// Copyright 2019, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief Calibration code. * @author Pete Black * @author Jakob Bornecrantz */ #include "util/u_sink.h" #include "util/u_misc.h" #include "util/u_debug.h" #include "util/u_frame.h" #include "util/u_format.h" #include "tracking/t_tracking.h" #include #include "tracking/t_calibration_opencv.h" #include DEBUG_GET_ONCE_BOOL_OPTION(hsv_filter, "T_DEBUG_HSV_FILTER", false) DEBUG_GET_ONCE_BOOL_OPTION(hsv_picker, "T_DEBUG_HSV_PICKER", false) DEBUG_GET_ONCE_BOOL_OPTION(hsv_viewer, "T_DEBUG_HSV_VIEWER", false) // calibration chessboard size - 7x9 'blocks' - the count // of rows and cols refer to 'internal intersections' #define CHESSBOARD_ROWS 6 #define CHESSBOARD_COLS 8 // we will use a number of samples spread across the frame // to ensure a good calibration. must be > 9 #define CALIBRATION_SAMPLES 15 // set up our calibration rectangles, we will collect 9 chessboard samples // that 'fill' these rectangular regions to get good coverage #define COVERAGE_X 0.8f #define COVERAGE_Y 0.8f static cv::Rect2f calibration_rect[] = { cv::Rect2f( (1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f, 0.3f, 0.3f), cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f, (1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f, 0.3f, 0.3f), }; /* * * Structs * */ struct ViewState { std::vector> measured = {}; cv::Mat current = {}; cv::Rect brect; cv::Rect pre_rect; cv::Rect post_rect; }; class Calibration { public: struct xrt_frame_sink base = {}; struct { cv::Mat rgb = {}; struct xrt_frame *frame = {}; struct xrt_frame_sink *sink = {}; } gui; std::vector chessboard_model; cv::Size chessboard_size; struct { ViewState view[2] = {}; std::vector> chessboards_model; uint32_t calibration_count; bool calibrated; } state; bool clear_frame = false; cv::Mat grey; char text[512]; }; /*! * Holds `cv::Mat`s used during frame processing when processing a yuyv frame. */ struct t_frame_yuyv { public: //! Full frame size, each block is split across two cols. cv::Mat data_full = {}; //! Half horizontal width covering a complete block of two pixels. cv::Mat data_half = {}; }; /* * * Small helpers. * */ static void refresh_gui_frame(class Calibration &c, int rows, int cols) { // Also dereferences the old frame. u_frame_create_one_off(XRT_FORMAT_R8G8B8, cols, rows, &c.gui.frame); c.gui.rgb = cv::Mat(rows, cols, CV_8UC3, c.gui.frame->data, c.gui.frame->stride); } static void send_rgb_frame(class Calibration &c) { c.gui.sink->push_frame(c.gui.sink, c.gui.frame); refresh_gui_frame(c, c.gui.rgb.rows, c.gui.rgb.cols); } static void ensure_buffers_are_allocated(class Calibration &c, int rows, int cols) { if (c.gui.rgb.cols == cols && c.gui.rgb.rows == rows) { return; } c.grey = cv::Mat(rows, cols, CV_8UC1, cv::Scalar(0)); refresh_gui_frame(c, rows, cols); } static void print_txt(cv::Mat &rgb, const char *text, double fontScale) { int fontFace = 0; int thickness = 2; cv::Size textSize = cv::getTextSize(text, fontFace, fontScale, thickness, NULL); cv::Point textOrg((rgb.cols - textSize.width) / 2, textSize.height * 2); cv::putText(rgb, text, textOrg, fontFace, fontScale, cv::Scalar(192, 192, 192), thickness); } static void make_gui_str(class Calibration &c) { auto &rgb = c.gui.rgb; int cols = 800; int rows = 100; ensure_buffers_are_allocated(c, rows, cols); cv::rectangle(rgb, cv::Point2f(0, 0), cv::Point2f(cols, rows), cv::Scalar(0, 0, 0), -1, 0); print_txt(rgb, c.text, 1.0); send_rgb_frame(c); } static void draw_rect(cv::Mat &rgb, cv::Rect rect, cv::Scalar colour) { cv::rectangle(rgb, rect.tl(), rect.br(), colour); } static bool do_view(class Calibration &c, struct ViewState &view, cv::Mat &grey, cv::Mat &rgb) { bool found = cv::findChessboardCorners(grey, c.chessboard_size, view.current); // compute our 'pre sample' coverage for this frame, and // display it std::vector coverage; for (uint32_t i = 0; i < view.measured.size(); i++) { cv::Rect brect = cv::boundingRect(view.measured[i]); draw_rect(rgb, brect, cv::Scalar(0, 64, 32)); coverage.push_back(cv::Point2f(brect.tl())); coverage.push_back(cv::Point2f(brect.br())); } // What area of the camera have we calibrated. view.pre_rect = cv::boundingRect(coverage); draw_rect(rgb, view.pre_rect, cv::Scalar(0, 255, 0)); if (found) { view.brect = cv::boundingRect(view.current); coverage.push_back(cv::Point2f(view.brect.tl())); coverage.push_back(cv::Point2f(view.brect.br())); view.post_rect = cv::boundingRect(coverage); draw_rect(rgb, view.post_rect, cv::Scalar(0, 255, 0)); } cv::drawChessboardCorners(rgb, c.chessboard_size, view.current, found); return found; } /* * * Stereo calibration * */ #define P(...) snprintf(c.text, sizeof(c.text), __VA_ARGS__) static void process_stereo_samples(class Calibration &c, int cols, int rows) { c.state.calibrated = true; cv::Size image_size(cols, rows); // we don't serialise these cv::Mat camera_rotation; cv::Mat camera_translation; cv::Mat camera_essential; cv::Mat camera_fundamental; struct opencv_calibration_params cp; cv::Mat zero_distortion = cv::Mat(5, 1, CV_32F, cv::Scalar(0.0f)); // TODO: handle both fisheye and normal cameras -right // now I only have the normal, for the PS4 camera #if 0 float rp_error = cv::fisheye::stereoCalibrate( internal->chessboards_model, internal->l_measured, internal->r_measured, l_intrinsics, l_distortion_fisheye, r_intrinsics, r_distortion_fisheye, image_size, camera_rotation, camera_translation, cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC); #endif // non-fisheye version float rp_error = cv::stereoCalibrate( c.state.chessboards_model, c.state.view[0].measured, c.state.view[1].measured, cp.l_intrinsics, cp.l_distortion, cp.r_intrinsics, cp.r_distortion, image_size, camera_rotation, camera_translation, camera_essential, camera_fundamental, 0); std::cout << "calibration rp_error: " << rp_error << "\n"; std::cout << "calibration camera_translation:\n" << camera_translation << "\n"; cv::stereoRectify(cp.l_intrinsics, zero_distortion, cp.r_intrinsics, zero_distortion, image_size, camera_rotation, camera_translation, cp.l_rotation, cp.r_rotation, cp.l_projection, cp.r_projection, cp.disparity_to_depth, cv::CALIB_ZERO_DISPARITY); P("CALIBRATION DONE RP ERROR %f", rp_error); char path_string[PATH_MAX]; char file_string[PATH_MAX]; // TODO: centralise this - use multiple env vars? char *config_path = secure_getenv("HOME"); snprintf(path_string, PATH_MAX, "%s/.config/monado", config_path); snprintf(file_string, PATH_MAX, "%s/.config/monado/%s.calibration", config_path, "PS4_EYE"); FILE *calib_file = fopen(file_string, "wb"); if (!calib_file) { // try creating it mkpath(path_string); } calib_file = fopen(file_string, "wb"); if (!calib_file) { printf( "ERROR. could not create calibration file " "%s\n", file_string); return; } write_cv_mat(calib_file, &cp.l_intrinsics); write_cv_mat(calib_file, &cp.r_intrinsics); write_cv_mat(calib_file, &cp.l_distortion); write_cv_mat(calib_file, &cp.r_distortion); write_cv_mat(calib_file, &cp.l_distortion_fisheye); write_cv_mat(calib_file, &cp.r_distortion_fisheye); write_cv_mat(calib_file, &cp.l_rotation); write_cv_mat(calib_file, &cp.r_rotation); write_cv_mat(calib_file, &cp.l_translation); write_cv_mat(calib_file, &cp.r_translation); write_cv_mat(calib_file, &cp.l_projection); write_cv_mat(calib_file, &cp.r_projection); write_cv_mat(calib_file, &cp.disparity_to_depth); cv::Mat mat_image_size; mat_image_size.create(1, 2, CV_32F); mat_image_size.at(0, 0) = image_size.width; mat_image_size.at(0, 1) = image_size.height; write_cv_mat(calib_file, &mat_image_size); fclose(calib_file); } static void make_calibration_frame(class Calibration &c) { auto &rgb = c.gui.rgb; auto &grey = c.grey; // This should not happen if (rgb.rows == 0 || rgb.cols == 0) { return; } // Don't do anything if we are done. if (c.state.calibrated) { print_txt(rgb, c.text, 1.5); send_rgb_frame(c); return; } // Clear our gui frame if (c.clear_frame) { cv::rectangle(rgb, cv::Point2f(0, 0), cv::Point2f(rgb.cols, rgb.rows), cv::Scalar(0, 0, 0), -1, 0); } int cols = rgb.cols / 2; int rows = rgb.rows; // Split left and right eyes, don't make any copies. cv::Mat l_grey(rows, cols, CV_8UC1, grey.data, grey.cols); cv::Mat r_grey(rows, cols, CV_8UC1, grey.data + cols, grey.cols); cv::Mat l_rgb(rows, cols, CV_8UC3, c.gui.frame->data, c.gui.frame->stride); cv::Mat r_rgb(rows, cols, CV_8UC3, c.gui.frame->data + 3 * cols, c.gui.frame->stride); bool found_left = do_view(c, c.state.view[0], l_grey, l_rgb); bool found_right = do_view(c, c.state.view[1], r_grey, r_rgb); // draw our current calibration guide box cv::Point2f bound_tl = calibration_rect[c.state.calibration_count].tl(); bound_tl.x *= cols; bound_tl.y *= rows; cv::Point2f bound_br = calibration_rect[c.state.calibration_count].br(); bound_br.x *= cols; bound_br.y *= rows; // Draw the target rect last so it is the most visible. cv::rectangle(c.gui.rgb, bound_tl, bound_br, cv::Scalar(255, 0, 0)); // if we have a valid sample (left and right), display it if (found_left && found_right) { cv::Rect brect = c.state.view[0].brect; cv::Rect pre_rect = c.state.view[0].pre_rect; cv::Rect post_rect = c.state.view[0].post_rect; // determine if we should add this sample to our list. // either we are still taking the first 9 samples and // the chessboard is in the box, or we have exceeded 9 // samples and now want to 'push out the edges' bool add_sample = false; int coverage_threshold = cols * 0.3f * rows * 0.3f; if (c.state.calibration_count < 9 && brect.tl().x >= bound_tl.x && brect.tl().y >= bound_tl.y && brect.br().x <= bound_br.x && brect.br().y <= bound_br.y) { add_sample = true; } if (c.state.calibration_count >= 9 && brect.area() > coverage_threshold && post_rect.area() > pre_rect.area() + coverage_threshold / 5) { add_sample = true; } if (add_sample) { c.state.chessboards_model.push_back(c.chessboard_model); c.state.view[0].measured.push_back( c.state.view[0].current); c.state.view[1].measured.push_back( c.state.view[1].current); c.state.calibration_count++; printf("SAMPLE: %ld\n", c.state.view[0].measured.size()); } } if (c.state.calibration_count < 9) { P("POSITION CHESSBOARD IN BOX"); } else { P("TRY TO 'PUSH OUT EDGES' WITH LARGE BOARD IMAGES"); } if (c.state.view[0].measured.size() == CALIBRATION_SAMPLES) { process_stereo_samples(c, cols, rows); } /* * Draw text */ print_txt(rgb, c.text, 1.5); send_rgb_frame(c); } /* * * Main functions. * */ XRT_NO_INLINE static void process_frame_yuv(class Calibration &c, struct xrt_frame *xf) { int w = (int)xf->width; int h = (int)xf->height; cv::Mat data(h, w, CV_8UC3, xf->data, xf->stride); ensure_buffers_are_allocated(c, data.rows, data.cols); c.gui.frame->source_sequence = xf->source_sequence; cv::cvtColor(data, c.gui.rgb, cv::COLOR_YUV2RGB); cv::cvtColor(c.gui.rgb, c.grey, cv::COLOR_RGB2GRAY); } XRT_NO_INLINE static void process_frame_yuyv(class Calibration &c, struct xrt_frame *xf) { /* * Cleverly extract the different channels. * Cr/Cb are extracted at half width. */ int w = (int)xf->width; int half_w = w / 2; int h = (int)xf->height; struct t_frame_yuyv f = {}; f.data_half = cv::Mat(h, half_w, CV_8UC4, xf->data, xf->stride); f.data_full = cv::Mat(h, w, CV_8UC2, xf->data, xf->stride); ensure_buffers_are_allocated(c, f.data_full.rows, f.data_full.cols); c.gui.frame->source_sequence = xf->source_sequence; cv::cvtColor(f.data_full, c.gui.rgb, cv::COLOR_YUV2RGB_YUYV); cv::cvtColor(f.data_full, c.grey, cv::COLOR_YUV2GRAY_YUYV); } /* * * Interface functions. * */ extern "C" void t_calibration_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf) { auto &c = *(class Calibration *)xsink; //! @todo Add single view support. if (xf->stereo_format != XRT_STEREO_FORMAT_SBS) { P("ERROR: Not side by side stereo!"); make_gui_str(c); return; } // Fill both c.gui.rgb and c.grey with the data we got. switch (xf->format) { case XRT_FORMAT_YUV888: process_frame_yuv(c, xf); break; case XRT_FORMAT_YUV422: process_frame_yuyv(c, xf); break; default: P("ERROR: Bad format '%s'", u_format_str(xf->format)); make_gui_str(c); return; } make_calibration_frame(c); } /* * * Exported functions. * */ extern "C" int t_calibration_create(struct xrt_frame_context *xfctx, struct xrt_frame_sink *gui, struct xrt_frame_sink **out_sink) { auto &c = *(new Calibration()); c.gui.sink = gui; c.base.push_frame = t_calibration_frame; *out_sink = &c.base; P("Waiting for camera"); make_gui_str(c); int ret = 0; if (debug_get_bool_option_hsv_filter()) { ret = t_debug_hsv_filter_create(xfctx, *out_sink, out_sink); } if (debug_get_bool_option_hsv_picker()) { ret = t_debug_hsv_picker_create(xfctx, *out_sink, out_sink); } if (debug_get_bool_option_hsv_viewer()) { ret = t_debug_hsv_viewer_create(xfctx, *out_sink, out_sink); } // Ensure we only get yuv or yuyv frames. u_sink_create_to_yuv_or_yuyv(xfctx, *out_sink, out_sink); c.chessboard_size = cv::Size(CHESSBOARD_COLS, CHESSBOARD_ROWS); for (int i = 0; i < c.chessboard_size.width * c.chessboard_size.height; i++) { cv::Point3f p(i / c.chessboard_size.width, i % c.chessboard_size.width, 0.0f); c.chessboard_model.push_back(p); } return ret; }