#!/usr/bin/env python3 # Copyright 2022, Collabora, Ltd. # SPDX-License-Identifier: BSL-1.0 # Authors: Moses Turner """Simple script to upload Monado camera calibrations to DepthAI devices.""" # Todo, make this work with calibrations from Basalt from dataclasses import dataclass from typing import Any, Callable, ClassVar, Dict, Iterator, List, Optional, Tuple import cv2 import cv2.fisheye import depthai as dai import json import numpy as np import math import argparse parser = argparse.ArgumentParser(description='Train keypoints network') parser.add_argument("calibration_file") parser.add_argument('--super-cow', help="I know what I'm doing, run the script with no prompt", dest='super_cow', action='store_true' ) parser.add_argument('--baseline', help="Specified camera baseline (by CAD, or whatever), in centimeters", type=float ) parser.set_defaults(super_cow=False) parser.set_defaults(baseline=8) args = parser.parse_args() # print(args.super_cow, args.calibration_file) if (not args.super_cow): print("Warning! This script will erase the current calibration on your DepthAI device and replace it with something new, and there is no going back!") print("Also, there is no way to specify which device to upload to, so make sure you've only plugged one in!") print("If you don't know what you're doing, please exit this script!") print("Otherwise, type \"I know what I am doing\"") text = input() if (text != "I know what I am doing"): print("Prompt failed!") exit() print(args.baseline) # Create pipeline pipeline = dai.Pipeline() # Define sources and outputs monoLeft = pipeline.create(dai.node.MonoCamera) monoRight = pipeline.create(dai.node.MonoCamera) xoutLeft = pipeline.create(dai.node.XLinkOut) xoutRight = pipeline.create(dai.node.XLinkOut) xoutLeft.setStreamName('left') xoutRight.setStreamName('right') # Properties monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT) monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P) monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT) monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P) # Linking monoRight.out.link(xoutRight.input) monoLeft.out.link(xoutLeft.input) @dataclass class camera: camera_matrix: List[List[float]] distortion: List[float] # rotation_matrix: List[List[float]] with open(args.calibration_file) as f: calibration_json = json.load(f) fisheye = calibration_json["cameras"][0]["model"] == "fisheye_equidistant4" print("Fisheye:", fisheye) if fisheye: camera_model = dai.CameraModel.Fisheye else: camera_model = dai.CameraModel.Perspective # Connect to device and start pipeline with dai.Device(pipeline) as device: # Output queues will be used to get the grayscale frames from the outputs defined above qLeft = device.getOutputQueue(name="left", maxSize=4, blocking=False) qRight = device.getOutputQueue(name="right", maxSize=4, blocking=False) while True: # Instead of get (blocking), we use tryGet (nonblocking) which will return the available data or None otherwise inLeft = qLeft.tryGet() inRight = qRight.tryGet() if inLeft is not None: cv2.imshow("left", inLeft.getCvFrame()) if inRight is not None: cv2.imshow("right", inRight.getCvFrame()) if cv2.waitKey(1) == ord('q'): break break # [[0,0,0],[0,0,0],[0,0,0]] cameras = [camera([[0, 0, 0], [0, 0, 0], [0, 0, 0]], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), camera([[0, 0, 0], [0, 0, 0], [0, 0, 0]], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])] for ele, camera_struct in zip(calibration_json["cameras"], cameras): Lint = ele["intrinsics"] camera_struct.camera_matrix = [ [Lint["fx"], 0, Lint["cx"]], [0, Lint["fy"], Lint["cy"]], [0, 0, 1] ] Ldist = ele["distortion"] if fisheye: camera_struct.distortion[0] = Ldist["k1"] camera_struct.distortion[1] = Ldist["k2"] camera_struct.distortion[2] = Ldist["k3"] camera_struct.distortion[3] = Ldist["k4"] else: camera_struct.distortion[0] = Ldist["k1"] camera_struct.distortion[1] = Ldist["k2"] camera_struct.distortion[2] = Ldist["p1"] camera_struct.distortion[3] = Ldist["p2"] camera_struct.distortion[4] = Ldist["k3"] R = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=np.float32) acc_idx = 0 for row in range(3): for col in range(3): R[row][col] = calibration_json["opencv_stereo_calibrate"]["rotation"][acc_idx] acc_idx += 1 T = np.array(calibration_json["opencv_stereo_calibrate"]["translation"]) T *= 100 # Centimeters if False: print(R, T) print(np.array(cameras[0].camera_matrix), np.array(cameras[0].distortion), np.array(cameras[1].camera_matrix), np.array(cameras[1].distortion)) print(cameras[0].distortion[:4]) R1, R2, P1, P2, Q = cv2.fisheye.stereoRectify( np.array(cameras[0].camera_matrix), np.array(cameras[0].distortion[:4]), np.array(cameras[1].camera_matrix), np.array(cameras[1].distortion[:4]), (1280, 800), # imagesize R, T, 0 ) calh = dai.CalibrationHandler() calh.setCameraExtrinsics(dai.CameraBoardSocket.LEFT, dai.CameraBoardSocket.RIGHT, R, translation=T, specTranslation=[args.baseline, 0, 0]) calh.setCameraIntrinsics(dai.CameraBoardSocket.LEFT, cameras[0].camera_matrix, 1280, 800) calh.setCameraIntrinsics(dai.CameraBoardSocket.RIGHT, cameras[1].camera_matrix, 1280, 800) calh.setCameraType(dai.CameraBoardSocket.LEFT, camera_model) calh.setCameraType(dai.CameraBoardSocket.RIGHT, camera_model) calh.setDistortionCoefficients(dai.CameraBoardSocket.LEFT, cameras[0].distortion) calh.setDistortionCoefficients(dai.CameraBoardSocket.RIGHT, cameras[1].distortion) calh.setStereoLeft(dai.CameraBoardSocket.LEFT, R1) calh.setStereoRight(dai.CameraBoardSocket.RIGHT, R2) success = device.flashCalibration(calh) print("success is:", success)