// Copyright 2019, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief PSVR tracker code. * @author Jakob Bornecrantz * @author Pete Black * @ingroup aux_tracking */ #include "xrt/xrt_tracking.h" #include "tracking/t_tracking.h" #include "tracking/t_calibration_opencv.hpp" #include "tracking/t_helper_debug_sink.hpp" #include "util/u_misc.h" #include "util/u_debug.h" #include "util/u_frame.h" #include "util/u_format.h" #include "util/u_var.h" #include "util/u_logging.h" #include "math/m_api.h" #include "math/m_permutation.h" #include "os/os_threading.h" #include #include #include #include #include #include #include DEBUG_GET_ONCE_LOG_OPTION(psvr_log, "PSVR_TRACKING_LOG", U_LOGGING_WARN) #define PSVR_TRACE(...) U_LOG_IFL_T(t.ll, __VA_ARGS__) #define PSVR_DEBUG(...) U_LOG_IFL_D(t.ll, __VA_ARGS__) #define PSVR_INFO(...) U_LOG_IFL_I(t.ll, __VA_ARGS__) #define PSVR_WARN(...) U_LOG_IFL_W(t.ll, __VA_ARGS__) #define PSVR_ERROR(...) U_LOG_IFL_E(t.ll, __VA_ARGS__) /*! * How many LEDs in the tracked configuration */ #define PSVR_NUM_LEDS 7 /*! * How many LEDs do we need to do an optical solve/correction */ #define PSVR_OPTICAL_SOLVE_THRESH 5 /*! * If potential match vertex is further than this distance from the * measurement, reject the match - do not set too low */ #define PSVR_DISAMBIG_REJECT_DIST 0.02f /*! * If potential match vertex is further than this distance from the measurement, * reject the match - do not set too low */ #define PSVR_DISAMBIG_REJECT_ANG 0.7f /*! * Cutoff distance for keeping the id for a blob from one frame to the next */ #define PSVR_SEARCH_RADIUS 0.043f /* * The magnitude of the correction relative to the previous correction must be * below this value to contribute towards lock acquisition */ #define PSVR_MAX_BAD_CORR 10 #define PSVR_BAD_CORRECTION_THRESH 0.1f #define PSVR_CORRECTION_THRESH 0.05f /*! * We will 'drift' our imu-solved rotation towards our optically solved * correction to avoid jumps */ #define PSVR_FAST_CORRECTION 0.05f /*! * We will 'drift' our imu-solved rotation towards our optically solved * correction to avoid jumps */ #define PSVR_SLOW_CORRECTION 0.005f // kalman filter coefficients #define PSVR_BLOB_PROCESS_NOISE 0.1f // R #define PSVR_BLOB_MEASUREMENT_NOISE 1.0f // Q #define PSVR_POSE_PROCESS_NOISE 0.5f // R //! Our measurements are quite noisy so we need to smooth heavily #define PSVR_POSE_MEASUREMENT_NOISE 100.0f #define PSVR_OUTLIER_THRESH 0.17f #define PSVR_MERGE_THRESH 0.06f //! hold the previously recognised configuration unless we depart significantly #define PSVR_HOLD_THRESH 0.086f // uncomment this to dump comprehensive optical and imu data to // /tmp/psvr_dump.txt //#define PSVR_DUMP_FOR_OFFLINE_ANALYSIS //#define PSVR_DUMP_IMU_FOR_OFFLINE_ANALYSIS typedef enum blob_type { BLOB_TYPE_UNKNOWN, BLOB_TYPE_SIDE, BLOB_TYPE_FRONT, BLOB_TYPE_REAR, // currently unused } blob_type_t; typedef struct blob_point { cv::Point3f p; // 3d coordinate cv::KeyPoint lkp; // left keypoint cv::KeyPoint rkp; // right keypoint blob_type_t btype; // blob type } blob_point_t; struct View { cv::Mat undistort_rectify_map_x; cv::Mat undistort_rectify_map_y; cv::Matx33d intrinsics; cv::Mat distortion; // size may vary cv::Vec4d distortion_fisheye; bool use_fisheye; std::vector keypoints; cv::Mat frame_undist_rectified; void populate_from_calib(t_camera_calibration &calib, const RemapPair &rectification) { CameraCalibrationWrapper wrap(calib); intrinsics = wrap.intrinsics_mat; distortion = wrap.distortion_mat.clone(); distortion_fisheye = wrap.distortion_fisheye_mat; use_fisheye = wrap.use_fisheye; undistort_rectify_map_x = rectification.remap_x; undistort_rectify_map_y = rectification.remap_y; } }; typedef enum led_tag { TAG_TL, TAG_TR, TAG_C, TAG_BL, TAG_BR, TAG_SL, TAG_SR } led_tag_t; typedef struct model_vertex { int32_t vertex_index; Eigen::Vector4f position; led_tag_t tag; bool active; // NOTE: these operator overloads are required for // comparisons with the permutations library bool operator<(const model_vertex &mv) const { return (vertex_index < mv.vertex_index); } bool operator>(const model_vertex &mv) const { return (vertex_index > mv.vertex_index); } } model_vertex_t; typedef struct match_data { float angle = {}; // angle from reference vector float distance = {}; // distance from base of reference vector int32_t vertex_index = {}; // index aka tag Eigen::Vector4f position = {}; // 3d position of vertex blob_point_t src_blob = {}; // blob this vertex was derived from } match_data_t; typedef struct match_model { //! Collection of vertices and associated data. std::vector measurements; } match_model_t; /*! * Main PSVR tracking class. */ class TrackerPSVR { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW struct xrt_tracked_psvr base = {}; struct xrt_frame_sink sink = {}; struct xrt_frame_node node = {}; //! Logging stuff. enum u_logging_level ll; //! Frame waiting to be processed. struct xrt_frame *frame; //! Thread and lock helper. struct os_thread_helper oth; //! Have we received a new IMU sample. bool has_imu = false; timepoint_ns last_imu{0}; struct { struct xrt_vec3 pos = {}; struct xrt_quat rot = {}; } fusion; struct { struct xrt_vec3 pos = {}; struct xrt_quat rot = {}; } optical; Eigen::Quaternionf target_optical_rotation_correction; // the calculated rotation to // correct the imu Eigen::Quaternionf optical_rotation_correction; // currently applied (interpolated // towards target) correction Eigen::Matrix4f corrected_imu_rotation; // imu rotation with correction applied Eigen::Quaternionf axis_align_rot; // used to rotate imu/tracking coordinates to world model_vertex_t model_vertices[PSVR_NUM_LEDS]; // the model we match our // measurements against std::vector last_vertices; // the last solved position of the HMD uint32_t last_optical_model; cv::KalmanFilter track_filters[PSVR_NUM_LEDS]; cv::KalmanFilter pose_filter; // we filter the final pose position of // the HMD to smooth motion View view[2]; bool calibrated; HelperDebugSink debug = {HelperDebugSink::AllAvailable}; cv::Mat disparity_to_depth; cv::Vec3d r_cam_translation; cv::Matx33d r_cam_rotation; cv::Ptr sbd; std::vector l_blobs, r_blobs; std::vector matches; // we refine our measurement by rejecting outliers and merging 'too // close' points std::vector world_points; std::vector pruned_points; std::vector merged_points; std::vector match_vertices; float avg_optical_correction; // used to converge to a 'lock' correction // rotation bool done_correction; // set after a 'lock' is acquired float max_correction; // if we have made a lot of optical measurements that *should* // be converging, but have not - we should reset uint32_t bad_correction_count; Eigen::Matrix4f last_pose; uint64_t last_frame; Eigen::Vector4f model_center; // center of rotation #ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS FILE *dump_file; #endif }; static float dist_3d(Eigen::Vector4f a, Eigen::Vector4f b) { return sqrt((a[0] - b[0]) * (a[0] - b[0]) + (a[1] - b[1]) * (a[1] - b[1]) + (a[2] - b[2]) * (a[2] - b[2])); } static float dist_3d_cv(cv::Point3f a, cv::Point3f b) { return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + (a.z - b.z) * (a.z - b.z)); } static void init_filter(cv::KalmanFilter &kf, float process_cov, float meas_cov, float dt) { kf.init(6, 3); kf.transitionMatrix = (cv::Mat_(6, 6) << 1.0, 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0); cv::setIdentity(kf.measurementMatrix, cv::Scalar::all(1.0f)); cv::setIdentity(kf.errorCovPost, cv::Scalar::all(0.0f)); // our filter parameters set the process and measurement noise // covariances. cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(process_cov)); cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(meas_cov)); } static void filter_predict(std::vector *pose, cv::KalmanFilter *filters, float dt) { for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { match_data_t current_led; cv::KalmanFilter *current_kf = filters + i; // set our dt components in the transition matrix current_kf->transitionMatrix.at(0, 3) = dt; current_kf->transitionMatrix.at(1, 4) = dt; current_kf->transitionMatrix.at(2, 5) = dt; current_led.vertex_index = i; // current_led->tag = (led_tag_t)(i); cv::Mat prediction = current_kf->predict(); current_led.position[0] = prediction.at(0, 0); current_led.position[1] = prediction.at(1, 0); current_led.position[2] = prediction.at(2, 0); pose->push_back(current_led); } } static void filter_update(std::vector *pose, cv::KalmanFilter *filters, float dt) { for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { match_data_t *current_led = &pose->at(i); cv::KalmanFilter *current_kf = filters + i; // set our dt components in the transition matrix current_kf->transitionMatrix.at(0, 3) = dt; current_kf->transitionMatrix.at(1, 4) = dt; current_kf->transitionMatrix.at(2, 5) = dt; current_led->vertex_index = i; cv::Mat measurement = cv::Mat(3, 1, CV_32F); measurement.at(0, 0) = current_led->position[0]; measurement.at(1, 0) = current_led->position[1]; measurement.at(2, 0) = current_led->position[2]; current_kf->correct(measurement); } } static void pose_filter_predict(Eigen::Vector4f *pose, cv::KalmanFilter *filter, float dt) { // set our dt components in the transition matrix filter->transitionMatrix.at(0, 3) = dt; filter->transitionMatrix.at(1, 4) = dt; filter->transitionMatrix.at(2, 5) = dt; cv::Mat prediction = filter->predict(); (*pose)[0] = prediction.at(0, 0); (*pose)[1] = prediction.at(1, 0); (*pose)[2] = prediction.at(2, 0); } static void pose_filter_update(Eigen::Vector4f *position, cv::KalmanFilter *filter, float dt) { filter->transitionMatrix.at(0, 3) = dt; filter->transitionMatrix.at(1, 4) = dt; filter->transitionMatrix.at(2, 5) = dt; cv::Mat measurement = cv::Mat(3, 1, CV_32F); measurement.at(0, 0) = position->x(); measurement.at(1, 0) = position->y(); measurement.at(2, 0) = position->z(); filter->correct(measurement); } static bool match_possible(match_model_t *match) { //@todo - this is currently unimplemented // check if this match makes sense - we can remove // unobservable combinations without checking them. // we cannot see SR,SL at the same time so remove any matches that // contain them both in the first 5 slots return true; } static void verts_to_measurement(std::vector *meas_data, std::vector *match_vertices) { // create a data structure that holds the inter-point distances // and angles we will use to match the pose match_vertices->clear(); if (meas_data->size() < PSVR_OPTICAL_SOLVE_THRESH) { for (uint32_t i = 0; i < meas_data->size(); i++) { match_data_t md; md.vertex_index = -1; md.position = Eigen::Vector4f( meas_data->at(i).p.x, meas_data->at(i).p.y, meas_data->at(i).p.z, 1.0f); md.src_blob = meas_data->at(i); match_vertices->push_back(md); } return; } blob_point_t ref_a = meas_data->at(0); blob_point_t ref_b = meas_data->at(1); cv::Point3f ref_vec = ref_b.p - ref_a.p; float ref_len = dist_3d_cv(ref_a.p, ref_b.p); for (uint32_t i = 0; i < meas_data->size(); i++) { blob_point_t vp = meas_data->at(i); cv::Point3f point_vec = vp.p - ref_a.p; match_data_t md; md.vertex_index = -1; md.position = Eigen::Vector4f(vp.p.x, vp.p.y, vp.p.z, 1.0f); Eigen::Vector3f ref_vec3(ref_vec.x, ref_vec.y, ref_vec.z); Eigen::Vector3f point_vec3(point_vec.x, point_vec.y, point_vec.z); Eigen::Vector3f vp_pos3(vp.p.x, vp.p.y, vp.p.z); if (i != 0) { Eigen::Vector3f plane_norm = ref_vec3.cross(point_vec3).normalized(); if (plane_norm.z() > 0) { md.angle = -1 * acos(point_vec3.normalized().dot( ref_vec3.normalized())); } else { md.angle = acos(point_vec3.normalized().dot( ref_vec3.normalized())); } md.distance = dist_3d_cv(vp.p, ref_a.p) / ref_len; } else { md.angle = 0.0f; md.distance = 0.0f; } // fix up any NaNs if (md.angle != md.angle) { md.angle = 0.0f; } if (md.distance != md.distance) { md.distance = 0.0f; } md.src_blob = vp; match_vertices->push_back(md); } } static float last_diff(TrackerPSVR &t, std::vector *meas_pose, std::vector *last_pose) { // compute the aggregate difference (sum of distances between matching // indices)between two poses float diff = 0.0f; for (uint32_t i = 0; i < meas_pose->size(); i++) { uint32_t meas_index = meas_pose->at(i).vertex_index; for (uint32_t j = 0; j < last_pose->size(); j++) { uint32_t last_index = last_pose->at(j).vertex_index; if (last_index == meas_index) { float d = fabs(dist_3d( meas_pose->at(meas_index).position, last_pose->at(last_index).position)); diff += d; } } } return diff / meas_pose->size(); } static void remove_outliers(std::vector *orig_points, std::vector *pruned_points, float outlier_thresh) { if (orig_points->size() == 0) { return; } std::vector temp_points; // immediately prune anything that is measured as // 'behind' the camera - often reflections or lights in the room etc. for (uint32_t i = 0; i < orig_points->size(); i++) { cv::Point3f p = orig_points->at(i).p; if (p.z < 0) { temp_points.push_back(orig_points->at(i)); } } if (temp_points.size() == 0) { return; } // compute the 3d median of the points, and reject anything further away // than a // threshold distance std::vector x_values; std::vector y_values; std::vector z_values; for (uint32_t i = 0; i < temp_points.size(); i++) { x_values.push_back(temp_points[i].p.x); y_values.push_back(temp_points[i].p.y); z_values.push_back(temp_points[i].p.z); } std::nth_element(x_values.begin(), x_values.begin() + x_values.size() / 2, x_values.end()); float median_x = x_values[x_values.size() / 2]; std::nth_element(y_values.begin(), y_values.begin() + y_values.size() / 2, y_values.end()); float median_y = y_values[y_values.size() / 2]; std::nth_element(z_values.begin(), z_values.begin() + z_values.size() / 2, z_values.end()); float median_z = z_values[z_values.size() / 2]; for (uint32_t i = 0; i < temp_points.size(); i++) { float error_x = temp_points[i].p.x - median_x; float error_y = temp_points[i].p.y - median_y; float error_z = temp_points[i].p.z - median_z; float rms_error = sqrt((error_x * error_x) + (error_y * error_y) + (error_z * error_z)); // printf("ERROR: %f %f %f %f %f %f\n", temp_points[i].p.x, // temp_points[i].p.y, temp_points[i].p.z, error_x, // error_y, error_z); if (rms_error < outlier_thresh) { pruned_points->push_back(temp_points[i]); } } } struct close_pair { int index_a; int index_b; float dist; }; static void merge_close_points(std::vector *orig_points, std::vector *merged_points, float merge_thresh) { // if a pair of points in the supplied lists are closer than the // threshold, discard one of them. //@todo - merge the 2d blob extents when we merge a pair of points std::vector pairs; for (uint32_t i = 0; i < orig_points->size(); i++) { for (uint32_t j = 0; j < orig_points->size(); j++) { if (i != j) { float d = dist_3d_cv(orig_points->at(i).p, orig_points->at(j).p); if (d < merge_thresh) { struct close_pair p; p.index_a = i; p.index_b = j; p.dist = d; pairs.push_back(p); } } } } std::vector indices_to_remove; for (uint32_t i = 0; i < pairs.size(); i++) { if (pairs[i].index_a < pairs[i].index_b) { indices_to_remove.push_back(pairs[i].index_a); } else { indices_to_remove.push_back(pairs[i].index_b); } } for (int i = 0; i < (int)orig_points->size(); i++) { bool remove_index = false; for (int j = 0; j < (int)indices_to_remove.size(); j++) { if (i == indices_to_remove[j]) { remove_index = true; } } if (!remove_index) { merged_points->push_back(orig_points->at(i)); } } } static void match_triangles(Eigen::Matrix4f *t1_mat, Eigen::Matrix4f *t1_to_t2_mat, Eigen::Vector4f t1_a, Eigen::Vector4f t1_b, Eigen::Vector4f t1_c, Eigen::Vector4f t2_a, Eigen::Vector4f t2_b, Eigen::Vector4f t2_c) { // given 3 vertices in 'model space', and a corresponding 3 vertices // in 'world space', compute the transformation matrix to map one // to the other *t1_mat = Eigen::Matrix4f().Identity(); Eigen::Matrix4f t2_mat = Eigen::Matrix4f().Identity(); Eigen::Vector3f t1_x_vec = (t1_b - t1_a).head<3>().normalized(); Eigen::Vector3f t1_z_vec = (t1_c - t1_a).head<3>().cross((t1_b - t1_a).head<3>()).normalized(); Eigen::Vector3f t1_y_vec = t1_x_vec.cross(t1_z_vec).normalized(); Eigen::Vector3f t2_x_vec = (t2_b - t2_a).head<3>().normalized(); Eigen::Vector3f t2_z_vec = (t2_c - t2_a).head<3>().cross((t2_b - t2_a).head<3>()).normalized(); Eigen::Vector3f t2_y_vec = t2_x_vec.cross(t2_z_vec).normalized(); t1_mat->col(0) << t1_x_vec[0], t1_x_vec[1], t1_x_vec[2], 0.0f; t1_mat->col(1) << t1_y_vec[0], t1_y_vec[1], t1_y_vec[2], 0.0f; t1_mat->col(2) << t1_z_vec[0], t1_z_vec[1], t1_z_vec[2], 0.0f; t1_mat->col(3) << t1_a[0], t1_a[1], t1_a[2], 1.0f; t2_mat.col(0) << t2_x_vec[0], t2_x_vec[1], t2_x_vec[2], 0.0f; t2_mat.col(1) << t2_y_vec[0], t2_y_vec[1], t2_y_vec[2], 0.0f; t2_mat.col(2) << t2_z_vec[0], t2_z_vec[1], t2_z_vec[2], 0.0f; t2_mat.col(3) << t2_a[0], t2_a[1], t2_a[2], 1.0f; *t1_to_t2_mat = t1_mat->inverse() * t2_mat; } static Eigen::Matrix4f solve_for_measurement(TrackerPSVR *t, std::vector *measurement, std::vector *solved) { // use the vertex positions (at least 3) in the measurement to // construct a pair of triangles which are used to calculate the // pose of the tracked HMD, // based on the corresponding model vertices // @todo: compute all possible unique triangles, and average the result Eigen::Matrix4f tri_basis; Eigen::Matrix4f model_to_measurement; Eigen::Vector4f meas_ref_a = measurement->at(0).position; Eigen::Vector4f meas_ref_b = measurement->at(1).position; int meas_index_a = measurement->at(0).vertex_index; int meas_index_b = measurement->at(1).vertex_index; Eigen::Vector4f model_ref_a = t->model_vertices[meas_index_a].position; Eigen::Vector4f model_ref_b = t->model_vertices[meas_index_b].position; float highest_length = 0.0f; int best_model_index = 0; int most_distant_index = 0; for (uint32_t i = 0; i < measurement->size(); i++) { int model_tag_index = measurement->at(i).vertex_index; Eigen::Vector4f model_vert = t->model_vertices[model_tag_index].position; if (most_distant_index > 1 && dist_3d(model_vert, model_ref_a) > highest_length) { best_model_index = most_distant_index; } most_distant_index++; } Eigen::Vector4f meas_ref_c = measurement->at(best_model_index).position; int meas_index_c = measurement->at(best_model_index).vertex_index; Eigen::Vector4f model_ref_c = t->model_vertices[meas_index_c].position; match_triangles(&tri_basis, &model_to_measurement, model_ref_a, model_ref_b, model_ref_c, meas_ref_a, meas_ref_b, meas_ref_c); Eigen::Matrix4f model_center_transform_f = tri_basis * model_to_measurement * tri_basis.inverse(); // now reverse the order of our verts to contribute to a more accurate // estimate. meas_ref_a = measurement->at(measurement->size() - 1).position; meas_ref_b = measurement->at(measurement->size() - 2).position; meas_index_a = measurement->at(measurement->size() - 1).vertex_index; meas_index_b = measurement->at(measurement->size() - 2).vertex_index; model_ref_a = t->model_vertices[meas_index_a].position; model_ref_b = t->model_vertices[meas_index_b].position; highest_length = 0.0f; best_model_index = 0; most_distant_index = 0; for (uint32_t i = 0; i < measurement->size(); i++) { int model_tag_index = measurement->at(i).vertex_index; Eigen::Vector4f model_vert = t->model_vertices[model_tag_index].position; if (most_distant_index < (int)measurement->size() - 2 && dist_3d(model_vert, model_ref_a) > highest_length) { best_model_index = most_distant_index; } most_distant_index++; } meas_ref_c = measurement->at(best_model_index).position; meas_index_c = measurement->at(best_model_index).vertex_index; model_ref_c = t->model_vertices[meas_index_c].position; match_triangles(&tri_basis, &model_to_measurement, model_ref_a, model_ref_b, model_ref_c, meas_ref_a, meas_ref_b, meas_ref_c); Eigen::Matrix4f model_center_transform_r = tri_basis * model_to_measurement * tri_basis.inverse(); // decompose our transforms and slerp between them to get the avg of the // rotation determined from the first 2 + most distant , and last 2 + // most distant verts Eigen::Matrix3f r = model_center_transform_f.block(0, 0, 3, 3); Eigen::Quaternionf f_rot_part = Eigen::Quaternionf(r); Eigen::Vector4f f_trans_part = model_center_transform_f.col(3); r = model_center_transform_r.block(0, 0, 3, 3); Eigen::Quaternionf r_rot_part = Eigen::Quaternionf(r); Eigen::Vector4f r_trans_part = model_center_transform_r.col(3); Eigen::Matrix4f pose = Eigen::Matrix4f().Identity(); pose.block(0, 0, 3, 3) = f_rot_part.slerp(0.5, r_rot_part).toRotationMatrix(); pose.col(3) = (f_trans_part + r_trans_part) / 2.0f; solved->clear(); for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { match_data_t md; md.vertex_index = i; md.position = pose * t->model_vertices[i].position; solved->push_back(md); } return pose; } typedef struct proximity_data { Eigen::Vector4f position; float lowest_distance; int vertex_index; } proximity_data_t; static Eigen::Matrix4f solve_with_imu(TrackerPSVR &t, std::vector *measurements, std::vector *match_measurements, std::vector *solved, float search_radius) { // use the hungarian algorithm to find the closest set of points to the // match measurement // a 7x7 matrix of costs e.g distances between our points and the match // measurements we will initialise to zero because we will not have // distances for points we don't have std::vector > costMatrix = { {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, }; HungarianAlgorithm HungAlgo; vector assignment; // lets fill in our cost matrix with distances // @todo: could use squared distance to save a handful of sqrts. // @todo: artificially boost cost where distance from last exceeds // search threshold // @todo: artificially boost cost where blob type differs from match // measurement for (uint32_t i = 0; i < measurements->size(); i++) { for (uint32_t j = 0; j < match_measurements->size(); j++) { costMatrix[i][j] = dist_3d(measurements->at(i).position, match_measurements->at(j).position); if (measurements->at(i).src_blob.btype == BLOB_TYPE_SIDE && match_measurements->at(j).src_blob.btype == BLOB_TYPE_FRONT) { costMatrix[i][j] += 10.0f; } if (measurements->at(i).src_blob.btype == BLOB_TYPE_FRONT && match_measurements->at(j).src_blob.btype == BLOB_TYPE_SIDE) { costMatrix[i][j] += 10.0f; } } } double cost = HungAlgo.Solve(costMatrix, assignment); (void)cost; for (uint32_t i = 0; i < measurements->size(); i++) { measurements->at(i).vertex_index = assignment[i]; } std::vector proximity_data; for (uint32_t i = 0; i < measurements->size(); i++) { float lowest_distance = 65535.0; int closest_index = 0; (void)lowest_distance; (void)closest_index; proximity_data_t p; match_data_t measurement = measurements->at(i); p.position = measurement.position; p.vertex_index = measurement.vertex_index; p.lowest_distance = 0.0f; proximity_data.push_back(p); } if (proximity_data.size() > 0) { // use the IMU rotation and the measured points in // world space to compute a transform from model to world space. // use each measured led individually and average the resulting // positions std::vector temp_measurement_list; for (uint32_t i = 0; i < proximity_data.size(); i++) { proximity_data_t p = proximity_data[i]; Eigen::Vector4f model_vertex = t.model_vertices[p.vertex_index].position; Eigen::Vector4f measurement_vertex = p.position; Eigen::Vector4f measurement_offset = t.corrected_imu_rotation * model_vertex; Eigen::Affine3f translation(Eigen::Translation3f( (measurement_vertex - measurement_offset) .head<3>())); Eigen::Matrix4f model_to_measurement = translation.matrix() * t.corrected_imu_rotation; match_model_t temp_measurement; for (uint32_t j = 0; j < PSVR_NUM_LEDS; j++) { match_data_t md; md.position = model_to_measurement * t.model_vertices[j].position; md.vertex_index = j; temp_measurement.measurements.push_back(md); } temp_measurement_list.push_back(temp_measurement); } for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { match_data_t avg_data; avg_data.position = Eigen::Vector4f(0.0f, 0.0f, 0.0f, 1.0f); for (uint32_t j = 0; j < temp_measurement_list.size(); j++) { avg_data.position += temp_measurement_list[j] .measurements[i] .position; } avg_data.position /= float(temp_measurement_list.size()); avg_data.vertex_index = i; solved->push_back(avg_data); } std::vector _solved; Eigen::Matrix4f pose = solve_for_measurement(&t, solved, &_solved) * t.corrected_imu_rotation; t.last_pose = pose; return pose; } PSVR_INFO("LOST TRACKING - RETURNING LAST POSE"); t.max_correction = PSVR_SLOW_CORRECTION; return t.last_pose; } static Eigen::Matrix4f disambiguate(TrackerPSVR &t, std::vector *measured_points, std::vector *last_measurement, std::vector *solved, uint32_t frame_no) { // main disambiguation routine - if we have enough points, use // optical matching, otherwise solve with imu. // do our imu-based solve up front - we can use this to compute a more // likely match (currently disabled) Eigen::Matrix4f imu_solved_pose = solve_with_imu( t, measured_points, last_measurement, solved, PSVR_SEARCH_RADIUS); if (measured_points->size() < PSVR_OPTICAL_SOLVE_THRESH && last_measurement->size() > 0) { return imu_solved_pose; } if (measured_points->size() < 3) { return imu_solved_pose; } // optical matching. float lowest_error = 65535.0f; int32_t best_model = -1; uint32_t matched_vertex_indices[PSVR_NUM_LEDS]; // we can early-out if we are 'close enough' to our last match model. // if we just hold the previous led configuration, this increases // performance and should cut down on jitter. if (t.last_optical_model > 0 && t.done_correction) { match_model_t m = t.matches[t.last_optical_model]; for (uint32_t i = 0; i < measured_points->size(); i++) { measured_points->at(i).vertex_index = m.measurements.at(i).vertex_index; } Eigen::Matrix4f res = solve_for_measurement(&t, measured_points, solved); float diff = last_diff(t, solved, &t.last_vertices); if (diff < PSVR_HOLD_THRESH) { // printf("diff from last: %f\n", diff); return res; } } for (uint32_t i = 0; i < t.matches.size(); i++) { match_model_t m = t.matches[i]; float error_sum = 0.0f; float sign_diff = 0.0f; (void)sign_diff; // we have 2 measurements per vertex (distance and // angle) and we are comparing only the 'non-basis // vector' elements // fill in our 'proposed' vertex indices from the model // data (this will be overwritten once our best model is // selected for (uint32_t j = 0; j < measured_points->size(); j++) { measured_points->at(j).vertex_index = m.measurements.at(j).vertex_index; } bool ignore = false; // use the information we gathered on blob shapes to // reject matches that would not fit //@todo: use tags instead of numeric vertex indices for (uint32_t j = 0; j < measured_points->size(); j++) { if (measured_points->at(j).src_blob.btype == BLOB_TYPE_FRONT && measured_points->at(j).vertex_index > 4) { error_sum += 50.0f; } if (measured_points->at(j).src_blob.btype == BLOB_TYPE_SIDE && measured_points->at(j).vertex_index < 5) { error_sum += 50.0f; } // if the distance is between a measured point // and its last-known position is significantly // different, discard this float dist = fabs(measured_points->at(j).distance - m.measurements.at(j).distance); if (dist > PSVR_DISAMBIG_REJECT_DIST) { error_sum += 50.0f; } else { error_sum += fabs(measured_points->at(j).distance - m.measurements.at(j).distance); } // if the angle is significantly different, // discard this float angdiff = fabs(measured_points->at(j).angle - m.measurements.at(j).angle); if (angdiff > PSVR_DISAMBIG_REJECT_ANG) { error_sum += 50.0f; } else { error_sum += fabs(measured_points->at(j).angle - m.measurements.at(j).angle); } } float avg_error = (error_sum / measured_points->size()); if (error_sum < 50) { std::vector meas_solved; solve_for_measurement(&t, measured_points, &meas_solved); float prev_diff = last_diff(t, &meas_solved, &t.last_vertices); float imu_diff = last_diff(t, &meas_solved, solved); Eigen::Vector4f tl_pos, tr_pos, bl_pos, br_pos; bool has_bl = false; bool has_br = false; bool has_tl = false; bool has_tr = false; for (uint32_t j = 0; j < meas_solved.size(); j++) { match_data_t *md = &meas_solved.at(j); if (md->vertex_index == TAG_BL) { bl_pos = md->position; has_bl = true; } if (md->vertex_index == TAG_BR) { br_pos = md->position; has_br = true; } if (md->vertex_index == TAG_TL) { tl_pos = md->position; has_tl = true; } if (md->vertex_index == TAG_TR) { tr_pos = md->position; has_tr = true; } } // reject any configuration where 'top' is below // 'bottom if (has_bl && has_tl && bl_pos.y() > tl_pos.y()) { // printf("IGNORING BL > TL %f %f\n", // bl_pos.y(), // br_pos.y()); // ignore = true; } if (has_br && has_tr && br_pos.y() > tr_pos.y()) { // printf("IGNORING TL > TR %f %f\n", // tl_pos.y(), // tr_pos.y()); // ignore = true; } // once we have a lock, bias the detected // configuration using the imu-solved result, // and the solve from the previous frame if (t.done_correction) { avg_error += prev_diff; avg_error += imu_diff; } // useful for debugging // printf( // "match %d dist to last: %f dist to imu: %f " // "rmsError: %f squaredSum:%f %d\n", // i, prev_diff, imu_diff, avg_error, error_sum, // ignore); } if (avg_error <= lowest_error && !ignore) { lowest_error = avg_error; best_model = i; for (uint32_t i = 0; i < measured_points->size(); i++) { matched_vertex_indices[i] = measured_points->at(i).vertex_index; } } } // printf("lowest_error %f\n", lowest_error); if (best_model == -1) { PSVR_INFO("COULD NOT MATCH MODEL!"); return Eigen::Matrix4f().Identity(); } t.last_optical_model = best_model; for (uint32_t i = 0; i < measured_points->size(); i++) { measured_points->at(i).vertex_index = matched_vertex_indices[i]; cv::putText( t.debug.rgb[0], cv::format("%d %d", measured_points->at(i).vertex_index, measured_points->at(i).src_blob.btype), measured_points->at(i).src_blob.lkp.pt, cv::FONT_HERSHEY_SIMPLEX, 1.0f, cv::Scalar(0, 255, 0)); } t.last_pose = solve_for_measurement(&t, measured_points, solved); return t.last_pose; } static void create_model(TrackerPSVR &t) { // this is the model we use to match our measurements against. // these vertices came out of the blender prototype. // NOTE: this is not an accurate measurement of the PSVRs // physical dimensions, rather an approximate model that serves // to minimize the incidence of incorrect led matches. t.model_vertices[0] = { 0, Eigen::Vector4f(-0.06502f, 0.04335f, 0.01861f, 1.0f), TAG_BL, true, }; t.model_vertices[1] = { 1, Eigen::Vector4f(0.06502f, 0.04335f, 0.01861f, 1.0f), TAG_BR, true, }; t.model_vertices[2] = { 2, Eigen::Vector4f(0.0f, 0.0f, 0.04533f, 1.0f), TAG_C, true, }; t.model_vertices[3] = { 3, Eigen::Vector4f(-0.06502f, -0.04335f, 0.01861f, 1.0f), TAG_TL, true, }; t.model_vertices[4] = { 4, Eigen::Vector4f(0.06502f, -0.04335f, 0.01861f, 1.0f), TAG_TR, true, }; t.model_vertices[5] = { 5, Eigen::Vector4f(-0.07802f, 0.0f, -0.02671f, 1.0f), TAG_SL, true, }; t.model_vertices[6] = { 6, Eigen::Vector4f(0.07802f, 0.0f, -0.02671f, 1.0f), TAG_SR, true, }; } struct Helper { public: m_permutator mp = {}; model_vertex_t vec[PSVR_NUM_LEDS] = {}; uint32_t indices[PSVR_NUM_LEDS]; public: ~Helper() { m_permutator_reset(&mp); } bool step(TrackerPSVR &t) { bool ret = m_permutator_step(&mp, &indices[0], PSVR_NUM_LEDS); if (!ret) { return false; } for (size_t i = 0; i < PSVR_NUM_LEDS; i++) { vec[i] = t.model_vertices[indices[i]]; } return true; } }; static void create_match_list(TrackerPSVR &t) { // create our permutation list for matching // compute the distance and angles between a reference // vector, constructed from the first two vertices in // the permutation. Helper mp = {}; while (mp.step(t)) { match_model_t m; model_vertex_t ref_pt_a = mp.vec[0]; model_vertex_t ref_pt_b = mp.vec[1]; Eigen::Vector3f ref_vec3 = (ref_pt_b.position - ref_pt_a.position).head<3>(); float normScale = dist_3d(ref_pt_a.position, ref_pt_b.position); match_data_t md; for (auto &&i : mp.vec) { Eigen::Vector3f point_vec3 = (i.position - ref_pt_a.position).head<3>(); md.vertex_index = i.vertex_index; md.distance = dist_3d(i.position, ref_pt_a.position) / normScale; if (i.position.head<3>().dot( Eigen::Vector3f(0.0, 0.0, 1.0f)) < 0) { md.distance *= -1; } Eigen::Vector3f plane_norm = ref_vec3.cross(point_vec3).normalized(); if (ref_pt_a.position != i.position) { if (plane_norm.normalized().z() > 0) { md.angle = -1 * acos( (point_vec3) .normalized() .dot( ref_vec3.normalized())); } else { md.angle = acos(point_vec3.normalized().dot( ref_vec3.normalized())); } } else { md.angle = 0.0f; } // fix up any NaNs if (md.angle != md.angle) { md.angle = 0.0f; } if (md.distance != md.distance) { md.distance = 0.0f; } m.measurements.push_back(md); } if (match_possible(&m)) { t.matches.push_back(m); } } } static void do_view(TrackerPSVR &t, View &view, cv::Mat &grey, cv::Mat &rgb) { // Undistort and rectify the whole image. cv::remap(grey, // src view.frame_undist_rectified, // dst view.undistort_rectify_map_x, // map1 view.undistort_rectify_map_y, // map2 cv::INTER_NEAREST, // interpolation - LINEAR seems // very slow on my setup cv::BORDER_CONSTANT, // borderMode cv::Scalar(0, 0, 0)); // borderValue cv::threshold(view.frame_undist_rectified, // src view.frame_undist_rectified, // dst 32.0, // thresh 255.0, // maxval 0); t.sbd->detect(view.frame_undist_rectified, // image view.keypoints, // keypoints cv::noArray()); // mask // Debug is wanted, draw the keypoints. if (rgb.cols > 0) { cv::drawKeypoints( view.frame_undist_rectified, // image view.keypoints, // keypoints rgb, // outImage cv::Scalar(255, 0, 0), // color cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); // flags } } typedef struct blob_data { int tc_to_bc; // top center to bottom center int lc_to_rc; // left center to right center int tl_to_br; // top left to bottom right int bl_to_tr; // bottom left to top right int diff_a; int diff_b; bool ignore; } blob_data_t; static void sample_line(cv::Mat &src, cv::Point2i start, cv::Point2i end, int *inside_length) { // use bresenhams algorithm to sample the // pixels between two points in an image *inside_length = 0; int curr_x = start.x; int curr_y = start.y; int slope_x = start.x < end.x ? 1 : -1; int slope_y = start.y < end.y ? 1 : -1; int dx = end.x - start.x; int dy = -1 * abs(end.y - start.y); int e_xy = dx + dy; /* error value e_xy */ while (1) { // sample our pixel and see if it is in the interior if (curr_x > 0 && curr_y > 0) { // cv is row, column uint8_t *val = src.ptr(curr_y, curr_x); // @todo: we are just counting pixels rather // than measuring length - bresenhams may introduce some // inaccuracy here. if (*val > 128) { (*inside_length) += 1; } } if (curr_x == end.x && curr_y == end.y) { break; } int err2 = 2 * e_xy; if (err2 >= dy) { e_xy += dy; curr_x += slope_x; } if (err2 <= dx) { e_xy += dx; curr_y += slope_y; } } } static void blob_intersections(cv::Mat &src, cv::KeyPoint *kp, struct blob_data *bd) { // compute the intersections in 4 'directions' between the // extents of the 'square' region we get from the opencv blob // detector // compute the difference between the 'axis pairs' - the // relative magnitude and signs of these diffs can differentiate // between front and side blobs, as we can only ever see one // 'side' blob at a time, and its orientation will be opposite // to the others int radius = kp->size / 2; cv::Rect2i sq_b(kp->pt.x - radius, kp->pt.y - radius, kp->size, kp->size); sample_line(src, cv::Point2i(sq_b.x, sq_b.y), cv::Point2i(sq_b.x + sq_b.width, sq_b.y + sq_b.height), &bd->tl_to_br); sample_line(src, cv::Point2i(sq_b.x, sq_b.y + sq_b.height), cv::Point2i(sq_b.x + sq_b.width, sq_b.y), &bd->bl_to_tr); sample_line(src, cv::Point2i(sq_b.x, sq_b.y + sq_b.height / 2), cv::Point2i(sq_b.x + sq_b.width, sq_b.y + sq_b.height / 2), &bd->tc_to_bc); sample_line(src, cv::Point2i(sq_b.x + sq_b.width / 2, sq_b.y), cv::Point2i(sq_b.x + sq_b.width / 2, sq_b.y + sq_b.height), &bd->lc_to_rc); bd->diff_a = bd->tl_to_br - bd->bl_to_tr; bd->diff_b = bd->tc_to_bc - bd->lc_to_rc; bd->ignore = false; } static void tag_points(TrackerPSVR &t, std::vector *blob_datas) { // determine the 'channel' horiz/vert or 45 deg offset - with // the highest signal - and calculate the lower bound below // which we will ignore the blob, as it is not sufficiently // 'long' to identify int channel_a_total = 0; int channel_b_total = 0; int channel_a_min = INT_MAX; int channel_b_min = INT_MAX; int channel_a_max = INT_MIN; int channel_b_max = INT_MIN; int channel_a_pos = 0; int channel_a_neg = 0; int channel_b_pos = 0; int channel_b_neg = 0; for (uint32_t i = 0; i < blob_datas->size(); i++) { blob_data_t b = blob_datas->at(i); channel_a_total += abs(b.diff_a); if (abs(b.diff_a) < channel_a_min) { channel_a_min = b.diff_a; } if (abs(b.diff_a) > channel_a_max) { channel_a_min = b.diff_a; } if (b.diff_a < 0) { channel_a_neg++; } else { channel_a_pos++; } if (b.diff_b < 0) { channel_b_neg++; } else { channel_b_pos++; } channel_b_total += abs(b.diff_b); if (abs(b.diff_b) < channel_b_min) { channel_b_min = b.diff_b; } if (abs(b.diff_b) > channel_b_max) { channel_b_min = b.diff_b; } } int side_count = 0; if (channel_a_total > channel_b_total) { // use channel a float channel_dev = (channel_a_total / float(blob_datas->size())) / 2.0f; int usable_count = 0; for (uint32_t i = 0; i < blob_datas->size(); i++) { if (abs(blob_datas->at(i).diff_a) > channel_dev) { usable_count++; } else { if (blob_datas->at(i).diff_a < 0) { channel_a_neg--; blob_datas->at(i).ignore = true; } else { channel_a_pos--; blob_datas->at(i).ignore = true; } } } if (usable_count > 2) { // we can now check the signs, and identify the // 'odd one out' as the side LED - if we have a // consensus of directions, we can identify them // all as 'front' LEDs. for (uint32_t i = 0; i < blob_datas->size(); i++) { if (!blob_datas->at(i).ignore) { if (channel_a_pos > channel_a_neg) { // we can tag all the // positive ones with // FRONT and all the // negative ones with // SIDE if (blob_datas->at(i).diff_a >= 0) { t.world_points[i] .btype = BLOB_TYPE_FRONT; } else { t.world_points[i] .btype = BLOB_TYPE_SIDE; side_count++; } } else { if (blob_datas->at(i).diff_a < 0) { t.world_points[i] .btype = BLOB_TYPE_FRONT; } else { t.world_points[i] .btype = BLOB_TYPE_SIDE; side_count++; } } } } } } else { // use channel b float channel_dev = (channel_b_total / float(blob_datas->size())) / 2.0f; int usable_count = 0; for (uint32_t i = 0; i < blob_datas->size(); i++) { if (abs(blob_datas->at(i).diff_b) > channel_dev) { usable_count++; } else { if (blob_datas->at(i).diff_b < 0) { channel_b_neg--; blob_datas->at(i).ignore = true; } else { channel_b_pos--; blob_datas->at(i).ignore = true; } } } if (usable_count > 2) { // we can now check the signs, and identify the // 'odd one out' as the side LED - if we have a // consensus of directions, we can identify them // all as 'front' LEDs. for (uint32_t i = 0; i < blob_datas->size(); i++) { if (blob_datas->at(i).ignore) { continue; } if (channel_b_pos > channel_b_neg) { // we can tag all the positive ones with // FRONT and all the egative ones with // SIDE if (blob_datas->at(i).diff_b >= 0) { t.world_points[i].btype = BLOB_TYPE_FRONT; } else { t.world_points[i].btype = BLOB_TYPE_SIDE; side_count++; } } else { if (blob_datas->at(i).diff_b < 0) { t.world_points[i].btype = BLOB_TYPE_FRONT; } else { t.world_points[i].btype = BLOB_TYPE_SIDE; side_count++; } } } } } if (side_count > 1) { PSVR_INFO("FOUND MULTIPLE SIDE LEDS. should never happen!"); for (uint32_t i = 0; i < t.world_points.size(); i++) { t.world_points.at(i).btype = BLOB_TYPE_UNKNOWN; } } } static void process(TrackerPSVR &t, struct xrt_frame *xf) { // No frame supplied, early-out. if (xf == NULL) { return; } t.debug.refresh(xf); // compute a dt for our filter(s) //@todo - use a more precise measurement here float dt = xf->source_sequence - t.last_frame; if (dt > 10.0f) { dt = 1.0f; } std::vector predicted_pose; filter_predict(&predicted_pose, t.track_filters, dt / 2.0f); model_vertex_t measured_pose[PSVR_NUM_LEDS]; (void)measured_pose; // get our raw measurements t.view[0].keypoints.clear(); t.view[1].keypoints.clear(); t.l_blobs.clear(); t.r_blobs.clear(); t.world_points.clear(); int cols = xf->width / 2; int rows = xf->height; int stride = xf->stride; cv::Mat l_grey(rows, cols, CV_8UC1, xf->data, stride); cv::Mat r_grey(rows, cols, CV_8UC1, xf->data + cols, stride); do_view(t, t.view[0], l_grey, t.debug.rgb[0]); do_view(t, t.view[1], r_grey, t.debug.rgb[1]); // if we wish to confirm our camera input contents, dump frames // to disk // cv::imwrite("/tmp/l_view.png", t.view[0].frame_undist_rectified); // cv::imwrite("/tmp/r_view.png", t.view[1].frame_undist_rectified); // do some basic matching to come up with likely // disparity-pairs. for (uint32_t i = 0; i < t.view[0].keypoints.size(); i++) { cv::KeyPoint l_blob = t.view[0].keypoints[i]; int l_index = -1; int r_index = -1; for (uint32_t j = 0; j < t.view[1].keypoints.size(); j++) { float lowest_dist = 65535.0f; cv::KeyPoint r_blob = t.view[1].keypoints[j]; // find closest point on same-ish scanline float xdiff = r_blob.pt.x - l_blob.pt.x; float ydiff = r_blob.pt.y - l_blob.pt.y; if ((ydiff < 3.0f) && (ydiff > -3.0f) && (abs(xdiff) < lowest_dist)) { lowest_dist = abs(xdiff); r_index = j; l_index = i; } } if (l_index > -1 && r_index > -1) { cv::KeyPoint lkp = t.view[0].keypoints.at(l_index); cv::KeyPoint rkp = t.view[1].keypoints.at(r_index); t.l_blobs.push_back(lkp); t.r_blobs.push_back(rkp); // printf("2D coords: LX %f LY %f RX %f RY %f\n", // lkp.pt.x, // lkp.pt.y, rkp.pt.x, rkp.pt.y); } } // Convert our 2d point + disparities into 3d points. std::vector blob_datas; if (t.l_blobs.size() > 0) { for (uint32_t i = 0; i < t.l_blobs.size(); i++) { float disp = t.r_blobs[i].pt.x - t.l_blobs[i].pt.x; cv::Vec4d xydw(t.l_blobs[i].pt.x, t.l_blobs[i].pt.y, disp, 1.0f); // Transform cv::Vec4d h_world = (cv::Matx44d)t.disparity_to_depth * xydw; // Divide by scale to get 3D vector from // homogeneous coordinate. we also invert x here blob_point_t bp; bp.p = cv::Point3f(-h_world[0] / h_world[3], h_world[1] / h_world[3], (h_world[2] / h_world[3])); bp.lkp = t.l_blobs[i]; bp.rkp = t.r_blobs[i]; bp.btype = BLOB_TYPE_UNKNOWN; t.world_points.push_back(bp); // compute the shape data for each blob blob_data_t intersections; blob_intersections(t.view[0].frame_undist_rectified, &bp.lkp, &intersections); blob_datas.push_back(intersections); } } tag_points(t, &blob_datas); t.pruned_points.clear(); t.merged_points.clear(); // remove outliers from our measurement list remove_outliers(&t.world_points, &t.pruned_points, PSVR_OUTLIER_THRESH); // remove any points that are too close to be // treated as separate leds merge_close_points(&t.pruned_points, &t.merged_points, PSVR_MERGE_THRESH); // uncomment to debug 'overpruning' or other issues // that may be related to calibration scale PSVR_INFO("world points: %d pruned points: %d merged points %d", (uint32_t)t.world_points.size(), (uint32_t)t.pruned_points.size(), (uint32_t)t.merged_points.size()); // put our blob positions in a slightly more // useful data structure if (t.merged_points.size() > PSVR_NUM_LEDS) { PSVR_INFO("Too many blobs to be a PSVR! %d", (uint32_t)t.merged_points.size()); } else { // convert our points to match data, // this tags our match_vertices with // everything we need to solve the pose. verts_to_measurement(&t.merged_points, &t.match_vertices); } #ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS // raw debug output for Blender algo development for (size_t i = 0; i < t.merged_points.size(); i++) { cv::Point3f unscaled = t.merged_points.at(i).p; fprintf(t.dump_file, "P,%" PRIu64 ",%f,%f,%f\n", xf->source_sequence, unscaled.x, unscaled.y, unscaled.z); } fprintf(t.dump_file, "\n"); #endif // our primary solving technique - optical and // fallback to imu-based is handled in the // disambiguate function - solved will contain our // best estimate of the position of the model vertices // in world space, and model_center_transform will // contain the pose matrix std::vector solved; Eigen::Matrix4f model_center_transform = disambiguate(t, &t.match_vertices, &predicted_pose, &solved, 0); // derive our optical rotation correction from the // pose transform Eigen::Matrix3f r = model_center_transform.block(0, 0, 3, 3); Eigen::Quaternionf rot(r); // we only do this if we are pretty confident we // will have a 'good' optical pose i.e. front-5 // leds. if (t.merged_points.size() >= PSVR_OPTICAL_SOLVE_THRESH) { Eigen::Quaternionf correction = rot * Eigen::Quaternionf(t.fusion.rot.w, t.fusion.rot.x, t.fusion.rot.y, t.fusion.rot.z) .inverse(); float correction_magnitude = t.target_optical_rotation_correction.angularDistance( correction); // for corrections subsequent to the // first, we never want to depart // massively from the imu rotation, as // such major adjustments are likely to // be erroneous. // uncomment to debug rotation correction convergence // issues PSVR_TRACE("Q1: %f %f %f %f Q2: %f %f %f %f", t.target_optical_rotation_correction.x(), t.target_optical_rotation_correction.y(), t.target_optical_rotation_correction.z(), t.target_optical_rotation_correction.w(), correction.x(), correction.y(), correction.z(), correction.w()); PSVR_TRACE("correction mag: %f avg %f", correction_magnitude, t.avg_optical_correction); // keep a running average of the last 10 corrections - // so we can apply the correction only when we are // relatively stable t.avg_optical_correction -= t.avg_optical_correction / 10.0f; t.avg_optical_correction += correction_magnitude / 10.0f; PSVR_DEBUG("optical solve %f", t.avg_optical_correction); // if we have not yet applied a 'converged' correction, // our best chance of 'locking on' is to apply whatever // correction we compute. if (!t.done_correction) { t.target_optical_rotation_correction = correction; PSVR_INFO("RECORRECTING"); } // only correct when we are stable if (t.avg_optical_correction < PSVR_CORRECTION_THRESH) { t.target_optical_rotation_correction = correction; t.done_correction = true; PSVR_INFO("LOCKED"); t.max_correction = PSVR_FAST_CORRECTION; t.bad_correction_count = 0; } if (t.avg_optical_correction > PSVR_BAD_CORRECTION_THRESH) { t.bad_correction_count++; } if (t.bad_correction_count > PSVR_MAX_BAD_CORR) { t.max_correction = PSVR_SLOW_CORRECTION; t.target_optical_rotation_correction = t.target_optical_rotation_correction.slerp( t.max_correction, correction); t.bad_correction_count = 0; PSVR_INFO("TOO MANY BAD CORRECTIONS. DRIFTED?"); } std::vector resolved; for (uint32_t i = 0; i < solved.size(); i++) { resolved.push_back(solved[i]); } solved.clear(); model_center_transform = solve_with_imu( t, &resolved, &predicted_pose, &solved, PSVR_SEARCH_RADIUS); } // move our applied correction towards the // target correction, rather than applying it // immediately to smooth things out. t.optical_rotation_correction = t.optical_rotation_correction.slerp( t.max_correction, t.target_optical_rotation_correction); #ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS fprintf(t.dump_file, "\n"); for (uint32_t i = 0; i < solved.size(); i++) { fprintf(t.dump_file, "S,%" PRIu64 ",%f,%f,%f\n", xf->source_sequence, solved[i].position.x(), solved[i].position.y(), solved[i].position.z()); } fprintf(t.dump_file, "\n"); /*std::vector alt_solved; Eigen::Matrix4f f_pose = solve_with_imu( t, &t.match_vertices, &t.last_vertices, &alt_solved, 10.0f); for (uint32_t i = 0; i < alt_solved.size(); i++) { fprintf(t.dump_file, "A,%" PRIu64 ",%f,%f,%f\n", xf->source_sequence, alt_solved[i].position.x(), alt_solved[i].position.y(), alt_solved[i].position.z()); } fprintf(t.dump_file, "\n");*/ #endif // store our last vertices for continuity // matching t.last_vertices.clear(); for (uint32_t i = 0; i < solved.size(); i++) { t.last_vertices.push_back(solved[i]); } if (t.last_vertices.size() > 0) { filter_update(&t.last_vertices, t.track_filters, dt / 1000.0f); } Eigen::Vector4f position = model_center_transform.col(3); pose_filter_update(&position, &t.pose_filter, dt); // NOTE: we will apply our rotation when we get imu // data - applying our calculated optical // correction at this time. We can update our // position now. Eigen::Vector4f filtered_pose; pose_filter_predict(&filtered_pose, &t.pose_filter, dt / 1000.0f); t.optical.pos.x = filtered_pose.x(); t.optical.pos.y = filtered_pose.y(); t.optical.pos.z = filtered_pose.z(); t.last_frame = xf->source_sequence; t.debug.submit(); xrt_frame_reference(&xf, NULL); } static void run(TrackerPSVR &t) { struct xrt_frame *frame = NULL; os_thread_helper_lock(&t.oth); while (os_thread_helper_is_running_locked(&t.oth)) { // No data if (!t.has_imu || t.frame == NULL) { os_thread_helper_wait_locked(&t.oth); } if (!os_thread_helper_is_running_locked(&t.oth)) { break; } // Take a reference on the current frame frame = t.frame; t.frame = NULL; // Unlock the mutex when we do the work. os_thread_helper_unlock(&t.oth); process(t, frame); // Have to lock it again. os_thread_helper_lock(&t.oth); } os_thread_helper_unlock(&t.oth); } static void get_pose(TrackerPSVR &t, timepoint_ns when_ns, struct xrt_space_relation *out_relation) { os_thread_helper_lock(&t.oth); // Don't do anything if we have stopped. if (!os_thread_helper_is_running_locked(&t.oth)) { os_thread_helper_unlock(&t.oth); return; } out_relation->pose.position = t.optical.pos; out_relation->pose.orientation = t.optical.rot; //! @todo assuming that orientation is actually //! currently tracked. out_relation->relation_flags = (enum xrt_space_relation_flags)( XRT_SPACE_RELATION_POSITION_VALID_BIT | XRT_SPACE_RELATION_POSITION_TRACKED_BIT | XRT_SPACE_RELATION_ORIENTATION_VALID_BIT | XRT_SPACE_RELATION_ORIENTATION_TRACKED_BIT); os_thread_helper_unlock(&t.oth); } static void imu_data(TrackerPSVR &t, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample) { os_thread_helper_lock(&t.oth); // Don't do anything if we have stopped. if (!os_thread_helper_is_running_locked(&t.oth)) { os_thread_helper_unlock(&t.oth); return; } if (t.last_imu != 0) { time_duration_ns delta_ns = timestamp_ns - t.last_imu; float dt = time_ns_to_s(delta_ns); // Super simple fusion. math_quat_integrate_velocity( &t.fusion.rot, &sample->gyro_rad_secs, dt, &t.fusion.rot); } // apply our optical correction to imu rotation // data Eigen::Quaternionf corrected_rot_q = t.optical_rotation_correction * Eigen::Quaternionf(t.fusion.rot.w, t.fusion.rot.x, t.fusion.rot.y, t.fusion.rot.z); Eigen::Matrix4f corrected_rot = Eigen::Matrix4f::Identity(); corrected_rot.block(0, 0, 3, 3) = corrected_rot_q.toRotationMatrix(); t.corrected_imu_rotation = corrected_rot; if (t.done_correction) { corrected_rot_q = t.axis_align_rot * corrected_rot_q; } t.optical.rot.x = corrected_rot_q.x(); t.optical.rot.y = corrected_rot_q.y(); t.optical.rot.z = corrected_rot_q.z(); t.optical.rot.w = corrected_rot_q.w(); t.last_imu = timestamp_ns; #ifdef PSVR_DUMP_IMU_FOR_OFFLINE_ANALYSIS fprintf(t.dump_file, "I,%" PRIu64 ", %f,%f,%f,%f\n\n", timestamp_ns, t.fusion.rot.x, t.fusion.rot.y, t.fusion.rot.z, t.fusion.rot.w); fprintf(t.dump_file, "C,%" PRIu64 ", %f,%f,%f,%f\n\n", timestamp_ns, corrected_rot_q.x(), corrected_rot_q.y(), corrected_rot_q.z(), corrected_rot_q.w()); #endif os_thread_helper_unlock(&t.oth); } static void frame(TrackerPSVR &t, struct xrt_frame *xf) { os_thread_helper_lock(&t.oth); // Don't do anything if we have stopped. if (!os_thread_helper_is_running_locked(&t.oth)) { os_thread_helper_unlock(&t.oth); return; } xrt_frame_reference(&t.frame, xf); // Wake up the thread. os_thread_helper_signal_locked(&t.oth); os_thread_helper_unlock(&t.oth); } static void break_apart(TrackerPSVR &t) { os_thread_helper_stop(&t.oth); } /* * * C wrapper functions. * */ extern "C" void t_psvr_push_imu(struct xrt_tracked_psvr *xtvr, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample) { auto &t = *container_of(xtvr, TrackerPSVR, base); imu_data(t, timestamp_ns, sample); } extern "C" void t_psvr_get_tracked_pose(struct xrt_tracked_psvr *xtvr, timepoint_ns when_ns, struct xrt_space_relation *out_relation) { auto &t = *container_of(xtvr, TrackerPSVR, base); get_pose(t, when_ns, out_relation); } extern "C" void t_psvr_fake_destroy(struct xrt_tracked_psvr *xtvr) { auto &t = *container_of(xtvr, TrackerPSVR, base); (void)t; // Not the real destroy function } extern "C" void t_psvr_sink_push_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf) { auto &t = *container_of(xsink, TrackerPSVR, sink); frame(t, xf); } extern "C" void t_psvr_node_break_apart(struct xrt_frame_node *node) { auto &t = *container_of(node, TrackerPSVR, node); break_apart(t); } extern "C" void t_psvr_node_destroy(struct xrt_frame_node *node) { auto t_ptr = container_of(node, TrackerPSVR, node); os_thread_helper_destroy(&t_ptr->oth); delete t_ptr; } extern "C" void * t_psvr_run(void *ptr) { auto &t = *(TrackerPSVR *)ptr; run(t); return NULL; } /* * * Exported functions. * */ extern "C" int t_psvr_start(struct xrt_tracked_psvr *xtvr) { auto &t = *container_of(xtvr, TrackerPSVR, base); int ret; ret = os_thread_helper_start(&t.oth, t_psvr_run, &t); if (ret != 0) { return ret; } return ret; } extern "C" int t_psvr_create(struct xrt_frame_context *xfctx, struct t_stereo_camera_calibration *data, struct xrt_tracked_psvr **out_xtvr, struct xrt_frame_sink **out_sink) { auto &t = *(new TrackerPSVR()); t.ll = debug_get_log_option_psvr_log(); PSVR_INFO("%s", __func__); int ret; for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { init_filter(t.track_filters[i], PSVR_BLOB_PROCESS_NOISE, PSVR_BLOB_MEASUREMENT_NOISE, 1.0f); } init_filter(t.pose_filter, PSVR_POSE_PROCESS_NOISE, PSVR_POSE_MEASUREMENT_NOISE, 1.0f); StereoRectificationMaps rectify(data); t.view[0].populate_from_calib(data->view[0], rectify.view[0].rectify); t.view[1].populate_from_calib(data->view[1], rectify.view[1].rectify); t.disparity_to_depth = rectify.disparity_to_depth_mat; StereoCameraCalibrationWrapper wrapped(data); t.r_cam_rotation = wrapped.camera_rotation_mat; t.r_cam_translation = wrapped.camera_translation_mat; t.calibrated = true; // clang-format off cv::SimpleBlobDetector::Params blob_params; blob_params.filterByArea = false; blob_params.filterByConvexity = false; blob_params.filterByInertia = false; blob_params.filterByColor = true; blob_params.blobColor = 255; // 0 or 255 - color comes from binarized image? blob_params.minArea = 0; blob_params.maxArea = 1000; blob_params.maxThreshold = 51; // using a wide threshold span slows things down bigtime blob_params.minThreshold = 50; blob_params.thresholdStep = 1; blob_params.minDistBetweenBlobs = 5; blob_params.minRepeatability = 1; // need this to avoid error? // clang-format on t.sbd = cv::SimpleBlobDetector::create(blob_params); t.target_optical_rotation_correction = Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f); t.optical_rotation_correction = Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f); t.axis_align_rot = Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f); t.corrected_imu_rotation = Eigen::Matrix4f().Identity(); t.avg_optical_correction = 10.0f; // initialise to a high value, so we // can converge to a low one. t.max_correction = PSVR_FAST_CORRECTION; t.bad_correction_count = 0; Eigen::Quaternionf align(Eigen::AngleAxis( -M_PI / 2, Eigen::Vector3f(0.0f, 0.0f, 1.0f))); Eigen::Quaternionf align2( Eigen::AngleAxis(M_PI, Eigen::Vector3f(0.0f, 1.0f, 0.0f))); t.axis_align_rot = align2; // * align; t.last_optical_model = 0; // offset our models center of rotation create_model(t); create_match_list(t); t.base.get_tracked_pose = t_psvr_get_tracked_pose; t.base.push_imu = t_psvr_push_imu; t.base.destroy = t_psvr_fake_destroy; t.sink.push_frame = t_psvr_sink_push_frame; t.node.break_apart = t_psvr_node_break_apart; t.node.destroy = t_psvr_node_destroy; t.fusion.rot.w = 1.0f; ret = os_thread_helper_init(&t.oth); if (ret != 0) { delete (&t); return ret; } t.fusion.pos.x = 0.0f; t.fusion.pos.y = 0.0f; t.fusion.pos.z = 0.0f; t.fusion.rot.x = 0.0f; t.fusion.rot.y = 0.0f; t.fusion.rot.z = 0.0f; t.fusion.rot.w = 1.0f; xrt_frame_context_add(xfctx, &t.node); // Everything is safe, now setup the variable tracking. u_var_add_root(&t, "PSVR Tracker", true); u_var_add_log_level(&t, &t.ll, "Log level"); u_var_add_sink(&t, &t.debug.sink, "Debug"); *out_sink = &t.sink; *out_xtvr = &t.base; #ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS t.dump_file = fopen("/tmp/psvr_dump.txt", "w"); #endif return 0; }