t/imu_fusion: Clean up and improve comments

This commit is contained in:
Ryan Pavlik 2020-03-25 14:09:16 -05:00 committed by Jakob Bornecrantz
parent 4c54ccd0fb
commit bc53be8562
2 changed files with 239 additions and 141 deletions

View file

@ -0,0 +1 @@
tracking: Improve readability and documentation of IMU fusion class.

View file

@ -25,6 +25,7 @@
#include "flexkalman/EigenQuatExponentialMap.h"
DEBUG_GET_ONCE_BOOL_OPTION(simple_imu_debug, "SIMPLE_IMU_DEBUG", false)
DEBUG_GET_ONCE_BOOL_OPTION(simple_imu_spew, "SIMPLE_IMU_SPEW", false)
#define SIMPLE_IMU_DEBUG(MSG) \
do { \
@ -34,6 +35,14 @@ DEBUG_GET_ONCE_BOOL_OPTION(simple_imu_debug, "SIMPLE_IMU_DEBUG", false)
} \
} while (0)
#define SIMPLE_IMU_SPEW(MSG) \
do { \
if (spew_) { \
printf("SimpleIMU(%p): " MSG "\n", \
(const void *)this); \
} \
} while (0)
namespace xrt_fusion {
class SimpleIMUFusion
{
@ -45,177 +54,115 @@ public:
*/
explicit SimpleIMUFusion(double gravity_rate = 0.9)
: gravity_scale_(gravity_rate),
debug_(debug_get_bool_option_simple_imu_debug())
debug_(debug_get_bool_option_simple_imu_debug()),
spew_(debug_get_bool_option_simple_imu_spew())
{
SIMPLE_IMU_DEBUG("Creating instance");
}
/*!
* @return true if the filter has started up
*/
bool
valid() const noexcept
{
return started_;
}
/*!
* Get the current state orientation.
*/
Eigen::Quaterniond
getQuat() const
{
return quat_;
}
Eigen::Quaterniond
getPredictedQuat(timepoint_ns timestamp) const
{
timepoint_ns state_time =
std::max(last_accel_timestamp_, last_gyro_timestamp_);
time_duration_ns delta_ns =
(state_time == 0) ? 1e6 : timestamp - state_time;
float dt = time_ns_to_s(delta_ns);
return quat_ * flexkalman::util::quat_exp(angVel_ * dt * 0.5);
}
/*!
* Get the current state orientation as a rotation vector.
*/
Eigen::Vector3d
getRotationVec() const
{
return flexkalman::util::quat_ln(quat_);
}
//! in world space
Eigen::Vector3d const &
getAngVel() const
{
return angVel_;
}
bool
handleGyro(Eigen::Vector3d const &gyro, timepoint_ns timestamp)
{
if (!started_) {
SIMPLE_IMU_DEBUG(
"Discarding gyro report before first usable accel "
"report");
return false;
}
time_duration_ns delta_ns =
(last_gyro_timestamp_ == 0)
? 1e6
: timestamp - last_gyro_timestamp_;
if (delta_ns > 1e10) {
SIMPLE_IMU_DEBUG("Clamping integration period");
// Limit integration to 1/10th of a second
// Does not affect updating the last gyro timestamp.
delta_ns = 1e10;
}
float dt = time_ns_to_s(delta_ns);
last_gyro_timestamp_ = timestamp;
Eigen::Vector3d incRot = gyro * dt;
// Crude handling of "approximately zero"
if (incRot.squaredNorm() < 1.e-8) {
SIMPLE_IMU_DEBUG(
"Discarding gyro data that is approximately zero");
return false;
}
angVel_ = gyro;
// Update orientation
quat_ = quat_ * flexkalman::util::quat_exp(incRot * 0.5);
return true;
}
/*!
* Returns a coefficient to correct the scale of the accelerometer
* reading.
* Get the current state orientation as a rotation matrix.
*/
double
getAccelScaleFactor() const
{
return MATH_GRAVITY_M_S2 / gravity_filter_.getState();
}
bool
handleAccel(Eigen::Vector3d const &accel, timepoint_ns timestamp)
{
uint64_t delta_ns = (last_accel_timestamp_ == 0)
? 1e6
: timestamp - last_accel_timestamp_;
float dt = time_ns_to_s(delta_ns);
if (!started_) {
auto diff = std::abs(accel.norm() - MATH_GRAVITY_M_S2);
if (diff > 1.) {
// We're moving, don't start it now.
SIMPLE_IMU_DEBUG(
"Can't start tracker with this accel "
"sample: we're moving too much.");
return false;
}
// Initially, just set it to totally trust gravity.
started_ = true;
quat_ = Eigen::Quaterniond::FromTwoVectors(
accel.normalized(), Eigen::Vector3d::UnitY());
accel_filter_.addSample(accel, timestamp);
gravity_filter_.addSample(accel.norm(), timestamp);
last_accel_timestamp_ = timestamp;
SIMPLE_IMU_DEBUG("Got a usable startup accel report");
return true;
}
last_accel_timestamp_ = timestamp;
accel_filter_.addSample(accel, timestamp);
gravity_filter_.addSample(accel.norm(), timestamp);
// Adjust scale of accelerometer
Eigen::Vector3d adjusted_accel =
accel_filter_.getState() * getAccelScaleFactor();
auto diff = std::abs(adjusted_accel.norm() - MATH_GRAVITY_M_S2);
auto scale = 1. - diff;
if (scale <= 0) {
// Too far from gravity to be useful/trusted.
SIMPLE_IMU_DEBUG(
"Too far from gravity to be useful/trusted.");
return false;
}
// This should match the global gravity vector if the rotation
// is right.
Eigen::Vector3d measuredGravityDirection =
(quat_ * adjusted_accel).normalized();
auto incremental = Eigen::Quaterniond::FromTwoVectors(
measuredGravityDirection, Eigen::Vector3d::UnitY());
double alpha = scale * gravity_scale_ * dt;
Eigen::Quaterniond scaledIncrementalQuat =
Eigen::Quaterniond::Identity().slerp(alpha, incremental);
// Update orientation
quat_ = scaledIncrementalQuat * quat_;
return true;
}
/*!
* Use this to obtain the residual, world-space acceleration not
* associated with gravity, after incorporating a measurement.
*/
Eigen::Vector3d
getCorrectedWorldAccel(Eigen::Vector3d const &accel) const
{
Eigen::Vector3d adjusted_accel = accel * getAccelScaleFactor();
return (quat_ * adjusted_accel) -
(Eigen::Vector3d::UnitY() * MATH_GRAVITY_M_S2);
}
Eigen::Matrix3d
getRotationMatrix() const
{
return quat_.toRotationMatrix();
}
/*!
* @brief Get the predicted orientation at some point in the future.
*
* Here, we do **not** clamp the delta-t, so only ask for reasonable
* points in the future. (The gyro handler math does clamp delta-t for
* the purposes of integration in case of long times without signals,
* etc, which is OK since the accelerometer serves as a correction.)
*/
Eigen::Quaterniond
getPredictedQuat(timepoint_ns timestamp) const;
/*!
* Get the angular velocity in body space.
*/
Eigen::Vector3d const &
getAngVel() const
{
return angVel_;
}
/*!
* Process a gyroscope report.
*
* @note At startup, no gyro reports will be considered until at least
* one accelerometer report has been processed, to provide us with an
* initial estimate of the direction of gravity.
*
* @param gyro Angular rate in radians per second, in body space.
* @param timestamp Nanosecond timestamp of this measurement.
*
* @return true if the report was used to update the state.
*/
bool
handleGyro(Eigen::Vector3d const &gyro, timepoint_ns timestamp);
/*!
* Process an accelerometer report.
*
* @param accel Body-relative acceleration measurement in m/s/s.
* @param timestamp Nanosecond timestamp of this measurement.
*
* @return true if the report was used to update the state.
*/
bool
handleAccel(Eigen::Vector3d const &accel, timepoint_ns timestamp);
/*!
* Use this to obtain the residual, world-space acceleration in m/s/s
* **not** associated with gravity, after incorporating a measurement.
*
* @param accel Body-relative acceleration measurement in m/s/s.
*/
Eigen::Vector3d
getCorrectedWorldAccel(Eigen::Vector3d const &accel) const
{
Eigen::Vector3d adjusted_accel = accel * getAccelScaleFactor_();
return (quat_ * adjusted_accel) -
(Eigen::Vector3d::UnitY() * MATH_GRAVITY_M_S2);
}
/*!
* @brief Normalize internal state.
*
* Call periodically, like after you finish handling both the accel and
* gyro from one packet.
*/
void
postCorrect()
{
@ -223,15 +170,165 @@ public:
}
private:
/*!
* Returns a coefficient to correct the scale of the accelerometer
* reading.
*/
double
getAccelScaleFactor_() const
{
// For a "perfect" accelerometer, gravity_filter_.getState()
// should return MATH_GRAVITY_M_S2, making this method return 1.
return MATH_GRAVITY_M_S2 / gravity_filter_.getState();
}
//! Body-space angular velocity in radian/s
Eigen::Vector3d angVel_{Eigen::Vector3d::Zero()};
//! Current orientation
Eigen::Quaterniond quat_{Eigen::Quaterniond::Identity()};
double gravity_scale_;
/*!
* @brief Low-pass filter for extracting the gravity direction from the
* full accel signal.
*
* High-frequency components of the accel are either noise or
* user-caused acceleration, and do not reflect the direction of
* gravity.
*/
LowPassIIRVectorFilter<3, double> accel_filter_{
200 /* hz cutoff frequency */};
/*!
* @brief Even-lower low pass filter on the length of the acceleration
* vector, used to estimate a corrective scale for the accelerometer
* data.
*
* Over time, the length of the accelerometer data will average out to
* be the acceleration due to gravity.
*/
LowPassIIRFilter<double> gravity_filter_{1 /* hz cutoff frequency */};
uint64_t last_accel_timestamp_{0};
uint64_t last_gyro_timestamp_{0};
double gyro_min_squared_length_{1.e-8};
bool started_{false};
bool debug_{false};
bool spew_{false};
};
inline Eigen::Quaterniond
SimpleIMUFusion::getPredictedQuat(timepoint_ns timestamp) const
{
timepoint_ns state_time =
std::max(last_accel_timestamp_, last_gyro_timestamp_);
if (state_time == 0) {
// no data yet.
return Eigen::Quaterniond::Identity();
}
time_duration_ns delta_ns = timestamp - state_time;
float dt = time_ns_to_s(delta_ns);
return quat_ * flexkalman::util::quat_exp(angVel_ * dt * 0.5);
}
inline bool
SimpleIMUFusion::handleGyro(Eigen::Vector3d const &gyro, timepoint_ns timestamp)
{
if (!started_) {
SIMPLE_IMU_DEBUG(
"Discarding gyro report before first usable accel "
"report");
return false;
}
time_duration_ns delta_ns = (last_gyro_timestamp_ == 0)
? 1e6
: timestamp - last_gyro_timestamp_;
if (delta_ns > 1e10) {
SIMPLE_IMU_DEBUG("Clamping integration period");
// Limit integration to 1/10th of a second
// Does not affect updating the last gyro timestamp.
delta_ns = 1e10;
}
float dt = time_ns_to_s(delta_ns);
last_gyro_timestamp_ = timestamp;
Eigen::Vector3d incRot = gyro * dt;
// Crude handling of "approximately zero"
if (incRot.squaredNorm() < gyro_min_squared_length_) {
SIMPLE_IMU_SPEW(
"Discarding gyro data that is approximately zero");
return false;
}
angVel_ = gyro;
// Update orientation
quat_ = quat_ * flexkalman::util::quat_exp(incRot * 0.5);
return true;
}
inline bool
SimpleIMUFusion::handleAccel(Eigen::Vector3d const &accel,
timepoint_ns timestamp)
{
uint64_t delta_ns = (last_accel_timestamp_ == 0)
? 1e6
: timestamp - last_accel_timestamp_;
float dt = time_ns_to_s(delta_ns);
if (!started_) {
auto diff = std::abs(accel.norm() - MATH_GRAVITY_M_S2);
if (diff > 1.) {
// We're moving, don't start it now.
SIMPLE_IMU_DEBUG(
"Can't start tracker with this accel "
"sample: we're moving too much.");
return false;
}
// Initially, just set it to totally trust gravity.
started_ = true;
quat_ = Eigen::Quaterniond::FromTwoVectors(
accel.normalized(), Eigen::Vector3d::UnitY());
accel_filter_.addSample(accel, timestamp);
gravity_filter_.addSample(accel.norm(), timestamp);
last_accel_timestamp_ = timestamp;
SIMPLE_IMU_DEBUG("Got a usable startup accel report");
return true;
}
last_accel_timestamp_ = timestamp;
accel_filter_.addSample(accel, timestamp);
gravity_filter_.addSample(accel.norm(), timestamp);
// Adjust scale of accelerometer
Eigen::Vector3d adjusted_accel =
accel_filter_.getState() * getAccelScaleFactor_();
// How different is the acceleration length from gravity?
auto diff = std::abs(adjusted_accel.norm() - MATH_GRAVITY_M_S2);
auto scale = 1. - diff;
if (scale <= 0) {
// Too far from gravity to be useful/trusted for orientation
// purposes.
SIMPLE_IMU_SPEW("Too far from gravity to be useful/trusted.");
return false;
}
// This should match the global gravity vector if the rotation
// is right.
Eigen::Vector3d measuredGravityDirection =
(quat_ * adjusted_accel).normalized();
auto incremental = Eigen::Quaterniond::FromTwoVectors(
measuredGravityDirection, Eigen::Vector3d::UnitY());
double alpha = scale * gravity_scale_ * dt;
Eigen::Quaterniond scaledIncrementalQuat =
Eigen::Quaterniond::Identity().slerp(alpha, incremental);
// Update orientation
quat_ = scaledIncrementalQuat * quat_;
return true;
}
} // namespace xrt_fusion