// Copyright 2019, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief Calibration code. * @author Pete Black * @author Jakob Bornecrantz * @ingroup aux_tracking */ #include "util/u_sink.h" #include "util/u_misc.h" #include "util/u_debug.h" #include "util/u_frame.h" #include "util/u_format.h" #include "tracking/t_tracking.h" #include #include "tracking/t_calibration_opencv.h" #include DEBUG_GET_ONCE_BOOL_OPTION(hsv_filter, "T_DEBUG_HSV_FILTER", false) DEBUG_GET_ONCE_BOOL_OPTION(hsv_picker, "T_DEBUG_HSV_PICKER", false) DEBUG_GET_ONCE_BOOL_OPTION(hsv_viewer, "T_DEBUG_HSV_VIEWER", false) // we will use a number of samples spread across the frame // to ensure a good calibration. must be > 9 #define CALIBRATION_SAMPLES 15 // set up our calibration rectangles, we will collect 9 chessboard samples // that 'fill' these rectangular regions to get good coverage #define COVERAGE_X 0.8f #define COVERAGE_Y 0.8f static cv::Rect2f calibration_rect[] = { cv::Rect2f( (1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f, 0.3f, 0.3f), }; /* * * Structs * */ //! Model of the thing we are measuring to calibrate. typedef std::vector Model; //! A measurement of the model as viewed on the camera. typedef std::vector Measurement; //! For each @ref Measurement we take we also save the @ref Model. typedef std::vector ArrayOfModels; //! A array of @ref Measurement. typedef std::vector ArrayOfMeasurements; /*! * Current state for each view, one view for mono cameras, two for stereo. */ struct ViewState { ArrayOfMeasurements measured = {}; cv::Mat current = {}; cv::Rect brect; cv::Rect pre_rect; cv::Rect post_rect; }; /*! * Main class for doing calibration. */ class Calibration { public: struct xrt_frame_sink base = {}; struct { cv::Mat rgb = {}; struct xrt_frame *frame = {}; struct xrt_frame_sink *sink = {}; } gui; Model chessboard_model; cv::Size chessboard_size; struct { ViewState view[2] = {}; ArrayOfModels chessboard_models; uint32_t calibration_count; bool calibrated; uint32_t waited_for; uint32_t collected_of_part; } state; //! Should we use subpixel enhancing for checkerboard. bool subpixel_enable = true; //! What subpixel range for checkerboard enhancement. int subpixel_size = 5; //! Number of frames to wait for before collecting. uint32_t num_wait_for; //! Total number of samples to collect. uint32_t num_collect_total; //! Number of frames to capture before restarting. uint32_t num_collect_restart; bool clear_frame = false; cv::Mat grey; char text[512]; }; /* * * Small helpers. * */ static void refresh_gui_frame(class Calibration &c, int rows, int cols) { // Also dereferences the old frame. u_frame_create_one_off(XRT_FORMAT_R8G8B8, cols, rows, &c.gui.frame); c.gui.rgb = cv::Mat(rows, cols, CV_8UC3, c.gui.frame->data, c.gui.frame->stride); } static void send_rgb_frame(class Calibration &c) { c.gui.sink->push_frame(c.gui.sink, c.gui.frame); refresh_gui_frame(c, c.gui.rgb.rows, c.gui.rgb.cols); } static void ensure_buffers_are_allocated(class Calibration &c, int rows, int cols) { if (c.gui.rgb.cols == cols && c.gui.rgb.rows == rows) { return; } c.grey = cv::Mat(rows, cols, CV_8UC1, cv::Scalar(0)); refresh_gui_frame(c, rows, cols); } static void print_txt(cv::Mat &rgb, const char *text, double fontScale) { int fontFace = 0; int thickness = 2; cv::Size textSize = cv::getTextSize(text, fontFace, fontScale, thickness, NULL); cv::Point textOrg((rgb.cols - textSize.width) / 2, textSize.height * 2); cv::putText(rgb, text, textOrg, fontFace, fontScale, cv::Scalar(192, 192, 192), thickness); } static void make_gui_str(class Calibration &c) { auto &rgb = c.gui.rgb; int cols = 800; int rows = 100; ensure_buffers_are_allocated(c, rows, cols); cv::rectangle(rgb, cv::Point2f(0, 0), cv::Point2f(cols, rows), cv::Scalar(0, 0, 0), -1, 0); print_txt(rgb, c.text, 1.0); send_rgb_frame(c); } /*! * Simple helper to draw a bounding rect. */ static void draw_rect(cv::Mat &rgb, const cv::Rect &rect, const cv::Scalar &colour) { cv::rectangle(rgb, rect.tl(), rect.br(), colour); } static bool do_view(class Calibration &c, struct ViewState &view, cv::Mat &grey, cv::Mat &rgb) { int flags = 0; flags += cv::CALIB_CB_FAST_CHECK; flags += cv::CALIB_CB_ADAPTIVE_THRESH; flags += cv::CALIB_CB_NORMALIZE_IMAGE; bool found = cv::findChessboardCorners(grey, // Image c.chessboard_size, // patternSize view.current, // corners flags); // flags // Compute our 'pre sample' coverage for this frame, // for display and area threshold checking. std::vector coverage; for (uint32_t i = 0; i < view.measured.size(); i++) { cv::Rect brect = cv::boundingRect(view.measured[i]); draw_rect(rgb, brect, cv::Scalar(0, 64, 32)); coverage.push_back(cv::Point2f(brect.tl())); coverage.push_back(cv::Point2f(brect.br())); } // What area of the camera have we calibrated. view.pre_rect = cv::boundingRect(coverage); draw_rect(rgb, view.pre_rect, cv::Scalar(0, 255, 255)); if (found) { view.brect = cv::boundingRect(view.current); coverage.push_back(cv::Point2f(view.brect.tl())); coverage.push_back(cv::Point2f(view.brect.br())); // New area we cover. view.post_rect = cv::boundingRect(coverage); draw_rect(rgb, view.post_rect, cv::Scalar(0, 255, 0)); } // Improve the corner positions. if (found && c.subpixel_enable) { cv::TermCriteria tcrit(cv::TermCriteria::Type::COUNT + cv::TermCriteria::Type::EPS, 30, 0.1); cv::Size size(c.subpixel_size, c.subpixel_size); cv::Size zero(-1, -1); cv::cornerSubPix(grey, view.current, size, zero, tcrit); } // Draw the checker board, will also draw partial hits. cv::drawChessboardCorners(rgb, c.chessboard_size, view.current, found); return found; } /* * * Stereo calibration * */ #define P(...) snprintf(c.text, sizeof(c.text), __VA_ARGS__) static void process_stereo_samples(class Calibration &c, int cols, int rows) { c.state.calibrated = true; cv::Size image_size(cols, rows); cv::Size new_image_size(cols, rows); CalibrationRawData raw = {}; assert(raw.isDataStorageValid()); raw.image_size_pixels.w = image_size.width; raw.image_size_pixels.h = image_size.height; raw.new_image_size_pixels.w = new_image_size.width; raw.new_image_size_pixels.h = new_image_size.height; // TODO: handle both fisheye and normal cameras -right // now I only have the normal, for the PS4 camera #if 0 float rp_error = cv::fisheye::stereoCalibrate( internal->chessboard_models, internal->l_measured, internal->r_measured, l_intrinsics, l_distortion_fisheye, r_intrinsics, r_distortion_fisheye, image_size, camera_rotation, camera_translation, cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC); #endif // non-fisheye version float rp_error = cv::stereoCalibrate(c.state.chessboard_models, // objectPoints c.state.view[0].measured, // inagePoints1 c.state.view[1].measured, // imagePoints2, raw.l_intrinsics_mat, // cameraMatrix1 raw.l_distortion_mat, // distCoeffs1 raw.r_intrinsics_mat, // cameraMatrix2 raw.r_distortion_mat, // distCoeffs2 image_size, // imageSize raw.camera_rotation_mat, // R raw.camera_translation_mat, // T raw.camera_essential_mat, // E raw.camera_fundamental_mat, // F 0); // flags assert(raw.camera_rotation_mat.size() == cv::Size(3, 3)); assert(raw.camera_translation_mat.size() == cv::Size(1, 3)); assert(raw.camera_essential_mat.size() == cv::Size(3, 3)); assert(raw.camera_fundamental_mat.size() == cv::Size(3, 3)); // We currently don't change the image size or remove invalid pixels. cv::stereoRectify(raw.l_intrinsics_mat, // cameraMatrix1 cv::noArray(), // distCoeffs1 raw.r_intrinsics_mat, // cameraMatrix2 cv::noArray(), // distCoeffs2 image_size, // imageSize raw.camera_rotation_mat, // R raw.camera_translation_mat, // T raw.l_rotation_mat, // R1 raw.r_rotation_mat, // R2 raw.l_projection_mat, // P1 raw.r_projection_mat, // P2 raw.disparity_to_depth_mat, // Q cv::CALIB_ZERO_DISPARITY, // flags -1, // alpha new_image_size, // newImageSize NULL, // validPixROI1 NULL); // validPixROI2 // Validate that nothing has been re-allocated. assert(raw.isDataStorageValid()); P("CALIBRATION DONE RP ERROR %f", rp_error); // clang-format off std::cout << "calibration rp_error: " << rp_error << "\n"; std::cout << "camera_rotation:\n" << raw.camera_rotation_mat << "\n"; std::cout << "camera_translation:\n" << raw.camera_translation_mat << "\n"; std::cout << "camera_essential:\n" << raw.camera_essential_mat << "\n"; std::cout << "camera_fundamental:\n" << raw.camera_fundamental_mat << "\n"; // clang-format on t_file_save_raw_data_hack(&raw); } /*! * Make a mono frame. */ static void make_calibration_frame_mono(class Calibration &c) { auto &rgb = c.gui.rgb; auto &grey = c.grey; bool found = do_view(c, c.state.view[0], grey, rgb); (void)found; int num = (int)c.state.chessboard_models.size(); int of = c.num_collect_total; P("(%i/%i) SHOW CHESSBOARD", num, of); // Poor mans goto. do { if (!found) { c.state.waited_for = c.num_wait_for; c.state.collected_of_part = 0; break; } if (c.state.waited_for > 0) { P("(%i/%i) WAITING %i FRAMES", num, of, c.state.waited_for); c.state.waited_for--; break; } if (c.state.collected_of_part >= c.num_collect_restart) { c.state.waited_for = c.num_wait_for * 2; c.state.collected_of_part = 0; break; } c.state.chessboard_models.push_back(c.chessboard_model); c.state.view[0].measured.push_back(c.state.view[0].current); c.state.collected_of_part++; P("(%i/%i) COLLECTED #%i", num, of, c.state.collected_of_part); } while (false); // Draw text and finally send the frame off. print_txt(rgb, c.text, 1.5); send_rgb_frame(c); } /*! * Make a stereo frame side by side. */ static void make_calibration_frame_sbs(class Calibration &c) { auto &rgb = c.gui.rgb; auto &grey = c.grey; int cols = rgb.cols / 2; int rows = rgb.rows; // Split left and right eyes, don't make any copies. cv::Mat l_grey(rows, cols, CV_8UC1, grey.data, grey.cols); cv::Mat r_grey(rows, cols, CV_8UC1, grey.data + cols, grey.cols); cv::Mat l_rgb(rows, cols, CV_8UC3, c.gui.frame->data, c.gui.frame->stride); cv::Mat r_rgb(rows, cols, CV_8UC3, c.gui.frame->data + 3 * cols, c.gui.frame->stride); bool found_left = do_view(c, c.state.view[0], l_grey, l_rgb); bool found_right = do_view(c, c.state.view[1], r_grey, r_rgb); // Draw our current calibration guide box. cv::Point2f bound_tl = calibration_rect[c.state.calibration_count].tl(); bound_tl.x *= cols; bound_tl.y *= rows; cv::Point2f bound_br = calibration_rect[c.state.calibration_count].br(); bound_br.x *= cols; bound_br.y *= rows; // Draw the target rect last so it is the most visible. cv::rectangle(c.gui.rgb, bound_tl, bound_br, cv::Scalar(255, 0, 0)); // If we have a valid sample (left and right). if (found_left && found_right) { cv::Rect brect = c.state.view[0].brect; cv::Rect pre_rect = c.state.view[0].pre_rect; cv::Rect post_rect = c.state.view[0].post_rect; /* * Determine if we should add this sample to our list. Either we * are still taking the first 9 samples and the chessboard is in * the box, or we have exceeded 9 samples and now want to 'push * out the edges'. */ bool add_sample = false; int coverage_threshold = cols * 0.3f * rows * 0.3f; if (c.state.calibration_count < 9 && brect.tl().x >= bound_tl.x && brect.tl().y >= bound_tl.y && brect.br().x <= bound_br.x && brect.br().y <= bound_br.y) { add_sample = true; } if (c.state.calibration_count >= 9 && brect.area() > coverage_threshold && post_rect.area() > pre_rect.area() + coverage_threshold / 5) { add_sample = true; } if (add_sample) { c.state.chessboard_models.push_back(c.chessboard_model); c.state.view[0].measured.push_back( c.state.view[0].current); c.state.view[1].measured.push_back( c.state.view[1].current); c.state.calibration_count++; printf("SAMPLE: %ld\n", c.state.view[0].measured.size()); } } // Are we done or do we need to inform the user what they should do. if (c.state.calibration_count >= CALIBRATION_SAMPLES) { process_stereo_samples(c, cols, rows); } else if (c.state.calibration_count < 9) { P("POSITION CHESSBOARD IN BOX"); } else { P("TRY TO 'PUSH OUT EDGES' WITH LARGE BOARD IMAGES"); } // Draw text and finally send the frame off. print_txt(rgb, c.text, 1.5); send_rgb_frame(c); } /* * * Main functions. * */ XRT_NO_INLINE static void process_frame_yuv(class Calibration &c, struct xrt_frame *xf) { int w = (int)xf->width; int h = (int)xf->height; cv::Mat data(h, w, CV_8UC3, xf->data, xf->stride); ensure_buffers_are_allocated(c, data.rows, data.cols); c.gui.frame->source_sequence = xf->source_sequence; cv::cvtColor(data, c.gui.rgb, cv::COLOR_YUV2RGB); cv::cvtColor(c.gui.rgb, c.grey, cv::COLOR_RGB2GRAY); } XRT_NO_INLINE static void process_frame_yuyv(class Calibration &c, struct xrt_frame *xf) { /* * Cleverly extract the different channels. * Cr/Cb are extracted at half width. */ int w = (int)xf->width; int h = (int)xf->height; cv::Mat data_full(h, w, CV_8UC2, xf->data, xf->stride); ensure_buffers_are_allocated(c, data_full.rows, data_full.cols); c.gui.frame->source_sequence = xf->source_sequence; cv::cvtColor(data_full, c.gui.rgb, cv::COLOR_YUV2RGB_YUYV); cv::cvtColor(data_full, c.grey, cv::COLOR_YUV2GRAY_YUYV); } /* * * Interface functions. * */ extern "C" void t_calibration_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf) { auto &c = *(class Calibration *)xsink; // Fill both c.gui.rgb and c.grey with the data we got. switch (xf->format) { case XRT_FORMAT_YUV888: process_frame_yuv(c, xf); break; case XRT_FORMAT_YUV422: process_frame_yuyv(c, xf); break; default: P("ERROR: Bad format '%s'", u_format_str(xf->format)); make_gui_str(c); return; } // Don't do anything if we are done. if (c.state.calibrated) { print_txt(c.gui.rgb, c.text, 1.5); send_rgb_frame(c); return; } // Clear our gui frame. if (c.clear_frame) { cv::rectangle(c.gui.rgb, cv::Point2f(0, 0), cv::Point2f(c.gui.rgb.cols, c.gui.rgb.rows), cv::Scalar(0, 0, 0), -1, 0); } switch (xf->stereo_format) { case XRT_STEREO_FORMAT_SBS: make_calibration_frame_sbs(c); break; case XRT_STEREO_FORMAT_NONE: make_calibration_frame_mono(c); break; default: P("ERROR: Unknown stereo format! '%i'", xf->stereo_format); make_gui_str(c); return; } } /* * * Exported functions. * */ extern "C" int t_calibration_stereo_create(struct xrt_frame_context *xfctx, struct t_calibration_params *params, struct xrt_frame_sink *gui, struct xrt_frame_sink **out_sink) { auto &c = *(new Calibration()); c.gui.sink = gui; c.base.push_frame = t_calibration_frame; c.subpixel_enable = params->subpixel_enable; c.subpixel_size = params->subpixel_size; c.num_wait_for = params->num_wait_for; c.num_collect_total = params->num_collect_total; c.num_collect_restart = params->num_collect_restart; *out_sink = &c.base; P("Waiting for camera"); make_gui_str(c); int ret = 0; if (debug_get_bool_option_hsv_filter()) { ret = t_debug_hsv_filter_create(xfctx, *out_sink, out_sink); } if (debug_get_bool_option_hsv_picker()) { ret = t_debug_hsv_picker_create(xfctx, *out_sink, out_sink); } if (debug_get_bool_option_hsv_viewer()) { ret = t_debug_hsv_viewer_create(xfctx, *out_sink, out_sink); } // Ensure we only get yuv or yuyv frames. u_sink_create_to_yuv_or_yuyv(xfctx, *out_sink, out_sink); int cross_cols_num = params->checker_cols_num - 1; int cross_rows_num = params->checker_rows_num - 1; int num_crosses = cross_cols_num * cross_rows_num; c.chessboard_size = cv::Size(cross_cols_num, cross_rows_num); for (int i = 0; i < num_crosses; i++) { float x = (i / cross_cols_num) * params->checker_size_meters; float y = (i % cross_cols_num) * params->checker_size_meters; cv::Point3f p(x, y, 0.0f); c.chessboard_model.push_back(p); } return ret; }