// Copyright 2021, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief SLAM tracking code. * @author Mateo de Mayo * @ingroup aux_tracking */ #include "xrt/xrt_config_have.h" #include "xrt/xrt_defines.h" #include "xrt/xrt_tracking.h" #include "xrt/xrt_frameserver.h" #include "util/u_debug.h" #include "util/u_logging.h" #include "util/u_misc.h" #include "util/u_sink.h" #include "util/u_var.h" #include "os/os_threading.h" #include "math/m_api.h" #include "math/m_filter_fifo.h" #include "math/m_filter_one_euro.h" #include "math/m_predict.h" #include "math/m_relation_history.h" #include "math/m_space.h" #include "math/m_vec3.h" #include "tracking/t_euroc_recorder.h" #include "tracking/t_tracking.h" #include #include #include #include #include #include #include #include #include #include #define SLAM_TRACE(...) U_LOG_IFL_T(t.log_level, __VA_ARGS__) #define SLAM_DEBUG(...) U_LOG_IFL_D(t.log_level, __VA_ARGS__) #define SLAM_INFO(...) U_LOG_IFL_I(t.log_level, __VA_ARGS__) #define SLAM_WARN(...) U_LOG_IFL_W(t.log_level, __VA_ARGS__) #define SLAM_ERROR(...) U_LOG_IFL_E(t.log_level, __VA_ARGS__) #define SLAM_ASSERT(predicate, ...) \ do { \ bool p = predicate; \ if (!p) { \ U_LOG(U_LOGGING_ERROR, __VA_ARGS__); \ assert(false && "SLAM_ASSERT failed: " #predicate); \ exit(EXIT_FAILURE); \ } \ } while (false); #define SLAM_ASSERT_(predicate) SLAM_ASSERT(predicate, "Assertion failed " #predicate) // Debug assertions, not vital but useful for finding errors #ifdef NDEBUG #define SLAM_DASSERT(predicate, ...) (void)(predicate) #define SLAM_DASSERT_(predicate) (void)(predicate) #else #define SLAM_DASSERT(predicate, ...) SLAM_ASSERT(predicate, __VA_ARGS__) #define SLAM_DASSERT_(predicate) SLAM_ASSERT_(predicate) #endif //! @see t_slam_tracker_config DEBUG_GET_ONCE_LOG_OPTION(slam_log, "SLAM_LOG", U_LOGGING_INFO) DEBUG_GET_ONCE_OPTION(slam_config, "SLAM_CONFIG", nullptr) DEBUG_GET_ONCE_BOOL_OPTION(slam_ui, "SLAM_UI", false) DEBUG_GET_ONCE_BOOL_OPTION(slam_submit_from_start, "SLAM_SUBMIT_FROM_START", false) DEBUG_GET_ONCE_NUM_OPTION(slam_prediction_type, "SLAM_PREDICTION_TYPE", long(SLAM_PRED_SP_SO_IA_IL)) DEBUG_GET_ONCE_BOOL_OPTION(slam_write_csvs, "SLAM_WRITE_CSVS", false) DEBUG_GET_ONCE_OPTION(slam_csv_path, "SLAM_CSV_PATH", "evaluation/") DEBUG_GET_ONCE_BOOL_OPTION(slam_timing_stat, "SLAM_TIMING_STAT", true) DEBUG_GET_ONCE_BOOL_OPTION(slam_features_stat, "SLAM_FEATURES_STAT", true) DEBUG_GET_ONCE_NUM_OPTION(slam_cam_count, "SLAM_CAM_COUNT", 2) //! Namespace for the interface to the external SLAM tracking system namespace xrt::auxiliary::tracking::slam { constexpr int UI_TIMING_POSE_COUNT = 192; constexpr int UI_FEATURES_POSE_COUNT = 192; constexpr int UI_GTDIFF_POSE_COUNT = 192; using std::deque; using std::ifstream; using std::make_shared; using std::map; using std::ofstream; using std::pair; using std::shared_ptr; using std::string; using std::to_string; using std::vector; using std::filesystem::create_directories; using Trajectory = map; using xrt::auxiliary::math::RelationHistory; using cv::Mat; using cv::MatAllocator; using cv::UMatData; using cv::UMatUsageFlags; #define USING_OPENCV_3_3_1 (CV_VERSION_MAJOR == 3 && CV_VERSION_MINOR == 3 && CV_VERSION_REVISION == 1) #if defined(XRT_HAVE_KIMERA_SLAM) && !USING_OPENCV_3_3_1 #pragma message "Kimera-VIO uses OpenCV 3.3.1, use that to prevent conflicts" #endif //! @todo These defs should make OpenCV 4 work but it wasn't tested against a //! SLAM system that supports that version yet. #if CV_VERSION_MAJOR < 4 #define ACCESS_RW 0 typedef int AccessFlag; #define CV_AUTOSTEP 0x7fffffff // From opencv2/core/core_c.h #else using cv::ACCESS_RW; using cv::AccessFlag; #define CV_AUTOSTEP cv::Mat::AUTO_STEP #endif /*! * @brief Wraps a @ref xrt_frame with a `cv::Mat` (conversely to @ref FrameMat). * * It works by implementing a `cv::MatAllocator` which determines what to do * when a `cv::Mat` refcount reaches zero. In that case, it decrements the @ref * xrt_frame refcount once the `cv::Mat` own refcount has reached zero. * * @note a @ref MatFrame `cv::Mat` can wrap a @ref FrameMat @ref xrt_frame, * which in turns wraps a `cv::Mat`, with little overhead, and that is precisely * how it is being used in this file when the @ref xrt_frame is a @ref FrameMat. */ class MatFrame final : public MatAllocator { public: //! Wraps a @ref xrt_frame in a `cv::Mat` Mat wrap(struct xrt_frame *frame) { SLAM_DASSERT_(frame->format == XRT_FORMAT_L8 || frame->format == XRT_FORMAT_R8G8B8); auto img_type = frame->format == XRT_FORMAT_L8 ? CV_8UC1 : CV_8UC3; // Wrap the frame data into a cv::Mat header cv::Mat img{(int)frame->height, (int)frame->width, img_type, frame->data, frame->stride}; // Enable reference counting for a user-allocated cv::Mat (i.e., using existing frame->data) img.u = this->allocate(img.dims, img.size.p, img.type(), img.data, img.step.p, ACCESS_RW, cv::USAGE_DEFAULT); SLAM_DASSERT_(img.u->refcount == 0); img.addref(); // Keep a reference to the xrt_frame in the cv userdata field for when the cv::Mat reference reaches 0 SLAM_DASSERT_(img.u->userdata == NULL); // Should be default-constructed xrt_frame_reference((struct xrt_frame **)&img.u->userdata, frame); return img; } //! Allocates a `cv::UMatData` object which is in charge of reference counting for a `cv::Mat` UMatData * allocate( int dims, const int *sizes, int type, void *data0, size_t *step, AccessFlag, UMatUsageFlags) const override { SLAM_DASSERT_(dims == 2 && sizes && data0 && step && step[0] != CV_AUTOSTEP); UMatData *u = new UMatData(this); uchar *data = (uchar *)data0; u->data = u->origdata = data; u->size = step[0] * sizes[0]; // Row stride * row count u->flags |= UMatData::USER_ALLOCATED; // External data return u; } //! Necessary but unused virtual method for a `cv::MatAllocator` bool allocate(UMatData *, AccessFlag, UMatUsageFlags) const override { SLAM_ASSERT(false, "Shouldn't be reached"); return false; } //! When `cv::UMatData` refcount reaches zero this method is called, we just //! decrement the original @ref xrt_frame refcount as it is the one in charge //! of the memory. void deallocate(UMatData *u) const override { SLAM_DASSERT_(u->urefcount == 0 && u->refcount == 0); SLAM_DASSERT_(u->flags & UMatData::USER_ALLOCATED); xrt_frame_reference((struct xrt_frame **)&u->userdata, NULL); delete u; } }; //! Writes poses and their timestamps to a CSV file class TrajectoryWriter { public: bool enabled; // Modified through UI private: string directory; string filename; ofstream file; bool created = false; void create() { create_directories(directory); file = ofstream{directory + "/" + filename}; file << "#timestamp [ns], p_RS_R_x [m], p_RS_R_y [m], p_RS_R_z [m], " "q_RS_w [], q_RS_x [], q_RS_y [], q_RS_z []" CSV_EOL; file << std::fixed << std::setprecision(CSV_PRECISION); } public: TrajectoryWriter(const string &dir, const string &fn, bool e) : enabled(e), directory(dir), filename(fn) {} void push(timepoint_ns ts, const xrt_pose &pose) { if (!enabled) { return; } if (!created) { created = true; create(); } xrt_vec3 p = pose.position; xrt_quat r = pose.orientation; file << ts << ","; file << p.x << "," << p.y << "," << p.z << ","; file << r.w << "," << r.x << "," << r.y << "," << r.z << CSV_EOL; } }; //! Writes timestamps measured when estimating a new pose by the SLAM system class TimingWriter { public: bool enabled; // Modified through UI private: string directory; string filename; vector column_names; ofstream file; bool created = false; void create() { create_directories(directory); file = ofstream{directory + "/" + filename}; file << "#"; for (const string &col : column_names) { string delimiter = &col != &column_names.back() ? "," : CSV_EOL; file << col << delimiter; } } public: TimingWriter(const string &dir, const string &fn, bool e, const vector &cn) : enabled(e), directory(dir), filename(fn), column_names(cn) {} void push(const vector ×tamps) { if (!enabled) { return; } if (!created) { created = true; create(); } for (const timepoint_ns &ts : timestamps) { string delimiter = &ts != ×tamps.back() ? "," : CSV_EOL; file << ts << delimiter; } } }; //! Writes feature information specific to a particular estimated pose class FeaturesWriter { public: bool enabled; // Modified through UI private: string directory; string filename; ofstream file; bool created = false; void create() { create_directories(directory); file = ofstream{directory + "/" + filename}; file << "#timestamp, cam0 feature count, cam1 feature count" CSV_EOL; file << std::fixed << std::setprecision(CSV_PRECISION); } public: FeaturesWriter(const string &dir, const string &fn, bool e) : enabled(e), directory(dir), filename(fn) {} void push(timepoint_ns ts, const vector &counts) { if (!enabled) { return; } if (!created) { created = true; create(); } file << ts; for (int count : counts) { file << "," << count; } file << CSV_EOL; } }; /*! * Main implementation of @ref xrt_tracked_slam. This is an adapter class for * SLAM tracking that wraps an external SLAM implementation. * * @implements xrt_tracked_slam * @implements xrt_frame_node * @implements xrt_frame_sink * @implements xrt_imu_sink * @implements xrt_pose_sink */ struct TrackerSlam { struct xrt_tracked_slam base = {}; struct xrt_frame_node node = {}; //!< Will be called on destruction slam_tracker *slam; //!< Pointer to the external SLAM system implementation struct xrt_slam_sinks sinks = {}; //!< Pointers to the sinks below struct xrt_frame_sink cam_sinks[XRT_TRACKING_MAX_SLAM_CAMS]; //!< Sends camera frames to the SLAM system struct xrt_imu_sink imu_sink = {}; //!< Sends imu samples to the SLAM system struct xrt_pose_sink gt_sink = {}; //!< Register groundtruth trajectory for stats bool submit; //!< Whether to submit data pushed to sinks to the SLAM tracker int cam_count; //!< Number of cameras used for tracking enum u_logging_level log_level; //!< Logging level for the SLAM tracker, set by SLAM_LOG var struct os_thread_helper oth; //!< Thread where the external SLAM system runs MatFrame *cv_wrapper; //!< Wraps a xrt_frame in a cv::Mat to send to the SLAM system struct xrt_slam_sinks *euroc_recorder; //!< EuRoC dataset recording sinks // Used mainly for checking that the timestamps come in order timepoint_ns last_imu_ts; //!< Last received IMU sample timestamp vector last_cam_ts; //!< Last received image timestamp per cam // Prediction //! Type of prediction to use t_slam_prediction_type pred_type; u_var_combo pred_combo; //!< UI combo box to select @ref pred_type RelationHistory slam_rels{}; //!< A history of relations produced purely from external SLAM tracker data struct m_ff_vec3_f32 *gyro_ff; //!< Last gyroscope samples struct m_ff_vec3_f32 *accel_ff; //!< Last accelerometer samples vector ui_sink; //!< Sink to display frames in UI of each camera //! Used to correct accelerometer measurements when integrating into the prediction. //! @todo Should be automatically computed instead of required to be filled manually through the UI. xrt_vec3 gravity_correction{0, 0, -MATH_GRAVITY_M_S2}; struct xrt_space_relation last_rel = XRT_SPACE_RELATION_ZERO; //!< Last reported/tracked pose timepoint_ns last_ts; //!< Last reported/tracked pose timestamp //! Filters are used to smooth out the resulting trajectory struct { // Moving average filter bool use_moving_average_filter = false; //! Time window in ms take the average on. //! Increasing it smooths out the tracking at the cost of adding delay. double window = 66; struct m_ff_vec3_f32 *pos_ff; //! Predicted positions fifo struct m_ff_vec3_f32 *rot_ff; //! Predicted rotations fifo (only xyz components, w is inferred) // Exponential smoothing filter bool use_exponential_smoothing_filter = false; float alpha = 0.1; //!< How much should we lerp towards the @ref target value on each update struct xrt_space_relation last = XRT_SPACE_RELATION_ZERO; //!< Last filtered relation struct xrt_space_relation target = XRT_SPACE_RELATION_ZERO; //!< Target relation // One euro filter bool use_one_euro_filter = false; m_filter_euro_vec3 pos_oe; //!< One euro position filter m_filter_euro_quat rot_oe; //!< One euro rotation filter const float min_cutoff = M_PI; //!< Default minimum cutoff frequency const float min_dcutoff = 1; //!< Default minimum cutoff frequency for the derivative const float beta = 0.16; //!< Default speed coefficient } filter; // Stats and metrics // CSV writers for offline analysis (using pointers because of container_of) TimingWriter *slam_times_writer; //!< Timestamps of the pipeline for performance analysis FeaturesWriter *slam_features_writer; //!< Feature tracking information for analysis TrajectoryWriter *slam_traj_writer; //!< Estimated poses from the SLAM system TrajectoryWriter *pred_traj_writer; //!< Predicted poses TrajectoryWriter *filt_traj_writer; //!< Predicted and filtered poses //! Tracker timing info for performance evaluation struct { bool ext_available = false; //!< Whether the SLAM system supports the timing extension bool ext_enabled = false; //!< Whether the timing extension is enabled float dur_ms[UI_TIMING_POSE_COUNT]; //!< Timing durations in ms int idx = 0; //!< Index of latest entry in @ref dur_ms u_var_combo start_ts; //!< UI combo box to select initial timing measurement u_var_combo end_ts; //!< UI combo box to select final timing measurement int start_ts_idx; //!< Selected initial timing measurement in @ref start_ts int end_ts_idx; //!< Selected final timing measurement in @ref end_ts struct u_var_timing ui; //!< Realtime UI for tracker durations vector columns; //!< Column names of the measured timestamps string joined_columns; //!< Column names as a null separated string struct u_var_button enable_btn; //!< Toggle tracker timing reports } timing; //! Tracker feature tracking info struct Features { struct FeatureCounter { //! Feature count for each frame timestamp for this camera. //! @note Harmless race condition over this as the UI might read this while it's being written deque> entries{}; //! Persitently stored camera name for display in the UI string cam_name; void addFeatureCount(timepoint_ns ts, int count) { entries.emplace_back(ts, count); if (entries.size() > UI_FEATURES_POSE_COUNT) { entries.pop_front(); } } }; vector fcs; //!< Store feature count info for each camera u_var_curves fcs_ui; //!< Display of `fcs` in UI bool ext_available = false; //!< Whether the SLAM system supports the features extension bool ext_enabled = false; //!< Whether the features extension is enabled struct u_var_button enable_btn; //!< Toggle extension } features; //! Ground truth related fields struct { Trajectory *trajectory; //!< Empty if we've not received groundtruth xrt_pose origin; //!< First ground truth pose float diffs_mm[UI_GTDIFF_POSE_COUNT]; //!< Positional error wrt ground truth int diff_idx = 0; //!< Index of last error in @ref diffs_mm struct u_var_timing diff_ui; //!< Realtime UI for positional error bool override_tracking = false; //!< Force the tracker to report gt poses instead } gt; }; /* * * Timing functionality * */ static void timing_ui_setup(TrackerSlam &t) { u_var_add_ro_ftext(&t, "\n%s", "Tracker timing"); // Setup toggle button static const char *msg[2] = {"[OFF] Enable timing", "[ON] Disable timing"}; u_var_button_cb cb = [](void *t_ptr) { TrackerSlam *t = (TrackerSlam *)t_ptr; u_var_button &btn = t->timing.enable_btn; bool &e = t->timing.ext_enabled; e = !e; snprintf(btn.label, sizeof(btn.label), "%s", msg[e]); const auto params = make_shared(e); shared_ptr _; t->slam->use_feature(F_ENABLE_POSE_EXT_TIMING, params, _); }; t.timing.enable_btn.cb = cb; t.timing.enable_btn.disabled = !t.timing.ext_available; t.timing.enable_btn.ptr = &t; u_var_add_button(&t, &t.timing.enable_btn, msg[t.timing.ext_enabled]); // Setup graph // Construct null-separated array of options for the combo box using namespace std::string_literals; t.timing.joined_columns = ""; for (const string &name : t.timing.columns) { t.timing.joined_columns += name + "\0"s; } t.timing.joined_columns += "\0"s; t.timing.start_ts.count = t.timing.columns.size(); t.timing.start_ts.options = t.timing.joined_columns.c_str(); t.timing.start_ts.value = &t.timing.start_ts_idx; t.timing.start_ts_idx = 0; u_var_add_combo(&t, &t.timing.start_ts, "Start timestamp"); t.timing.end_ts.count = t.timing.columns.size(); t.timing.end_ts.options = t.timing.joined_columns.c_str(); t.timing.end_ts.value = &t.timing.end_ts_idx; t.timing.end_ts_idx = t.timing.columns.size() - 1; u_var_add_combo(&t, &t.timing.end_ts, "End timestamp"); t.timing.ui.values.data = t.timing.dur_ms; t.timing.ui.values.length = UI_TIMING_POSE_COUNT; t.timing.ui.values.index_ptr = &t.timing.idx; t.timing.ui.reference_timing = 16.6; t.timing.ui.center_reference_timing = true; t.timing.ui.range = t.timing.ui.reference_timing; t.timing.ui.dynamic_rescale = true; t.timing.ui.unit = "ms"; u_var_add_f32_timing(&t, &t.timing.ui, "External tracker times"); } //! Updates timing UI with info from a computed pose and returns that info static vector timing_ui_push(TrackerSlam &t, const pose &p) { timepoint_ns now = os_monotonic_get_ns(); vector tss = {p.timestamp, now}; // Add extra timestamps if the SLAM tracker provides them shared_ptr ext = p.find_pose_extension(pose_ext_type::TIMING); if (ext) { pose_ext_timing pet = *std::static_pointer_cast(ext); tss.insert(tss.begin() + 1, pet.timing.begin(), pet.timing.end()); } // The two timestamps to compare in the graph timepoint_ns start = tss.at(t.timing.start_ts_idx); timepoint_ns end = tss.at(t.timing.end_ts_idx); // Push to the UI graph float tss_ms = (end - start) / U_TIME_1MS_IN_NS; t.timing.idx = (t.timing.idx + 1) % UI_TIMING_POSE_COUNT; t.timing.dur_ms[t.timing.idx] = tss_ms; constexpr float a = 1.0f / UI_TIMING_POSE_COUNT; // Exponential moving average t.timing.ui.reference_timing = (1 - a) * t.timing.ui.reference_timing + a * tss_ms; return tss; } /* * * Feature information functionality * */ static void features_ui_setup(TrackerSlam &t) { // We can't do anything useful if the system doesn't implement the feature if (!t.features.ext_available) { return; } u_var_add_ro_ftext(&t, "\n%s", "Tracker features"); // Setup toggle button static const char *msg[2] = {"[OFF] Enable features info", "[ON] Disable features info"}; u_var_button_cb cb = [](void *t_ptr) { TrackerSlam *t = (TrackerSlam *)t_ptr; u_var_button &btn = t->features.enable_btn; bool &e = t->features.ext_enabled; e = !e; snprintf(btn.label, sizeof(btn.label), "%s", msg[e]); const auto params = make_shared(e); shared_ptr _; t->slam->use_feature(F_ENABLE_POSE_EXT_FEATURES, params, _); }; t.features.enable_btn.cb = cb; t.features.enable_btn.disabled = !t.features.ext_available; t.features.enable_btn.ptr = &t; u_var_add_button(&t, &t.features.enable_btn, msg[t.features.ext_enabled]); // Setup graph u_var_curve_getter getter = [](void *fs_ptr, int i) -> u_var_curve_point { auto *fs = (TrackerSlam::Features::FeatureCounter *)fs_ptr; timepoint_ns now = os_monotonic_get_ns(); size_t size = fs->entries.size(); if (size == 0) { return {0, 0}; } int last_idx = size - 1; if (i > last_idx) { i = last_idx; } auto [ts, count] = fs->entries.at(last_idx - i); return {time_ns_to_s(now - ts), double(count)}; }; t.features.fcs_ui.curve_count = t.cam_count; t.features.fcs_ui.xlabel = "Last seconds"; t.features.fcs_ui.ylabel = "Number of features"; t.features.fcs.resize(t.cam_count); for (int i = 0; i < t.cam_count; i++) { auto &fc = t.features.fcs[i]; fc.cam_name = "Cam" + to_string(i); auto &fc_ui = t.features.fcs_ui.curves[i]; fc_ui.count = UI_FEATURES_POSE_COUNT; fc_ui.data = &fc; fc_ui.getter = getter; fc_ui.label = fc.cam_name.c_str(); } u_var_add_curves(&t, &t.features.fcs_ui, "Feature count"); } static vector features_ui_push(TrackerSlam &t, const pose &ppp) { if (!t.features.ext_available) { return {}; } shared_ptr ext = ppp.find_pose_extension(pose_ext_type::FEATURES); if (!ext) { return {}; } pose_ext_features pef = *std::static_pointer_cast(ext); // Push to the UI graph vector fcs{}; for (size_t i = 0; i < pef.features_per_cam.size(); i++) { int count = pef.features_per_cam.at(i).size(); t.features.fcs.at(i).addFeatureCount(ppp.timestamp, count); fcs.push_back(count); } return fcs; } /* * * Ground truth functionality * */ //! Gets an interpolated groundtruth pose (if available) at a specified timestamp static xrt_pose get_gt_pose_at(const Trajectory >, timepoint_ns ts) { if (gt.empty()) { return XRT_POSE_IDENTITY; } Trajectory::const_iterator rit = gt.upper_bound(ts); if (rit == gt.begin()) { // Too far in the past, return first gt pose return gt.begin()->second; } if (rit == gt.end()) { // Too far in the future, return last gt pose return std::prev(gt.end())->second; } Trajectory::const_iterator lit = std::prev(rit); const auto &[lts, lpose] = *lit; const auto &[rts, rpose] = *rit; float t = double(ts - lts) / double(rts - lts); SLAM_DASSERT_(0 <= t && t <= 1); xrt_pose res{}; math_quat_slerp(&lpose.orientation, &rpose.orientation, t, &res.orientation); res.position = m_vec3_lerp(lpose.position, rpose.position, t); return res; } //! Converts a pose from the tracker to ground truth static struct xrt_pose xr2gt_pose(const xrt_pose >_origin, const xrt_pose &xr_pose) { //! @todo Right now this is hardcoded for Basalt and the EuRoC vicon datasets //! groundtruth and ignores orientation. Applies a fixed transformation so //! that the tracked and groundtruth trajectories origins and general motion //! match. The usual way of evaluating trajectory errors in SLAM requires to //! first align the trajectories through a non-linear optimization (e.g. gauss //! newton) so that they are as similar as possible. For this you need the //! entire tracked trajectory to be known beforehand, which makes it not //! suitable for reporting an error metric in realtime. See this 2-page paper //! for more info on trajectory alignment: //! https://ylatif.github.io/movingsensors/cameraReady/paper07.pdf xrt_vec3 pos = xr_pose.position; xrt_quat z180{0, 0, 1, 0}; math_quat_rotate_vec3(&z180, &pos, &pos); math_quat_rotate_vec3(>_origin.orientation, &pos, &pos); pos += gt_origin.position; return {XRT_QUAT_IDENTITY, pos}; } //! The inverse of @ref xr2gt_pose. static struct xrt_pose gt2xr_pose(const xrt_pose >_origin, const xrt_pose >_pose) { xrt_vec3 pos = gt_pose.position; pos -= gt_origin.position; xrt_quat gt_origin_orientation_inv = gt_origin.orientation; math_quat_invert(>_origin_orientation_inv, >_origin_orientation_inv); math_quat_rotate_vec3(>_origin_orientation_inv, &pos, &pos); xrt_quat zn180{0, 0, -1, 0}; math_quat_rotate_vec3(&zn180, &pos, &pos); return {XRT_QUAT_IDENTITY, pos}; } static void gt_ui_setup(TrackerSlam &t) { u_var_add_ro_ftext(&t, "\n%s", "Tracker groundtruth"); t.gt.diff_ui.values.data = t.gt.diffs_mm; t.gt.diff_ui.values.length = UI_GTDIFF_POSE_COUNT; t.gt.diff_ui.values.index_ptr = &t.gt.diff_idx; t.gt.diff_ui.reference_timing = 0; t.gt.diff_ui.center_reference_timing = true; t.gt.diff_ui.range = 100; // 10cm t.gt.diff_ui.dynamic_rescale = true; t.gt.diff_ui.unit = "mm"; u_var_add_f32_timing(&t, &t.gt.diff_ui, "Tracking absolute error"); } static void gt_ui_push(TrackerSlam &t, timepoint_ns ts, xrt_pose tracked_pose) { if (t.gt.trajectory->empty()) { return; } xrt_pose gt_pose = get_gt_pose_at(*t.gt.trajectory, ts); xrt_pose xr_pose = xr2gt_pose(t.gt.origin, tracked_pose); float len_mm = m_vec3_len(xr_pose.position - gt_pose.position) * 1000; t.gt.diff_idx = (t.gt.diff_idx + 1) % UI_GTDIFF_POSE_COUNT; t.gt.diffs_mm[t.gt.diff_idx] = len_mm; constexpr float a = 1.0f / UI_GTDIFF_POSE_COUNT; // Exponential moving average t.gt.diff_ui.reference_timing = (1 - a) * t.gt.diff_ui.reference_timing + a * len_mm; } /* * * Tracker functionality * */ //! Dequeue all tracked poses from the SLAM system and update prediction data with them. static bool flush_poses(TrackerSlam &t) { pose tracked_pose{}; bool got_one = t.slam->try_dequeue_pose(tracked_pose); bool dequeued = got_one; while (dequeued) { // New pose pose np = tracked_pose; int64_t nts = np.timestamp; xrt_vec3 npos{np.px, np.py, np.pz}; xrt_quat nrot{np.rx, np.ry, np.rz, np.rw}; // Last relation xrt_space_relation lr = XRT_SPACE_RELATION_ZERO; uint64_t lts; t.slam_rels.get_latest(<s, &lr); xrt_vec3 lpos = lr.pose.position; xrt_quat lrot = lr.pose.orientation; double dt = time_ns_to_s(nts - lts); SLAM_TRACE("Dequeued SLAM pose ts=%ld p=[%f,%f,%f] r=[%f,%f,%f,%f]", // nts, np.px, np.py, np.pz, np.rx, np.ry, np.rz, np.rw); // Compute new relation based on new pose and velocities since last pose xrt_space_relation rel{}; rel.relation_flags = XRT_SPACE_RELATION_BITMASK_ALL; rel.pose = {nrot, npos}; rel.linear_velocity = (npos - lpos) / dt; math_quat_finite_difference(&lrot, &nrot, dt, &rel.angular_velocity); t.slam_rels.push(rel, nts); xrt_pose_sample sample{nts, rel.pose}; xrt_sink_push_pose(t.euroc_recorder->gt, &sample); gt_ui_push(t, nts, rel.pose); t.slam_traj_writer->push(nts, rel.pose); // Push even if timing extension is disabled auto tss = timing_ui_push(t, np); t.slam_times_writer->push(tss); if (t.features.ext_enabled) { vector feat_count = features_ui_push(t, np); t.slam_features_writer->push(nts, feat_count); } dequeued = t.slam->try_dequeue_pose(tracked_pose); } if (!got_one) { SLAM_TRACE("No poses to flush"); } return got_one; } //! Return our best guess of the relation at time @p when_ns using all the data the tracker has. static void predict_pose(TrackerSlam &t, timepoint_ns when_ns, struct xrt_space_relation *out_relation) { bool valid_pred_type = t.pred_type >= SLAM_PRED_NONE && t.pred_type <= SLAM_PRED_SP_SO_IA_IL; SLAM_DASSERT(valid_pred_type, "Invalid prediction type (%d)", t.pred_type); // Get last relation computed purely from SLAM data xrt_space_relation rel{}; uint64_t rel_ts; bool empty = !t.slam_rels.get_latest(&rel_ts, &rel); // Stop if there is no previous relation to use for prediction if (empty) { out_relation->relation_flags = XRT_SPACE_RELATION_BITMASK_NONE; return; } // Use only last SLAM pose without prediction if PREDICTION_NONE if (t.pred_type == SLAM_PRED_NONE) { *out_relation = rel; return; } // Use only SLAM data if asking for an old point in time or PREDICTION_SP_SO_SA_SL SLAM_DASSERT_(rel_ts < INT64_MAX); if (t.pred_type == SLAM_PRED_SP_SO_SA_SL || when_ns <= (int64_t)rel_ts) { t.slam_rels.get(when_ns, out_relation); return; } // Update angular velocity with gyro data if (t.pred_type >= SLAM_PRED_SP_SO_IA_SL) { xrt_vec3 avg_gyro{}; m_ff_vec3_f32_filter(t.gyro_ff, rel_ts, when_ns, &avg_gyro); math_quat_rotate_derivative(&rel.pose.orientation, &avg_gyro, &rel.angular_velocity); } // Update linear velocity with accel data if (t.pred_type >= SLAM_PRED_SP_SO_IA_IL) { xrt_vec3 avg_accel{}; m_ff_vec3_f32_filter(t.accel_ff, rel_ts, when_ns, &avg_accel); xrt_vec3 world_accel{}; math_quat_rotate_vec3(&rel.pose.orientation, &avg_accel, &world_accel); world_accel += t.gravity_correction; double slam_to_imu_dt = time_ns_to_s(t.last_imu_ts - rel_ts); rel.linear_velocity += world_accel * slam_to_imu_dt; } // Do the prediction based on the updated relation double slam_to_now_dt = time_ns_to_s(when_ns - rel_ts); xrt_space_relation predicted_relation{}; m_predict_relation(&rel, slam_to_now_dt, &predicted_relation); *out_relation = predicted_relation; } //! Various filters to remove noise from the predicted trajectory. static void filter_pose(TrackerSlam &t, timepoint_ns when_ns, struct xrt_space_relation *out_relation) { if (t.filter.use_moving_average_filter) { if (out_relation->relation_flags & XRT_SPACE_RELATION_POSITION_VALID_BIT) { xrt_vec3 pos = out_relation->pose.position; m_ff_vec3_f32_push(t.filter.pos_ff, &pos, when_ns); } if (out_relation->relation_flags & XRT_SPACE_RELATION_ORIENTATION_VALID_BIT) { // Don't save w component as we can retrieve it knowing these are (almost) unit quaternions xrt_vec3 rot = {out_relation->pose.orientation.x, out_relation->pose.orientation.y, out_relation->pose.orientation.z}; m_ff_vec3_f32_push(t.filter.rot_ff, &rot, when_ns); } // Get averages in time window timepoint_ns window = t.filter.window * U_TIME_1MS_IN_NS; xrt_vec3 avg_pos; m_ff_vec3_f32_filter(t.filter.pos_ff, when_ns - window, when_ns, &avg_pos); xrt_vec3 avg_rot; // Naive but good enough rotation average m_ff_vec3_f32_filter(t.filter.rot_ff, when_ns - window, when_ns, &avg_rot); // Considering the naive averaging this W is a bit wrong, but it feels reasonably well float avg_rot_w = sqrtf(1 - (avg_rot.x * avg_rot.x + avg_rot.y * avg_rot.y + avg_rot.z * avg_rot.z)); out_relation->pose.orientation = xrt_quat{avg_rot.x, avg_rot.y, avg_rot.z, avg_rot_w}; out_relation->pose.position = avg_pos; //! @todo Implement the quaternion averaging with a m_ff_vec4_f32 and //! normalization. Although it would be best to have a way of generalizing //! types before so as to not have redundant copies of ff logic. } if (t.filter.use_exponential_smoothing_filter) { xrt_space_relation &last = t.filter.last; xrt_space_relation &target = t.filter.target; target = *out_relation; m_space_relation_interpolate(&last, &target, t.filter.alpha, target.relation_flags, &last); *out_relation = last; } if (t.filter.use_one_euro_filter) { xrt_pose &p = out_relation->pose; if (out_relation->relation_flags & XRT_SPACE_RELATION_POSITION_VALID_BIT) { m_filter_euro_vec3_run(&t.filter.pos_oe, when_ns, &p.position, &p.position); } if (out_relation->relation_flags & XRT_SPACE_RELATION_ORIENTATION_VALID_BIT) { m_filter_euro_quat_run(&t.filter.rot_oe, when_ns, &p.orientation, &p.orientation); } } } static void setup_ui(TrackerSlam &t) { t.pred_combo.count = SLAM_PRED_COUNT; t.pred_combo.options = "None\0Interpolate SLAM poses\0Also gyro\0Also accel (needs gravity correction)\0\0"; t.pred_combo.value = (int *)&t.pred_type; t.ui_sink = vector(t.cam_count); for (size_t i = 0; i < t.ui_sink.size(); i++) { u_sink_debug_init(&t.ui_sink[i]); } m_ff_vec3_f32_alloc(&t.gyro_ff, 1000); m_ff_vec3_f32_alloc(&t.accel_ff, 1000); m_ff_vec3_f32_alloc(&t.filter.pos_ff, 1000); m_ff_vec3_f32_alloc(&t.filter.rot_ff, 1000); u_var_add_root(&t, "SLAM Tracker", true); u_var_add_log_level(&t, &t.log_level, "Log Level"); u_var_add_bool(&t, &t.submit, "Submit data to SLAM"); u_var_add_bool(&t, &t.gt.override_tracking, "Track with ground truth (if available)"); euroc_recorder_add_ui(t.euroc_recorder, &t); u_var_add_gui_header(&t, NULL, "Trajectory Filter"); u_var_add_bool(&t, &t.filter.use_moving_average_filter, "Enable moving average filter"); u_var_add_f64(&t, &t.filter.window, "Window size (ms)"); u_var_add_bool(&t, &t.filter.use_exponential_smoothing_filter, "Enable exponential smoothing filter"); u_var_add_f32(&t, &t.filter.alpha, "Smoothing factor"); u_var_add_bool(&t, &t.filter.use_one_euro_filter, "Enable one euro filter"); u_var_add_f32(&t, &t.filter.pos_oe.base.fc_min, "Position minimum cutoff"); u_var_add_f32(&t, &t.filter.pos_oe.base.beta, "Position beta speed"); u_var_add_f32(&t, &t.filter.pos_oe.base.fc_min_d, "Position minimum delta cutoff"); u_var_add_f32(&t, &t.filter.rot_oe.base.fc_min, "Orientation minimum cutoff"); u_var_add_f32(&t, &t.filter.rot_oe.base.beta, "Orientation beta speed"); u_var_add_f32(&t, &t.filter.rot_oe.base.fc_min_d, "Orientation minimum delta cutoff"); u_var_add_gui_header(&t, NULL, "Prediction"); u_var_add_combo(&t, &t.pred_combo, "Prediction Type"); u_var_add_ro_ff_vec3_f32(&t, t.gyro_ff, "Gyroscope"); u_var_add_ro_ff_vec3_f32(&t, t.accel_ff, "Accelerometer"); u_var_add_f32(&t, &t.gravity_correction.z, "Gravity Correction"); for (size_t i = 0; i < t.ui_sink.size(); i++) { char label[] = "Camera NNNN"; (void)snprintf(label, sizeof(label), "Camera %zu", i); u_var_add_sink_debug(&t, &t.ui_sink[i], label); } u_var_add_gui_header(&t, NULL, "Stats"); u_var_add_ro_ftext(&t, "\n%s", "Record to CSV files"); u_var_add_bool(&t, &t.slam_traj_writer->enabled, "Record tracked trajectory"); u_var_add_bool(&t, &t.pred_traj_writer->enabled, "Record predicted trajectory"); u_var_add_bool(&t, &t.filt_traj_writer->enabled, "Record filtered trajectory"); u_var_add_bool(&t, &t.slam_times_writer->enabled, "Record tracker times"); u_var_add_bool(&t, &t.slam_features_writer->enabled, "Record feature count"); timing_ui_setup(t); features_ui_setup(t); // Later, gt_ui_setup will setup the tracking error UI if ground truth becomes available } static void add_camera_calibration(const TrackerSlam &t, const t_slam_camera_calibration *calib, int cam_index) { const t_camera_calibration &view = calib->base; const auto params = make_shared(); params->cam_index = cam_index; params->width = view.image_size_pixels.w; params->height = view.image_size_pixels.h; params->frequency = calib->frequency; params->fx = view.intrinsics[0][0]; params->fy = view.intrinsics[1][1]; params->cx = view.intrinsics[0][2]; params->cy = view.intrinsics[1][2]; switch (view.distortion_model) { case T_DISTORTION_OPENCV_RADTAN_8: params->distortion_model = "rt8"; params->distortion.push_back(view.rt8.k1); params->distortion.push_back(view.rt8.k2); params->distortion.push_back(view.rt8.p1); params->distortion.push_back(view.rt8.p2); params->distortion.push_back(view.rt8.k3); params->distortion.push_back(view.rt8.k4); params->distortion.push_back(view.rt8.k5); params->distortion.push_back(view.rt8.k6); // -1 metric radius tells Basalt to estimate the metric radius on its own. params->distortion.push_back(-1.0); SLAM_ASSERT_(params->distortion.size() == 9); break; case T_DISTORTION_WMR: params->distortion_model = "rt8"; params->distortion.push_back(view.wmr.k1); params->distortion.push_back(view.wmr.k2); params->distortion.push_back(view.wmr.p1); params->distortion.push_back(view.wmr.p2); params->distortion.push_back(view.wmr.k3); params->distortion.push_back(view.wmr.k4); params->distortion.push_back(view.wmr.k5); params->distortion.push_back(view.wmr.k6); params->distortion.push_back(view.wmr.rpmax); SLAM_ASSERT_(params->distortion.size() == 9); break; case T_DISTORTION_FISHEYE_KB4: params->distortion_model = "kb4"; params->distortion.push_back(view.kb4.k1); params->distortion.push_back(view.kb4.k2); params->distortion.push_back(view.kb4.k3); params->distortion.push_back(view.kb4.k4); SLAM_ASSERT_(params->distortion.size() == 4); break; default: SLAM_ASSERT(false, "SLAM doesn't support distortion type %s", t_stringify_camera_distortion_model(view.distortion_model)); } xrt_matrix_4x4 T; // Row major T_imu_cam math_matrix_4x4_transpose(&calib->T_imu_cam, &T); params->t_imu_cam = cv::Matx{T.v}; shared_ptr result{}; t.slam->use_feature(F_ADD_CAMERA_CALIBRATION, params, result); } static void add_imu_calibration(const TrackerSlam &t, const t_slam_imu_calibration *imu_calib) { const auto params = make_shared(); params->imu_index = 0; // Multiple IMU setups unsupported params->frequency = imu_calib->frequency; const t_inertial_calibration &accel = imu_calib->base.accel; params->accel.transform = cv::Matx{&accel.transform[0][0]}; params->accel.offset = cv::Matx{&accel.offset[0]}; params->accel.bias_std = cv::Matx{&accel.bias_std[0]}; params->accel.noise_std = cv::Matx{&accel.noise_std[0]}; const t_inertial_calibration &gyro = imu_calib->base.gyro; params->gyro.transform = cv::Matx{&gyro.transform[0][0]}; params->gyro.offset = cv::Matx{&gyro.offset[0]}; params->gyro.bias_std = cv::Matx{&gyro.bias_std[0]}; params->gyro.noise_std = cv::Matx{&gyro.noise_std[0]}; shared_ptr result{}; t.slam->use_feature(F_ADD_IMU_CALIBRATION, params, result); } static void send_calibration(const TrackerSlam &t, const t_slam_calibration &c) { // Try to send camera calibration data to the SLAM system for (int i = 0; i < c.cam_count; i++) { if (t.slam->supports_feature(F_ADD_CAMERA_CALIBRATION)) { SLAM_INFO("Sending Camera %d calibration from Monado", i); add_camera_calibration(t, &c.cams[i], i); } else { SLAM_INFO("Camera %d will use the calibration provided by the SLAM_CONFIG file", i); } } // Try to send IMU calibration data to the SLAM system if (t.slam->supports_feature(F_ADD_IMU_CALIBRATION)) { SLAM_INFO("Sending IMU calibration from Monado"); add_imu_calibration(t, &c.imu); } else { SLAM_INFO("The IMU will use the calibration provided by the SLAM_CONFIG file"); } } } // namespace xrt::auxiliary::tracking::slam using namespace xrt::auxiliary::tracking::slam; /* * * External functions * */ //! Get a filtered prediction from the SLAM tracked poses. extern "C" void t_slam_get_tracked_pose(struct xrt_tracked_slam *xts, timepoint_ns when_ns, struct xrt_space_relation *out_relation) { auto &t = *container_of(xts, TrackerSlam, base); //! @todo This should not be cached, the same timestamp can be requested at a //! later time on the frame for a better prediction. if (when_ns == t.last_ts) { *out_relation = t.last_rel; return; } flush_poses(t); predict_pose(t, when_ns, out_relation); t.pred_traj_writer->push(when_ns, out_relation->pose); filter_pose(t, when_ns, out_relation); t.filt_traj_writer->push(when_ns, out_relation->pose); t.last_rel = *out_relation; t.last_ts = when_ns; if (t.gt.override_tracking) { out_relation->pose = gt2xr_pose(t.gt.origin, get_gt_pose_at(*t.gt.trajectory, when_ns)); } } //! Receive and register ground truth to use for trajectory error metrics. extern "C" void t_slam_gt_sink_push(struct xrt_pose_sink *sink, xrt_pose_sample *sample) { auto &t = *container_of(sink, TrackerSlam, gt_sink); if (t.gt.trajectory->empty()) { t.gt.origin = sample->pose; gt_ui_setup(t); } t.gt.trajectory->insert_or_assign(sample->timestamp_ns, sample->pose); } //! Receive and send IMU samples to the external SLAM system extern "C" void t_slam_receive_imu(struct xrt_imu_sink *sink, struct xrt_imu_sample *s) { auto &t = *container_of(sink, TrackerSlam, imu_sink); timepoint_ns ts = s->timestamp_ns; xrt_vec3_f64 a = s->accel_m_s2; xrt_vec3_f64 w = s->gyro_rad_secs; //! @todo There are many conversions like these between xrt and //! slam_tracker.hpp types. Implement a casting mechanism to avoid copies. imu_sample sample{ts, a.x, a.y, a.z, w.x, w.y, w.z}; if (t.submit) { t.slam->push_imu_sample(sample); } SLAM_TRACE("imu t=%ld a=[%f,%f,%f] w=[%f,%f,%f]", ts, a.x, a.y, a.z, w.x, w.y, w.z); // Check monotonically increasing timestamps SLAM_DASSERT(ts > t.last_imu_ts, "Sample (%ld) is older than last (%ld)", ts, t.last_imu_ts); t.last_imu_ts = ts; xrt_sink_push_imu(t.euroc_recorder->imu, s); struct xrt_vec3 gyro = {(float)w.x, (float)w.y, (float)w.z}; struct xrt_vec3 accel = {(float)a.x, (float)a.y, (float)a.z}; m_ff_vec3_f32_push(t.gyro_ff, &gyro, ts); m_ff_vec3_f32_push(t.accel_ff, &accel, ts); } //! Push the frame to the external SLAM system static void receive_frame(TrackerSlam &t, struct xrt_frame *frame, int cam_index) { SLAM_DASSERT(t.last_cam_ts[0] != INT64_MIN || cam_index == 0, "First frame was not a cam0 frame"); // Construct and send the image sample cv::Mat img = t.cv_wrapper->wrap(frame); SLAM_DASSERT_(frame->timestamp < INT64_MAX); img_sample sample{(int64_t)frame->timestamp, img, cam_index}; if (t.submit) { t.slam->push_frame(sample); } SLAM_TRACE("cam%d frame t=%lu", cam_index, frame->timestamp); // Check monotonically increasing timestamps timepoint_ns &last_ts = t.last_cam_ts[cam_index]; SLAM_DASSERT(sample.timestamp > last_ts, "Frame (%ld) is older than last (%ld)", sample.timestamp, last_ts); last_ts = sample.timestamp; } #define DEFINE_RECEIVE_CAM(cam_id) \ extern "C" void t_slam_receive_cam##cam_id(struct xrt_frame_sink *sink, struct xrt_frame *frame) \ { \ auto &t = *container_of(sink, TrackerSlam, cam_sinks[cam_id]); \ receive_frame(t, frame, cam_id); \ u_sink_debug_push_frame(&t.ui_sink[cam_id], frame); \ xrt_sink_push_frame(t.euroc_recorder->cams[cam_id], frame); \ } DEFINE_RECEIVE_CAM(0) DEFINE_RECEIVE_CAM(1) DEFINE_RECEIVE_CAM(2) DEFINE_RECEIVE_CAM(3) DEFINE_RECEIVE_CAM(4) //! Define a function for each XRT_TRACKING_MAX_SLAM_CAMS and reference it in this array void (*t_slam_receive_cam[XRT_TRACKING_MAX_SLAM_CAMS])(xrt_frame_sink *, xrt_frame *) = { t_slam_receive_cam0, // t_slam_receive_cam1, // t_slam_receive_cam2, // t_slam_receive_cam3, // t_slam_receive_cam4, // }; extern "C" void t_slam_node_break_apart(struct xrt_frame_node *node) { auto &t = *container_of(node, TrackerSlam, node); t.slam->finalize(); t.slam->stop(); os_thread_helper_stop_and_wait(&t.oth); SLAM_DEBUG("SLAM tracker dismantled"); } extern "C" void t_slam_node_destroy(struct xrt_frame_node *node) { auto t_ptr = container_of(node, TrackerSlam, node); auto &t = *t_ptr; // Needed by SLAM_DEBUG SLAM_DEBUG("Destroying SLAM tracker"); os_thread_helper_destroy(&t_ptr->oth); delete t.gt.trajectory; delete t.slam_times_writer; delete t.slam_features_writer; delete t.slam_traj_writer; delete t.pred_traj_writer; delete t.filt_traj_writer; u_var_remove_root(t_ptr); for (size_t i = 0; i < t.ui_sink.size(); i++) { u_sink_debug_destroy(&t.ui_sink[i]); } m_ff_vec3_f32_free(&t.gyro_ff); m_ff_vec3_f32_free(&t.accel_ff); m_ff_vec3_f32_free(&t.filter.pos_ff); m_ff_vec3_f32_free(&t.filter.rot_ff); delete t_ptr->slam; delete t_ptr->cv_wrapper; delete t_ptr; } //! Runs the external SLAM system in a separate thread extern "C" void * t_slam_run(void *ptr) { auto &t = *(TrackerSlam *)ptr; SLAM_DEBUG("SLAM tracker starting"); t.slam->start(); return NULL; } //! Starts t_slam_run extern "C" int t_slam_start(struct xrt_tracked_slam *xts) { auto &t = *container_of(xts, TrackerSlam, base); int ret = os_thread_helper_start(&t.oth, t_slam_run, &t); SLAM_ASSERT(ret == 0, "Unable to start thread"); SLAM_DEBUG("SLAM tracker started"); return ret; } extern "C" void t_slam_fill_default_config(struct t_slam_tracker_config *config) { config->log_level = debug_get_log_option_slam_log(); config->slam_config = debug_get_option_slam_config(); config->slam_ui = debug_get_bool_option_slam_ui(); config->submit_from_start = debug_get_bool_option_slam_submit_from_start(); config->prediction = t_slam_prediction_type(debug_get_num_option_slam_prediction_type()); config->write_csvs = debug_get_bool_option_slam_write_csvs(); config->csv_path = debug_get_option_slam_csv_path(); config->timing_stat = debug_get_bool_option_slam_timing_stat(); config->features_stat = debug_get_bool_option_slam_features_stat(); config->cam_count = int(debug_get_num_option_slam_cam_count()); config->slam_calib = NULL; } extern "C" int t_slam_create(struct xrt_frame_context *xfctx, struct t_slam_tracker_config *config, struct xrt_tracked_slam **out_xts, struct xrt_slam_sinks **out_sink) { struct t_slam_tracker_config default_config = {}; if (config == nullptr) { t_slam_fill_default_config(&default_config); config = &default_config; } enum u_logging_level log_level = config->log_level; // Check that the external SLAM system built is compatible int ima = IMPLEMENTATION_VERSION_MAJOR; int imi = IMPLEMENTATION_VERSION_MINOR; int ipa = IMPLEMENTATION_VERSION_PATCH; int hma = HEADER_VERSION_MAJOR; int hmi = HEADER_VERSION_MINOR; int hpa = HEADER_VERSION_PATCH; U_LOG_IFL_I(log_level, "External SLAM system built %d.%d.%d, expected %d.%d.%d.", ima, imi, ipa, hma, hmi, hpa); if (IMPLEMENTATION_VERSION_MAJOR != HEADER_VERSION_MAJOR) { U_LOG_IFL_E(log_level, "Incompatible external SLAM system found."); return -1; } U_LOG_IFL_I(log_level, "Initializing compatible external SLAM system."); // Check the user has provided a SLAM_CONFIG file const char *config_file = config->slam_config; bool some_calib = config->slam_calib != nullptr; if (!config_file && !some_calib) { U_LOG_IFL_W(log_level, "Unable to determine sensor calibration, did you forget to set SLAM_CONFIG?"); return -1; } auto &t = *(new TrackerSlam{}); t.log_level = log_level; t.cv_wrapper = new MatFrame(); t.base.get_tracked_pose = t_slam_get_tracked_pose; slam_config system_config = {}; system_config.config_file = config_file ? make_shared(config_file) : nullptr; system_config.cam_count = config->cam_count; system_config.show_ui = config->slam_ui; t.slam = new slam_tracker{system_config}; if (!config_file) { SLAM_INFO("Using calibration from driver and default pipeline settings"); send_calibration(t, *config->slam_calib); // Not null because of `some_calib` } else { SLAM_INFO("Using sensor calibration provided by the SLAM_CONFIG file"); } t.slam->initialize(); SLAM_ASSERT(t_slam_receive_cam[ARRAY_SIZE(t_slam_receive_cam) - 1] != nullptr, "See `cam_sink_push` docs"); t.sinks.cam_count = config->cam_count; for (int i = 0; i < XRT_TRACKING_MAX_SLAM_CAMS; i++) { t.cam_sinks[i].push_frame = t_slam_receive_cam[i]; t.sinks.cams[i] = &t.cam_sinks[i]; } t.imu_sink.push_imu = t_slam_receive_imu; t.sinks.imu = &t.imu_sink; t.gt_sink.push_pose = t_slam_gt_sink_push; t.sinks.gt = &t.gt_sink; t.submit = config->submit_from_start; t.cam_count = config->cam_count; t.node.break_apart = t_slam_node_break_apart; t.node.destroy = t_slam_node_destroy; int ret = os_thread_helper_init(&t.oth); SLAM_ASSERT(ret == 0, "Unable to initialize thread"); xrt_frame_context_add(xfctx, &t.node); t.euroc_recorder = euroc_recorder_create(xfctx, NULL, false); t.last_imu_ts = INT64_MIN; t.last_cam_ts = vector(t.cam_count, INT64_MIN); t.pred_type = config->prediction; m_filter_euro_vec3_init(&t.filter.pos_oe, t.filter.min_cutoff, t.filter.min_dcutoff, t.filter.beta); m_filter_euro_quat_init(&t.filter.rot_oe, t.filter.min_cutoff, t.filter.min_dcutoff, t.filter.beta); t.gt.trajectory = new Trajectory{}; // Setup timing extension // Probe for timing extension. bool has_timing_extension = t.slam->supports_feature(F_ENABLE_POSE_EXT_TIMING); t.timing.ext_available = has_timing_extension; // We provide two timing columns by default, even if there is no extension support t.timing.columns = {"sampled", "received_by_monado"}; if (has_timing_extension) { bool enable_timing_extension = config->timing_stat; const auto params = make_shared(enable_timing_extension); shared_ptr result; t.slam->use_feature(F_ENABLE_POSE_EXT_TIMING, params, result); vector cols = *std::static_pointer_cast(result); t.timing.columns.insert(t.timing.columns.begin() + 1, cols.begin(), cols.end()); t.timing.ext_enabled = enable_timing_extension; } // Setup features extension bool has_features_extension = t.slam->supports_feature(F_ENABLE_POSE_EXT_FEATURES); t.features.ext_available = has_features_extension; if (has_features_extension) { bool enable_features_extension = config->features_stat; const auto params = make_shared(enable_features_extension); shared_ptr _; t.slam->use_feature(F_ENABLE_POSE_EXT_FEATURES, params, _); t.features.ext_enabled = enable_features_extension; } // Setup CSV files bool write_csvs = config->write_csvs; string dir = config->csv_path; t.slam_times_writer = new TimingWriter{dir, "timing.csv", write_csvs, t.timing.columns}; t.slam_features_writer = new FeaturesWriter{dir, "features.csv", write_csvs}; t.slam_traj_writer = new TrajectoryWriter{dir, "tracking.csv", write_csvs}; t.pred_traj_writer = new TrajectoryWriter{dir, "prediction.csv", write_csvs}; t.filt_traj_writer = new TrajectoryWriter{dir, "filtering.csv", write_csvs}; setup_ui(t); *out_xts = &t.base; *out_sink = &t.sinks; SLAM_DEBUG("SLAM tracker created"); return 0; }