mag; accel_from_psvr_vec(&sample->accel, &psvr->read.accel); gyro_from_psvr_vec(&sample->gyro, &psvr->read.gyro); if (psvr->tracker != NULL) { time_duration_ns delta_ns = tick_delta * (1000000000.0 / PSVR_TICKS_PER_SECOND); struct xrt_tracking_sample sample; sample.accel_m_s2 = psvr->read.accel; sample.gyro_rad_secs = psvr->read.gyro; xrt_tracked_psvr_push_imu(psvr->tracker, delta_ns, &sample); } else { float delta_secs = tick_delta / PSVR_TICKS_PER_SECOND; #if 0 struct xrt_vec3 ident = {0.0f, 1.0f, 0.0f}; struct xrt_vec3 var1 = {0}; struct xrt_vec3 var2 = {0}; imu_fusion_incorporate_gyros_and_accelerometer( psvr->fusion, delta_secs, &psvr->read.gyro, &var1, &psvr->read.accel, 0.0f, &ident, &var2); #else math_quat_integrate_velocity(&psvr->fusion.rot, &psvr->read.gyro, delta_secs, &psvr->fusion.rot); #endif } } static uint32_t calc_delta_and_handle_rollover(uint32_t next, uint32_t last) { uint32_t tick_delta = next - last; // The 24-bit tick counter has rolled over, // adjust the "negative" value to be positive. if (tick_delta > 0xffffff) { tick_delta += 0x1000000; } return tick_delta; } static void handle_tracker_sensor_msg(struct psvr_device *psvr, unsigned char *buffer, int size) { uint32_t last_sample_tick = psvr->last.samples[1].tick; if (!psvr_parse_sensor_packet(&psvr->last, buffer, size)) { PSVR_ERROR(psvr, "couldn't decode tracker sensor message"); } struct psvr_parsed_sensor *s = &psvr->last; // Simplest is the buttons. psvr->buttons = s->buttons; uint32_t tick_delta = 500; // Startup correction, ignore last_sample_tick if zero. if (last_sample_tick > 0) { tick_delta = calc_delta_and_handle_rollover(s->samples[0].tick, last_sample_tick); // The PSVR device can buffer sensor data from previous // sessions which we can get at the start of new sessions. // @todo Maybe just skip the first 10 sensor packets? // @todo Maybe reset sensor fusion? if (tick_delta < 400 || tick_delta > 600) { PSVR_DEBUG(psvr, "tick_delta = %u", tick_delta); tick_delta = 500; } } // Update the fusion with first sample. update_fusion(psvr, &s->samples[0], tick_delta); // New delta between the two samples. tick_delta = calc_delta_and_handle_rollover(s->samples[1].tick, s->samples[0].tick); // Update the fusion with second sample. update_fusion(psvr, &s->samples[1], tick_delta); } static void handle_control_status_msg(struct psvr_device *psvr, unsigned char *buffer, int size) { struct psvr_parsed_status status; if (!psvr_parse_status_packet(&status, buffer, size)) { PSVR_ERROR(psvr, "couldn't decode tracker sensor message"); } /* * Power */ if (status.status & PSVR_STATUS_BIT_POWER) { if (!psvr->powered_on) { PSVR_DEBUG(psvr, "Device powered on! '%02x'", status.status); } psvr->powered_on = true; } else { if (psvr->powered_on) { PSVR_DEBUG(psvr, "Device powered off! '%02x'", status.status); } psvr->powered_on = false; } /* * VR-Mode */ if (status.vr_mode == PSVR_STATUS_VR_MODE_OFF) { if (psvr->in_vr_mode) { PSVR_DEBUG(psvr, "Device not in vr-mode! '%02x'", status.vr_mode); } psvr->in_vr_mode = false; } else if (status.vr_mode == PSVR_STATUS_VR_MODE_ON) { if (!psvr->in_vr_mode) { PSVR_DEBUG(psvr, "Device in vr-mode! '%02x'", status.vr_mode); } psvr->in_vr_mode = true; } else { PSVR_ERROR(psvr, "Unknown vr_mode status!"); } } static void handle_device_name_msg(struct psvr_device *psvr, unsigned char *buffer, int size) { //! @todo Get the name here. } static void handle_calibration_msg(struct psvr_device *psvr, unsigned char *buffer, size_t size) { const size_t data_start = 6; const size_t data_length = 58; const size_t packet_length = data_start + data_length; if (size != packet_length) { PSVR_ERROR(psvr, "invalid calibration packet length"); return; } size_t which = buffer[1]; size_t dst = data_length * which; for (size_t src = data_start; src < size; src++, dst++) { psvr->calibration.data[dst] = buffer[src]; } psvr->calibration.last_packet = which; } static void handle_control_0xA0(struct psvr_device *psvr, unsigned char *buffer, int size) { if (size < 4) { return; } PSVR_DEBUG(psvr, "%02x %02x %02x %02x", buffer[0], buffer[1], buffer[2], buffer[3]); } static int read_handle_packets(struct psvr_device *psvr) { uint8_t buffer[FEATURE_BUFFER_SIZE]; int size = 0; do { size = hid_read(psvr->hmd_handle, buffer, FEATURE_BUFFER_SIZE); if (size == 0) { return 0; } if (size < 0) { return -1; } handle_tracker_sensor_msg(psvr, buffer, size); } while (true); } static int read_control_packets(struct psvr_device *psvr) { uint8_t buffer[FEATURE_BUFFER_SIZE]; int size = 0; do { size = hid_read(psvr->hmd_control, buffer, FEATURE_BUFFER_SIZE); if (size == 0) { return 0; } if (size < 0) { return -1; } if (buffer[0] == PSVR_PKG_STATUS) { handle_control_status_msg(psvr, buffer, size); } else if (buffer[0] == PSVR_PKG_DEVICE_NAME) { handle_device_name_msg(psvr, buffer, size); } else if (buffer[0] == PSVR_PKG_CALIBRATION) { handle_calibration_msg(psvr, buffer, size); } else if (buffer[0] == PSVR_PKG_0xA0) { handle_control_0xA0(psvr, buffer, size); } else { PSVR_DEBUG(psvr, "Got report, 0x%02x", buffer[0]); } } while (true); } static int read_calibration_data(struct psvr_device *psvr) { // Request the device name. int ret = send_request_data(psvr, 0x80, 0); if (ret < 0) { return ret; } for (int i = 0; i < 5; i++) { // Request the IMU calibration data. ret = send_request_data(psvr, 0x86, i); if (ret < 0) { return ret; } } for (int i = 0; i < 100; i++) { os_nanosleep(1000 * 1000); read_control_packets(psvr); // Check if we got the packet. if (psvr->calibration.last_packet == 4) { break; } } if (psvr->calibration.last_packet != 4) { PSVR_ERROR(psvr, "Failed to get calibration"); return -1; } #if 0 for (size_t i = 0; i < sizeof(psvr->calibration.data); i++) { fprintf(stderr, "%02x ", psvr->calibration.data[i]); } fprintf(stderr, "\n"); int *data = (int*)&psvr->calibration.data[0]; for (size_t i = 0; i < (sizeof(psvr->calibration.data) / 4); i++) { int v = data[i]; fprintf(stderr, "%i %f\n", v, *(float*)&v); } #endif return 0; } /* * * Control sending functions. * */ static int wait_for_power(struct psvr_device *psvr, bool on) { for (int i = 0; i < 5000; i++) { read_handle_packets(psvr); read_control_packets(psvr); if (psvr->powered_on == on) { return 0; } os_nanosleep(1000 * 1000); } return -1; } static int wait_for_vr_mode(struct psvr_device *psvr, bool on) { for (int i = 0; i < 5000; i++) { read_handle_packets(psvr); read_control_packets(psvr); if (psvr->in_vr_mode == on) { return 0; } os_nanosleep(1000 * 1000); } return -1; } static int control_power_and_wait(struct psvr_device *psvr, bool on) { const char *status = on ? "on" : "off"; const uint8_t data[8] = { 0x17, 0x00, 0xaa, 0x04, on, 0x00, 0x00, 0x00, }; int ret = send_to_control(psvr, data, sizeof(data)); if (ret < 0) { PSVR_ERROR(psvr, "Failed to switch %s the headset! '%i'", status, ret); } ret = wait_for_power(psvr, on); if (ret < 0) { PSVR_ERROR(psvr, "Failed to wait for headset power %s! '%i'", status, ret); return ret; } return ret; } static int control_vrmode_and_wait(struct psvr_device *psvr, bool on) { const uint8_t data[8] = { 0x23, 0x00, 0xaa, 0x04, on, 0x00, 0x00, 0x00, }; int ret; ret = send_to_control(psvr, data, sizeof(data)); if (ret < 0) { PSVR_ERROR(psvr, "Failed %s vr-mode the headset! '%i'", on ? "enable" : "disable", ret); return ret; } ret = wait_for_vr_mode(psvr, on); if (ret < 0) { PSVR_ERROR(psvr, "Failed to wait for vr mode! '%i'", ret); return ret; } return 0; } static int update_leds_if_changed(struct psvr_device *psvr) { if (memcmp(psvr->wants.leds, psvr->state.leds, sizeof(psvr->state.leds)) == 0) { return 0; } memcpy(psvr->state.leds, psvr->wants.leds, sizeof(psvr->state.leds)); uint8_t data[20] = { 0x15, 0x00, 0xaa, 0x10, (uint8_t)PSVR_LED_ALL, (uint8_t)(PSVR_LED_ALL >> 8), scale_led_power(psvr->state.leds[0]), scale_led_power(psvr->state.leds[1]), scale_led_power(psvr->state.leds[2]), scale_led_power(psvr->state.leds[3]), scale_led_power(psvr->state.leds[4]), scale_led_power(psvr->state.leds[5]), scale_led_power(psvr->state.leds[6]), scale_led_power(psvr->state.leds[7]), scale_led_power(psvr->state.leds[8]), 0, 0, 0, 0, 0, }; return send_to_control(psvr, data, sizeof(data)); } /*! * Control the leds on the headset, allowing you to turn on and off different * leds with a single call. * * @param[in] psvr The PSVR to control leds on. * @param[in] adjust The leds to adjust with @p power. * @param[in] power The power level to give to @p adjust leds. * @param[in] off Leds that should be turned off, * @p adjust has higher priority. * @ingroup drv_psvr */ static int control_leds(struct psvr_device *psvr, enum psvr_leds adjust, uint8_t power, enum psvr_leds off) { // Get the leds we should control and remove any extra bits. enum psvr_leds all = (enum psvr_leds)((adjust | off) & PSVR_LED_ALL); if (all == 0) { // Nothing todo. return 0; } for (uint32_t i = 0; i < ARRAY_SIZE(psvr->wants.leds); i++) { uint32_t mask = (1 << i); if (adjust & mask) { psvr->wants.leds[i] = power; } if (off & mask) { psvr->wants.leds[i] = 0x00; } } return update_leds_if_changed(psvr); } static int disco_leds(struct psvr_device *psvr) { static const uint16_t leds[] = { // First loop PSVR_LED_A, PSVR_LED_E, PSVR_LED_B, PSVR_LED_G, PSVR_LED_D, PSVR_LED_C, PSVR_LED_F, // Second loop PSVR_LED_A, PSVR_LED_E, PSVR_LED_B, PSVR_LED_G, PSVR_LED_D, PSVR_LED_C, PSVR_LED_F, // Blink loop PSVR_LED_BACK, PSVR_LED_FRONT, PSVR_LED_BACK, PSVR_LED_FRONT, // All on after loop PSVR_LED_ALL, }; for (size_t i = 0; i < ARRAY_SIZE(leds); i++) { int ret = control_leds(psvr, (enum psvr_leds)leds[i], PSVR_LED_POWER_MAX, PSVR_LED_ALL); if (ret < 0) { return ret; } // Sleep for a tenth of a second while polling for packages. for (int k = 0; k < 100; k++) { ret = read_handle_packets(psvr); if (ret < 0) { return ret; } ret = read_control_packets(psvr); if (ret < 0) { return ret; } os_nanosleep(1000 * 1000); } } return 0; } static void teardown(struct psvr_device *psvr) { // Stop the variable tracking. u_var_remove_root(psvr); // Includes null check, and sets to null. xrt_tracked_psvr_destroy(&psvr->tracker); if (psvr->hmd_control != NULL) { // Turn off VR-mode and power down headset. if (control_vrmode_and_wait(psvr, false) < 0 || control_power_and_wait(psvr, false) < 0) { PSVR_ERROR(psvr, "Failed to shut down the headset!"); } hid_close(psvr->hmd_control); psvr->hmd_control = NULL; } if (psvr->hmd_handle != NULL) { hid_close(psvr->hmd_handle); psvr->hmd_handle = NULL; } } /* * * xrt_device functions. * */ static void psvr_device_update_inputs(struct xrt_device *xdev, struct time_state *timekeeping) { struct psvr_device *psvr = psvr_device(xdev); read_handle_packets(psvr); update_leds_if_changed(psvr); } static void psvr_device_get_tracked_pose(struct xrt_device *xdev, enum xrt_input_name name, struct time_state *timekeeping, int64_t *out_timestamp, struct xrt_space_relation *out_relation) { struct psvr_device *psvr = psvr_device(xdev); if (name != XRT_INPUT_GENERIC_HEAD_POSE) { PSVR_ERROR(psvr, "unknown input name"); return; } // Read all packets. read_handle_packets(psvr); read_control_packets(psvr); // Clear out the relation. U_ZERO(out_relation); int64_t when = time_state_get_now(timekeeping); *out_timestamp = when; // We have no tracking, don't return a position. if (psvr->tracker == NULL) { #if 0 struct xrt_vec3 ang_vel = {0}; imu_fusion_get_prediction(psvr->fusion, 0.0f, &out_relation->pose.orientation, &ang_vel); #else out_relation->pose.orientation = psvr->fusion.rot; #endif out_relation->relation_flags = (enum xrt_space_relation_flags)( XRT_SPACE_RELATION_ORIENTATION_VALID_BIT | XRT_SPACE_RELATION_ORIENTATION_TRACKED_BIT); } else { psvr->tracker->get_tracked_pose(psvr->tracker, timekeeping, when, out_relation); } } static void psvr_device_get_view_pose(struct xrt_device *xdev, struct xrt_vec3 *eye_relation, uint32_t view_index, struct xrt_pose *out_pose) { struct xrt_pose pose = {{0.0f, 0.0f, 0.0f, 1.0f}, {0.0f, 0.0f, 0.0f}}; bool adjust = view_index == 0; pose.position.x = eye_relation->x / 2.0f; pose.position.y = eye_relation->y / 2.0f; pose.position.z = eye_relation->z / 2.0f; // Adjust for left/right while also making sure there aren't any -0.f. if (pose.position.x > 0.0f && adjust) { pose.position.x = -pose.position.x; } if (pose.position.y > 0.0f && adjust) { pose.position.y = -pose.position.y; } if (pose.position.z > 0.0f && adjust) { pose.position.z = -pose.position.z; } *out_pose = pose; } static void psvr_device_destroy(struct xrt_device *xdev) { struct psvr_device *psvr = psvr_device(xdev); teardown(psvr); free(psvr); } /* * * Exported functions. * */ struct xrt_device * psvr_device_create(struct hid_device_info *hmd_handle_info, struct hid_device_info *hmd_control_info, struct xrt_prober *xp, bool print_spew, bool print_debug) { enum u_device_alloc_flags flags = (enum u_device_alloc_flags)( U_DEVICE_ALLOC_HMD | U_DEVICE_ALLOC_TRACKING_NONE); struct psvr_device *psvr = U_DEVICE_ALLOCATE(struct psvr_device, flags, 1, 0); int ret; psvr->print_spew = print_spew; psvr->print_debug = print_debug; psvr->base.update_inputs = psvr_device_update_inputs; psvr->base.get_tracked_pose = psvr_device_get_tracked_pose; psvr->base.get_view_pose = psvr_device_get_view_pose; psvr->base.destroy = psvr_device_destroy; psvr->base.inputs[0].name = XRT_INPUT_GENERIC_HEAD_POSE; psvr->base.name = XRT_DEVICE_GENERIC_HMD; psvr->base.hmd->distortion.models = XRT_DISTORTION_MODEL_MESHUV; psvr->base.hmd->distortion.preferred = XRT_DISTORTION_MODEL_MESHUV; psvr->base.hmd->distortion.mesh.data = &psvr_both_uvs[0]; psvr->base.hmd->distortion.mesh.stride = sizeof(float) * 8; psvr->base.hmd->distortion.mesh.num_uv_channels = 3; psvr->base.hmd->distortion.mesh.num_vertex = ARRAY_SIZE(psvr_both_uvs) / 8; #if 0 psvr->fusion = imu_fusion_create(); #else psvr->fusion.rot.w = 1.0f; #endif snprintf(psvr->base.str, XRT_DEVICE_NAME_LEN, "PS VR Headset"); ret = open_hid(psvr, hmd_handle_info, &psvr->hmd_handle); if (ret != 0) { goto cleanup; } ret = open_hid(psvr, hmd_control_info, &psvr->hmd_control); if (ret < 0) { goto cleanup; } if (control_power_and_wait(psvr, true) < 0 || control_vrmode_and_wait(psvr, true) < 0) { goto cleanup; } // Device is now on and we can read calibration data now. ret = read_calibration_data(psvr); if (ret < 0) { goto cleanup; } if (debug_get_bool_option_psvr_disco()) { ret = disco_leds(psvr); } else { ret = control_leds(psvr, PSVR_LED_ALL, PSVR_LED_POWER_MAX, (enum psvr_leds)0); } if (ret < 0) { PSVR_ERROR(psvr, "Failed to control leds '%i'", ret); goto cleanup; } /* * Device setup. */ struct u_device_simple_info info; info.display.w_pixels = 1920; info.display.h_pixels = 1080; info.display.w_meters = 0.126; // from calculated specs info.display.h_meters = 0.068; info.lens_horizontal_separation_meters = 0.062f; info.lens_vertical_position_meters = 0.07 / 2.0f; // 94899882f; info.views[0].fov = 96.0f * (M_PI / 180.0f); info.views[1].fov = 96.0f * (M_PI / 180.0f); if (!u_device_setup_split_side_by_side(&psvr->base, &info)) { PSVR_ERROR(psvr, "Failed to setup basic device info"); goto cleanup; } /* * Setup variable. */ // clang-format off u_var_add_root(psvr, "PS VR Headset", true); u_var_add_gui_header(psvr, &psvr->gui.last_frame, "Last data"); u_var_add_ro_vec3_i32(psvr, &psvr->last.samples[0].accel, "last.samples[0].accel"); u_var_add_ro_vec3_i32(psvr, &psvr->last.samples[1].accel, "last.samples[1].accel"); u_var_add_ro_vec3_i32(psvr, &psvr->last.samples[0].gyro, "last.samples[0].gyro"); u_var_add_ro_vec3_i32(psvr, &psvr->last.samples[1].gyro, "last.samples[1].gyro"); u_var_add_ro_vec3_f32(psvr, &psvr->read.accel, "read.accel"); u_var_add_ro_vec3_f32(psvr, &psvr->read.gyro, "read.gyro"); u_var_add_gui_header(psvr, &psvr->gui.control, "Control"); u_var_add_u8(psvr, &psvr->wants.leds[0], "Led A"); u_var_add_u8(psvr, &psvr->wants.leds[1], "Led B"); u_var_add_u8(psvr, &psvr->wants.leds[2], "Led C"); u_var_add_u8(psvr, &psvr->wants.leds[3], "Led D"); u_var_add_u8(psvr, &psvr->wants.leds[4], "Led E"); u_var_add_u8(psvr, &psvr->wants.leds[5], "Led F"); u_var_add_u8(psvr, &psvr->wants.leds[6], "Led G"); u_var_add_u8(psvr, &psvr->wants.leds[7], "Led H"); u_var_add_u8(psvr, &psvr->wants.leds[8], "Led I"); u_var_add_bool(psvr, &psvr->print_debug, "Debug"); u_var_add_bool(psvr, &psvr->print_spew, "Spew"); // clang-format on /* * Finishing touches. */ if (psvr->print_debug) { u_device_dump_config(&psvr->base, __func__, "Sony PSVR"); } // If there is a tracking factory use it. if (xp->tracking != NULL) { xp->tracking->create_tracked_psvr(xp->tracking, &psvr->base, &psvr->tracker); } // Use the new origin if we got a tracking system. if (psvr->tracker != NULL) { psvr->base.tracking_origin = psvr->tracker->origin; } PSVR_DEBUG(psvr, "YES!"); return &psvr->base; cleanup: PSVR_DEBUG(psvr, "NO! :("); teardown(psvr); free(psvr); return NULL; }