// Copyright 2019-2020, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief PS Move tracker code. * @author Pete Black * @author Jakob Bornecrantz * @author Ryan Pavlik * @ingroup aux_tracking */ #include "xrt/xrt_tracking.h" #include "tracking/t_tracking.h" #include "tracking/t_calibration_opencv.hpp" #include "tracking/t_tracker_psmv_fusion.hpp" #include "tracking/t_helper_debug_sink.hpp" #include "util/u_var.h" #include "util/u_misc.h" #include "util/u_debug.h" #include "util/u_frame.h" #include "util/u_format.h" #include "math/m_api.h" #include "os/os_threading.h" #include #include #include /*! * Single camera. */ struct View { cv::Mat undistort_rectify_map_x; cv::Mat undistort_rectify_map_y; cv::Matx33d intrinsics; cv::Mat distortion; // size may vary cv::Vec4d distortion_fisheye; bool use_fisheye; std::vector keypoints; cv::Mat frame_undist_rectified; void populate_from_calib(t_camera_calibration &calib, const RemapPair &rectification) { CameraCalibrationWrapper wrap(calib); intrinsics = wrap.intrinsics_mat; distortion = wrap.distortion_mat.clone(); distortion_fisheye = wrap.distortion_fisheye_mat; use_fisheye = wrap.use_fisheye; undistort_rectify_map_x = rectification.remap_x; undistort_rectify_map_y = rectification.remap_y; } }; struct TrackerPSMV { struct xrt_tracked_psmv base = {}; struct xrt_frame_sink sink = {}; struct xrt_frame_node node = {}; //! Frame waiting to be processed. struct xrt_frame *frame; //! Thread and lock helper. struct os_thread_helper oth; bool tracked = false; HelperDebugSink debug = {HelperDebugSink::AllAvailable}; //! Have we received a new IMU sample. bool has_imu = false; struct { struct xrt_vec3 pos = {}; struct xrt_quat rot = {}; } fusion; View view[2]; bool calibrated; cv::Mat disparity_to_depth; cv::Vec3d r_cam_translation; cv::Matx33d r_cam_rotation; cv::Ptr sbd; std::unique_ptr filter; xrt_vec3 tracked_object_position; }; /*! * @brief Perform per-view (two in a stereo camera image) processing on an * image, before tracking math is performed. * * Right now, this is mainly finding blobs/keypoints. */ static void do_view(TrackerPSMV &t, View &view, cv::Mat &grey, cv::Mat &rgb) { // Undistort and rectify the whole image. cv::remap(grey, // src view.frame_undist_rectified, // dst view.undistort_rectify_map_x, // map1 view.undistort_rectify_map_y, // map2 cv::INTER_LINEAR, // interpolation cv::BORDER_CONSTANT, // borderMode cv::Scalar(0, 0, 0)); // borderValue cv::threshold(view.frame_undist_rectified, // src view.frame_undist_rectified, // dst 32.0, // thresh 255.0, // maxval 0); // type // tracker_measurement_t m = {}; // Do blob detection with our masks. //! @todo Re-enable masks. t.sbd->detect(view.frame_undist_rectified, // image view.keypoints, // keypoints cv::noArray()); // mask // Debug is wanted, draw the keypoints. if (rgb.cols > 0) { cv::drawKeypoints( view.frame_undist_rectified, // image view.keypoints, // keypoints rgb, // outImage cv::Scalar(255, 0, 0), // color cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); // flags } } /*! * @brief Helper struct that keeps the value that produces the lowest "score" as * computed by your functor. * * Having this as a struct with a method, instead of a single "algorithm"-style * function, allows you to keep your complicated filtering logic in your own * loop, just calling in when you have a new candidate for "best". * * @note Create by calling make_lowest_score_finder() with your * function/lambda that takes an element and returns the score, to deduce the * un-spellable typename of the lambda. * * @tparam ValueType The type of a single element value - whatever you want to * assign a score to. * @tparam FunctionType The type of your functor/lambda that turns a ValueType * into a float "score". Usually deduced. */ template struct FindLowestScore { const FunctionType score_functor; bool got_one{false}; ValueType best{}; float best_score{0}; void handle_candidate(ValueType val) { float score = score_functor(val); if (!got_one || score < best_score) { best = val; best_score = score; got_one = true; } } }; //! Factory function for FindLowestScore to deduce the functor type. template static FindLowestScore make_lowest_score_finder(FunctionType scoreFunctor) { return FindLowestScore{scoreFunctor}; } //! Convert our 2d point + disparities into 3d points. static cv::Point3f world_point_from_blobs(cv::Point2f left, cv::Point2f right, const cv::Matx44d &disparity_to_depth) { float disp = right.x - left.x; cv::Vec4d xydw(left.x, left.y, disp, 1.0f); // Transform cv::Vec4d h_world = disparity_to_depth * xydw; // Divide by scale to get 3D vector from homogeneous // coordinate. invert x while we are here. cv::Point3f world_point(-h_world[0] / h_world[3], h_world[1] / h_world[3], h_world[2] / h_world[3]); return world_point; } /*! * @brief Perform tracking computations on a frame of video data. */ static void process(TrackerPSMV &t, struct xrt_frame *xf) { // Only IMU data: nothing to do if (xf == NULL) { return; } // Wrong type of frame: unreference and return? if (xf->format != XRT_FORMAT_L8) { xrt_frame_reference(&xf, NULL); return; } if (!t.calibrated) { return; } // Create the debug frame if needed. t.debug.refresh(xf); t.view[0].keypoints.clear(); t.view[1].keypoints.clear(); int cols = xf->width / 2; int rows = xf->height; int stride = xf->stride; cv::Mat l_grey(rows, cols, CV_8UC1, xf->data, stride); cv::Mat r_grey(rows, cols, CV_8UC1, xf->data + cols, stride); do_view(t, t.view[0], l_grey, t.debug.rgb[0]); do_view(t, t.view[1], r_grey, t.debug.rgb[1]); cv::Point3f last_point(t.tracked_object_position.x, t.tracked_object_position.y, t.tracked_object_position.z); auto nearest_world = make_lowest_score_finder([&](cv::Point3f world_point) { //! @todo don't really need the square root to be done here. return cv::norm(world_point - last_point); }); // do some basic matching to come up with likely disparity-pairs. const cv::Matx44d disparity_to_depth = static_cast(t.disparity_to_depth); for (const cv::KeyPoint &l_keypoint : t.view[0].keypoints) { cv::Point2f l_blob = l_keypoint.pt; auto nearest_blob = make_lowest_score_finder( [&](cv::Point2f r_blob) { return l_blob.x - r_blob.x; }); for (const cv::KeyPoint &r_keypoint : t.view[1].keypoints) { cv::Point2f r_blob = r_keypoint.pt; // find closest point on same-ish scanline if ((l_blob.y < r_blob.y + 3) && (l_blob.y > r_blob.y - 3)) { nearest_blob.handle_candidate(r_blob); } } //! @todo do we need to avoid claiming the same counterpart //! several times? if (nearest_blob.got_one) { cv::Point3f pt = world_point_from_blobs( l_blob, nearest_blob.best, disparity_to_depth); nearest_world.handle_candidate(pt); } } if (nearest_world.got_one) { cv::Point3f world_point = nearest_world.best; // update internal state memcpy(&t.tracked_object_position, &world_point.x, sizeof(t.tracked_object_position)); } else { t.filter->clear_position_tracked_flag(); } // We are done with the debug frame. t.debug.submit(); // We are done with the frame. xrt_frame_reference(&xf, NULL); if (nearest_world.got_one) { #if 0 //! @todo something less arbitrary for the lever arm? //! This puts the origin approximately under the PS //! button. xrt_vec3 lever_arm{0.f, 0.09f, 0.f}; //! @todo this should depend on distance // Weirdly, this is where *not* applying the // disparity-to-distance/rectification/etc would // simplify things, since the measurement variance is // related to the image sensor. 1.e-4 means 1cm std dev. // Not sure how to estimate the depth variance without // some research. xrt_vec3 variance{1.e-4f, 1.e-4f, 4.e-4f}; #endif t.filter->process_3d_vision_data( 0, &t.tracked_object_position, NULL, NULL, //! @todo tune cutoff for residual arbitrarily "too large" 15); } else { t.filter->clear_position_tracked_flag(); } } /*! * @brief Tracker processing thread function */ static void run(TrackerPSMV &t) { struct xrt_frame *frame = NULL; os_thread_helper_lock(&t.oth); while (os_thread_helper_is_running_locked(&t.oth)) { // No data if (!t.has_imu || t.frame == NULL) { os_thread_helper_wait_locked(&t.oth); } if (!os_thread_helper_is_running_locked(&t.oth)) { break; } // Take a reference on the current frame, this keeps it alive // if it is replaced during the consumer processing it, but // we no longer need to hold onto the frame on the queue we // just move the pointer. frame = t.frame; t.frame = NULL; // Unlock the mutex when we do the work. os_thread_helper_unlock(&t.oth); process(t, frame); // Have to lock it again. os_thread_helper_lock(&t.oth); } os_thread_helper_unlock(&t.oth); } /*! * @brief Retrieves a pose from the filter. */ static void get_pose(TrackerPSMV &t, enum xrt_input_name name, timepoint_ns when_ns, struct xrt_space_relation *out_relation) { os_thread_helper_lock(&t.oth); // Don't do anything if we have stopped. if (!os_thread_helper_is_running_locked(&t.oth)) { os_thread_helper_unlock(&t.oth); return; } if (name == XRT_INPUT_PSMV_BALL_CENTER_POSE) { out_relation->pose.position = t.tracked_object_position; out_relation->pose.orientation.x = 0.0f; out_relation->pose.orientation.y = 0.0f; out_relation->pose.orientation.z = 0.0f; out_relation->pose.orientation.w = 1.0f; out_relation->relation_flags = (enum xrt_space_relation_flags)( XRT_SPACE_RELATION_POSITION_VALID_BIT | XRT_SPACE_RELATION_POSITION_TRACKED_BIT); os_thread_helper_unlock(&t.oth); return; } t.filter->get_prediction(when_ns, out_relation); os_thread_helper_unlock(&t.oth); } static void imu_data(TrackerPSMV &t, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample) { os_thread_helper_lock(&t.oth); // Don't do anything if we have stopped. if (!os_thread_helper_is_running_locked(&t.oth)) { os_thread_helper_unlock(&t.oth); return; } t.filter->process_imu_data(timestamp_ns, sample, NULL); os_thread_helper_unlock(&t.oth); } static void frame(TrackerPSMV &t, struct xrt_frame *xf) { os_thread_helper_lock(&t.oth); // Don't do anything if we have stopped. if (!os_thread_helper_is_running_locked(&t.oth)) { os_thread_helper_unlock(&t.oth); return; } xrt_frame_reference(&t.frame, xf); // Wake up the thread. os_thread_helper_signal_locked(&t.oth); os_thread_helper_unlock(&t.oth); } static void break_apart(TrackerPSMV &t) { os_thread_helper_stop(&t.oth); } /* * * C wrapper functions. * */ extern "C" void t_psmv_push_imu(struct xrt_tracked_psmv *xtmv, timepoint_ns timestamp_ns, struct xrt_tracking_sample *sample) { auto &t = *container_of(xtmv, TrackerPSMV, base); imu_data(t, timestamp_ns, sample); } extern "C" void t_psmv_get_tracked_pose(struct xrt_tracked_psmv *xtmv, enum xrt_input_name name, timepoint_ns when_ns, struct xrt_space_relation *out_relation) { auto &t = *container_of(xtmv, TrackerPSMV, base); get_pose(t, name, when_ns, out_relation); } extern "C" void t_psmv_fake_destroy(struct xrt_tracked_psmv *xtmv) { auto &t = *container_of(xtmv, TrackerPSMV, base); (void)t; // Not the real destroy function } extern "C" void t_psmv_sink_push_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf) { auto &t = *container_of(xsink, TrackerPSMV, sink); frame(t, xf); } extern "C" void t_psmv_node_break_apart(struct xrt_frame_node *node) { auto &t = *container_of(node, TrackerPSMV, node); break_apart(t); } extern "C" void t_psmv_node_destroy(struct xrt_frame_node *node) { auto t_ptr = container_of(node, TrackerPSMV, node); os_thread_helper_destroy(&t_ptr->oth); // Tidy variable setup. u_var_remove_root(t_ptr); delete t_ptr; } extern "C" void * t_psmv_run(void *ptr) { auto &t = *(TrackerPSMV *)ptr; run(t); return NULL; } /* * * Exported functions. * */ extern "C" int t_psmv_start(struct xrt_tracked_psmv *xtmv) { auto &t = *container_of(xtmv, TrackerPSMV, base); return os_thread_helper_start(&t.oth, t_psmv_run, &t); } extern "C" int t_psmv_create(struct xrt_frame_context *xfctx, struct xrt_colour_rgb_f32 *rgb, struct t_stereo_camera_calibration *data, struct xrt_tracked_psmv **out_xtmv, struct xrt_frame_sink **out_sink) { fprintf(stderr, "%s\n", __func__); auto &t = *(new TrackerPSMV()); int ret; t.base.get_tracked_pose = t_psmv_get_tracked_pose; t.base.push_imu = t_psmv_push_imu; t.base.destroy = t_psmv_fake_destroy; t.base.colour = *rgb; t.sink.push_frame = t_psmv_sink_push_frame; t.node.break_apart = t_psmv_node_break_apart; t.node.destroy = t_psmv_node_destroy; t.fusion.rot.x = 0.0f; t.fusion.rot.y = 0.0f; t.fusion.rot.z = 0.0f; t.fusion.rot.w = 1.0f; t.filter = xrt_fusion::PSMVFusionInterface::create(); ret = os_thread_helper_init(&t.oth); if (ret != 0) { delete (&t); return ret; } static int hack = 0; switch (hack++) { case 0: t.fusion.pos.x = -0.3f; t.fusion.pos.y = 1.3f; t.fusion.pos.z = -0.5f; break; case 1: t.fusion.pos.x = 0.3f; t.fusion.pos.y = 1.3f; t.fusion.pos.z = -0.5f; break; default: t.fusion.pos.x = 0.0f; t.fusion.pos.y = 0.8f + hack * 0.1f; t.fusion.pos.z = -0.5f; break; } StereoRectificationMaps rectify(data); t.view[0].populate_from_calib(data->view[0], rectify.view[0].rectify); t.view[1].populate_from_calib(data->view[1], rectify.view[1].rectify); t.disparity_to_depth = rectify.disparity_to_depth_mat; StereoCameraCalibrationWrapper wrapped(data); t.r_cam_rotation = wrapped.camera_rotation_mat; t.r_cam_translation = wrapped.camera_translation_mat; t.calibrated = true; // clang-format off cv::SimpleBlobDetector::Params blob_params; blob_params.filterByArea = false; blob_params.filterByConvexity = true; blob_params.minConvexity = 0.8; blob_params.filterByInertia = false; blob_params.filterByColor = true; blob_params.blobColor = 255; // 0 or 255 - color comes from binarized image? blob_params.minArea = 1; blob_params.maxArea = 1000; blob_params.maxThreshold = 51; // using a wide threshold span slows things down bigtime blob_params.minThreshold = 50; blob_params.thresholdStep = 1; blob_params.minDistBetweenBlobs = 5; blob_params.minRepeatability = 1; // need this to avoid error? // clang-format on t.sbd = cv::SimpleBlobDetector::create(blob_params); xrt_frame_context_add(xfctx, &t.node); // Everything is safe, now setup the variable tracking. u_var_add_root(&t, "PSMV Tracker", true); u_var_add_vec3_f32(&t, &t.tracked_object_position, "last.ball.pos"); u_var_add_sink(&t, &t.debug.sink, "Debug"); *out_sink = &t.sink; *out_xtmv = &t.base; return 0; }