// Copyright 2022, Campbell Suter // Copyright 2022, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief Test xrt_pose functions. * @author Campbell Suter * @author Mateo de Mayo */ #include "catch/catch.hpp" #include "math/m_api.h" #include "math/m_vec3.h" TEST_CASE("Pose invert works") { // Test that inverting a pose works correctly // Pick an arbitrary and non-trivial original pose struct xrt_pose orig = {}; orig.position = {123.f, 456.f, 789.f}; orig.orientation = {-0.439, -0.561, 0.072, -0.698}; math_quat_normalize(&orig.orientation); // Invert it struct xrt_pose invert; math_pose_invert(&orig, &invert); // Multiply the poses together in both orders struct xrt_pose out_a, out_b; math_pose_transform(&orig, &invert, &out_a); math_pose_transform(&invert, &orig, &out_b); // A pose multiplied by it's inverse or vice-verse should have both a negligible rotation and position CHECK(m_vec3_len(out_a.position) < 0.001); CHECK(1 - abs(out_a.orientation.w) < 0.001); CHECK(m_vec3_len(out_b.position) < 0.001); CHECK(1 - abs(out_b.orientation.w) < 0.001); } TEST_CASE("Pose interpolation works") { // A random pose struct xrt_vec3 pos_a = {1, 2, 3}; struct xrt_quat ori_a = {1, 2, 3, 4}; math_quat_normalize(&ori_a); struct xrt_pose a = {ori_a, pos_a}; // The inverse of that pose struct xrt_vec3 pos_b = pos_a * -1; struct xrt_quat ori_b = {}; math_quat_invert(&ori_a, &ori_b); struct xrt_pose b = {ori_b, pos_b}; // The interpolation at 0.5 should be the identity struct xrt_pose res = {}; math_pose_interpolate(&a, &b, 0.5, &res); float e = std::numeric_limits::epsilon(); CHECK(res.position.x == Approx(0).margin(e)); CHECK(res.position.y == Approx(0).margin(e)); CHECK(res.position.z == Approx(0).margin(e)); CHECK(res.orientation.x == Approx(0).margin(e)); CHECK(res.orientation.x == Approx(0).margin(e)); CHECK(res.orientation.y == Approx(0).margin(e)); CHECK(res.orientation.w == Approx(1).margin(e)); }