diff --git a/src/xrt/auxiliary/CMakeLists.txt b/src/xrt/auxiliary/CMakeLists.txt index 85610f64b..ead54a3b5 100644 --- a/src/xrt/auxiliary/CMakeLists.txt +++ b/src/xrt/auxiliary/CMakeLists.txt @@ -199,8 +199,10 @@ target_include_directories(aux_tracking SYSTEM PRIVATE ${EIGEN3_INCLUDE_DIR} ) -# for flexkalman -target_link_libraries(aux_tracking PRIVATE xrt-external-flexkalman) +target_link_libraries(aux_tracking PRIVATE + xrt-external-flexkalman + xrt-external-hungarian + ) if(XRT_HAVE_OPENCV) target_include_directories(aux_tracking SYSTEM PRIVATE diff --git a/src/xrt/auxiliary/meson.build b/src/xrt/auxiliary/meson.build index 4993d82eb..3bda47cc0 100644 --- a/src/xrt/auxiliary/meson.build +++ b/src/xrt/auxiliary/meson.build @@ -171,7 +171,11 @@ endif lib_aux_tracking = static_library( 'aux_tracking', files(tracking_srcs), - include_directories: [xrt_include, flexkalman_include], + include_directories: [ + xrt_include, + flexkalman_include, + hungarian_include, + ], dependencies: tracking_deps ) diff --git a/src/xrt/auxiliary/tracking/t_tracker_psvr.cpp b/src/xrt/auxiliary/tracking/t_tracker_psvr.cpp index 87e2e0962..de8c0a249 100644 --- a/src/xrt/auxiliary/tracking/t_tracker_psvr.cpp +++ b/src/xrt/auxiliary/tracking/t_tracker_psvr.cpp @@ -4,20 +4,25 @@ * @file * @brief PSVR tracker code. * @author Jakob Bornecrantz + * @author Pete Black * @ingroup aux_tracking */ #include "xrt/xrt_tracking.h" #include "tracking/t_tracking.h" +#include "tracking/t_calibration_opencv.hpp" +#include "tracking/t_helper_debug_sink.hpp" #include "util/u_misc.h" #include "util/u_debug.h" #include "util/u_frame.h" #include "util/u_format.h" -#include "util/u_time.h" +#include "util/u_var.h" +#include "util/u_logging.h" #include "math/m_api.h" +#include "math/m_permutation.h" #include "os/os_threading.h" @@ -25,14 +30,192 @@ #include #include +#include +#include +#include +#include + +DEBUG_GET_ONCE_LOG_OPTION(psvr_log, "PSVR_TRACKING_LOG", U_LOGGING_WARN) + +#define PSVR_TRACE(...) U_LOG_IFL_T(t.ll, __VA_ARGS__) +#define PSVR_DEBUG(...) U_LOG_IFL_D(t.ll, __VA_ARGS__) +#define PSVR_INFO(...) U_LOG_IFL_I(t.ll, __VA_ARGS__) +#define PSVR_WARN(...) U_LOG_IFL_W(t.ll, __VA_ARGS__) +#define PSVR_ERROR(...) U_LOG_IFL_E(t.ll, __VA_ARGS__) + + +/*! + * How many LEDs in the tracked configuration + */ +#define PSVR_NUM_LEDS 7 +/*! + * How many LEDs do we need to do an optical solve/correction + */ +#define PSVR_OPTICAL_SOLVE_THRESH 5 +/*! + * If potential match vertex is further than this distance from the + * measurement, reject the match - do not set too low + */ +#define PSVR_DISAMBIG_REJECT_DIST 0.02f +/*! + * If potential match vertex is further than this distance from the measurement, + * reject the match - do not set too low + */ +#define PSVR_DISAMBIG_REJECT_ANG 0.7f +/*! + * Cutoff distance for keeping the id for a blob from one frame to the next + */ +#define PSVR_SEARCH_RADIUS 0.043f +/* + * The magnitude of the correction relative to the previous correction must be + * below this value to contribute towards lock acquisition + */ +#define PSVR_MAX_BAD_CORR 10 +#define PSVR_BAD_CORRECTION_THRESH 0.1f +#define PSVR_CORRECTION_THRESH 0.05f + +/*! + * We will 'drift' our imu-solved rotation towards our optically solved + * correction to avoid jumps + */ +#define PSVR_FAST_CORRECTION 0.05f + +/*! + * We will 'drift' our imu-solved rotation towards our optically solved + * correction to avoid jumps + */ +#define PSVR_SLOW_CORRECTION 0.005f + +// kalman filter coefficients +#define PSVR_BLOB_PROCESS_NOISE 0.1f // R +#define PSVR_BLOB_MEASUREMENT_NOISE 1.0f // Q + +#define PSVR_POSE_PROCESS_NOISE 0.5f // R +//! Our measurements are quite noisy so we need to smooth heavily +#define PSVR_POSE_MEASUREMENT_NOISE 100.0f + +#define PSVR_OUTLIER_THRESH 0.17f +#define PSVR_MERGE_THRESH 0.06f + +//! hold the previously recognised configuration unless we depart significantly +#define PSVR_HOLD_THRESH 0.086f + +// uncomment this to dump comprehensive optical and imu data to +// /tmp/psvr_dump.txt + +//#define PSVR_DUMP_FOR_OFFLINE_ANALYSIS +//#define PSVR_DUMP_IMU_FOR_OFFLINE_ANALYSIS + +typedef enum blob_type +{ + BLOB_TYPE_UNKNOWN, + BLOB_TYPE_SIDE, + BLOB_TYPE_FRONT, + BLOB_TYPE_REAR, // currently unused +} blob_type_t; + +typedef struct blob_point +{ + cv::Point3f p; // 3d coordinate + cv::KeyPoint lkp; // left keypoint + cv::KeyPoint rkp; // right keypoint + blob_type_t btype; // blob type +} blob_point_t; + +struct View +{ + cv::Mat undistort_rectify_map_x; + cv::Mat undistort_rectify_map_y; + + cv::Matx33d intrinsics; + cv::Mat distortion; // size may vary + cv::Vec4d distortion_fisheye; + bool use_fisheye; + + std::vector keypoints; + + cv::Mat frame_undist_rectified; + + void + populate_from_calib(t_camera_calibration &calib, + const RemapPair &rectification) + { + CameraCalibrationWrapper wrap(calib); + intrinsics = wrap.intrinsics_mat; + distortion = wrap.distortion_mat.clone(); + distortion_fisheye = wrap.distortion_fisheye_mat; + use_fisheye = wrap.use_fisheye; + + undistort_rectify_map_x = rectification.remap_x; + undistort_rectify_map_y = rectification.remap_y; + } +}; + +typedef enum led_tag +{ + TAG_TL, + TAG_TR, + TAG_C, + TAG_BL, + TAG_BR, + TAG_SL, + TAG_SR +} led_tag_t; + +typedef struct model_vertex +{ + int32_t vertex_index; + Eigen::Vector4f position; + + led_tag_t tag; + bool active; + + // NOTE: these operator overloads are required for + // comparisons with the permutations library + + bool + operator<(const model_vertex &mv) const + { + return (vertex_index < mv.vertex_index); + } + bool + operator>(const model_vertex &mv) const + { + return (vertex_index > mv.vertex_index); + } + +} model_vertex_t; + +typedef struct match_data +{ + float angle = {}; // angle from reference vector + float distance = {}; // distance from base of reference vector + int32_t vertex_index = {}; // index aka tag + Eigen::Vector4f position = {}; // 3d position of vertex + blob_point_t src_blob = {}; // blob this vertex was derived from +} match_data_t; + +typedef struct match_model +{ + //! Collection of vertices and associated data. + std::vector measurements; +} match_model_t; + +/*! + * Main PSVR tracking class. + */ class TrackerPSVR { public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW struct xrt_tracked_psvr base = {}; struct xrt_frame_sink sink = {}; struct xrt_frame_node node = {}; + //! Logging stuff. + enum u_logging_level ll; + //! Frame waiting to be processed. struct xrt_frame *frame; @@ -49,16 +232,1722 @@ public: struct xrt_vec3 pos = {}; struct xrt_quat rot = {}; } fusion; + + struct + { + struct xrt_vec3 pos = {}; + struct xrt_quat rot = {}; + } optical; + + Eigen::Quaternionf + target_optical_rotation_correction; // the calculated rotation to + // correct the imu + Eigen::Quaternionf + optical_rotation_correction; // currently applied (interpolated + // towards target) correction + Eigen::Matrix4f + corrected_imu_rotation; // imu rotation with correction applied + Eigen::Quaternionf + axis_align_rot; // used to rotate imu/tracking coordinates to world + + model_vertex_t model_vertices[PSVR_NUM_LEDS]; // the model we match our + // measurements against + std::vector + last_vertices; // the last solved position of the HMD + + uint32_t last_optical_model; + + cv::KalmanFilter track_filters[PSVR_NUM_LEDS]; + + + cv::KalmanFilter pose_filter; // we filter the final pose position of + // the HMD to smooth motion + + View view[2]; + bool calibrated; + + HelperDebugSink debug = {HelperDebugSink::AllAvailable}; + + cv::Mat disparity_to_depth; + cv::Vec3d r_cam_translation; + cv::Matx33d r_cam_rotation; + + cv::Ptr sbd; + std::vector l_blobs, r_blobs; + std::vector matches; + + // we refine our measurement by rejecting outliers and merging 'too + // close' points + std::vector world_points; + std::vector pruned_points; + std::vector merged_points; + + std::vector match_vertices; + + float avg_optical_correction; // used to converge to a 'lock' correction + // rotation + + bool done_correction; // set after a 'lock' is acquired + + float max_correction; + + // if we have made a lot of optical measurements that *should* + // be converging, but have not - we should reset + uint32_t bad_correction_count; + + Eigen::Matrix4f last_pose; + + uint64_t last_frame; + + Eigen::Vector4f model_center; // center of rotation + +#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS + FILE *dump_file; +#endif +}; + +static float +dist_3d(Eigen::Vector4f a, Eigen::Vector4f b) +{ + return sqrt((a[0] - b[0]) * (a[0] - b[0]) + + (a[1] - b[1]) * (a[1] - b[1]) + + (a[2] - b[2]) * (a[2] - b[2])); +} + +static float +dist_3d_cv(cv::Point3f a, cv::Point3f b) +{ + return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + + (a.z - b.z) * (a.z - b.z)); +} + +static void +init_filter(cv::KalmanFilter &kf, float process_cov, float meas_cov, float dt) +{ + kf.init(6, 3); + kf.transitionMatrix = + (cv::Mat_(6, 6) << 1.0, 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, + 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, dt, 0.0, 0.0, 0.0, 1.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 1.0); + + cv::setIdentity(kf.measurementMatrix, cv::Scalar::all(1.0f)); + cv::setIdentity(kf.errorCovPost, cv::Scalar::all(0.0f)); + + // our filter parameters set the process and measurement noise + // covariances. + + cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(process_cov)); + cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(meas_cov)); +} + +static void +filter_predict(std::vector *pose, + cv::KalmanFilter *filters, + float dt) +{ + for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { + match_data_t current_led; + cv::KalmanFilter *current_kf = filters + i; + + // set our dt components in the transition matrix + current_kf->transitionMatrix.at(0, 3) = dt; + current_kf->transitionMatrix.at(1, 4) = dt; + current_kf->transitionMatrix.at(2, 5) = dt; + + current_led.vertex_index = i; + // current_led->tag = (led_tag_t)(i); + cv::Mat prediction = current_kf->predict(); + current_led.position[0] = prediction.at(0, 0); + current_led.position[1] = prediction.at(1, 0); + current_led.position[2] = prediction.at(2, 0); + pose->push_back(current_led); + } +} + +static void +filter_update(std::vector *pose, + cv::KalmanFilter *filters, + float dt) +{ + for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { + match_data_t *current_led = &pose->at(i); + cv::KalmanFilter *current_kf = filters + i; + + // set our dt components in the transition matrix + current_kf->transitionMatrix.at(0, 3) = dt; + current_kf->transitionMatrix.at(1, 4) = dt; + current_kf->transitionMatrix.at(2, 5) = dt; + + current_led->vertex_index = i; + + cv::Mat measurement = cv::Mat(3, 1, CV_32F); + measurement.at(0, 0) = current_led->position[0]; + measurement.at(1, 0) = current_led->position[1]; + measurement.at(2, 0) = current_led->position[2]; + current_kf->correct(measurement); + } +} + +static void +pose_filter_predict(Eigen::Vector4f *pose, cv::KalmanFilter *filter, float dt) +{ + // set our dt components in the transition matrix + filter->transitionMatrix.at(0, 3) = dt; + filter->transitionMatrix.at(1, 4) = dt; + filter->transitionMatrix.at(2, 5) = dt; + + cv::Mat prediction = filter->predict(); + (*pose)[0] = prediction.at(0, 0); + (*pose)[1] = prediction.at(1, 0); + (*pose)[2] = prediction.at(2, 0); +} + +static void +pose_filter_update(Eigen::Vector4f *position, + cv::KalmanFilter *filter, + float dt) +{ + filter->transitionMatrix.at(0, 3) = dt; + filter->transitionMatrix.at(1, 4) = dt; + filter->transitionMatrix.at(2, 5) = dt; + + cv::Mat measurement = cv::Mat(3, 1, CV_32F); + measurement.at(0, 0) = position->x(); + measurement.at(1, 0) = position->y(); + measurement.at(2, 0) = position->z(); + filter->correct(measurement); +} + +static bool +match_possible(match_model_t *match) +{ + //@todo - this is currently unimplemented + // check if this match makes sense - we can remove + // unobservable combinations without checking them. + + + // we cannot see SR,SL at the same time so remove any matches that + // contain them both in the first 5 slots + return true; +} + +static void +verts_to_measurement(std::vector *meas_data, + std::vector *match_vertices) +{ + // create a data structure that holds the inter-point distances + // and angles we will use to match the pose + + match_vertices->clear(); + if (meas_data->size() < PSVR_OPTICAL_SOLVE_THRESH) { + for (uint32_t i = 0; i < meas_data->size(); i++) { + match_data_t md; + md.vertex_index = -1; + md.position = Eigen::Vector4f( + meas_data->at(i).p.x, meas_data->at(i).p.y, + meas_data->at(i).p.z, 1.0f); + md.src_blob = meas_data->at(i); + match_vertices->push_back(md); + } + + return; + } + + blob_point_t ref_a = meas_data->at(0); + blob_point_t ref_b = meas_data->at(1); + cv::Point3f ref_vec = ref_b.p - ref_a.p; + float ref_len = dist_3d_cv(ref_a.p, ref_b.p); + + for (uint32_t i = 0; i < meas_data->size(); i++) { + blob_point_t vp = meas_data->at(i); + cv::Point3f point_vec = vp.p - ref_a.p; + match_data_t md; + md.vertex_index = -1; + md.position = Eigen::Vector4f(vp.p.x, vp.p.y, vp.p.z, 1.0f); + Eigen::Vector3f ref_vec3(ref_vec.x, ref_vec.y, ref_vec.z); + Eigen::Vector3f point_vec3(point_vec.x, point_vec.y, + point_vec.z); + Eigen::Vector3f vp_pos3(vp.p.x, vp.p.y, vp.p.z); + + if (i != 0) { + Eigen::Vector3f plane_norm = + ref_vec3.cross(point_vec3).normalized(); + if (plane_norm.z() > 0) { + md.angle = + -1 * acos(point_vec3.normalized().dot( + ref_vec3.normalized())); + } else { + md.angle = acos(point_vec3.normalized().dot( + ref_vec3.normalized())); + } + + md.distance = dist_3d_cv(vp.p, ref_a.p) / ref_len; + } else { + md.angle = 0.0f; + md.distance = 0.0f; + } + // fix up any NaNs + if (md.angle != md.angle) { + md.angle = 0.0f; + } + if (md.distance != md.distance) { + md.distance = 0.0f; + } + md.src_blob = vp; + match_vertices->push_back(md); + } +} + +static float +last_diff(TrackerPSVR &t, + std::vector *meas_pose, + std::vector *last_pose) +{ + // compute the aggregate difference (sum of distances between matching + // indices)between two poses + + float diff = 0.0f; + for (uint32_t i = 0; i < meas_pose->size(); i++) { + uint32_t meas_index = meas_pose->at(i).vertex_index; + for (uint32_t j = 0; j < last_pose->size(); j++) { + uint32_t last_index = last_pose->at(j).vertex_index; + if (last_index == meas_index) { + float d = fabs(dist_3d( + meas_pose->at(meas_index).position, + last_pose->at(last_index).position)); + diff += d; + } + } + } + return diff / meas_pose->size(); +} + + +static void +remove_outliers(std::vector *orig_points, + std::vector *pruned_points, + float outlier_thresh) +{ + + if (orig_points->size() == 0) { + return; + } + + std::vector temp_points; + + // immediately prune anything that is measured as + // 'behind' the camera - often reflections or lights in the room etc. + + for (uint32_t i = 0; i < orig_points->size(); i++) { + cv::Point3f p = orig_points->at(i).p; + if (p.z < 0) { + temp_points.push_back(orig_points->at(i)); + } + } + if (temp_points.size() == 0) { + return; + } + + // compute the 3d median of the points, and reject anything further away + // than a + // threshold distance + + + std::vector x_values; + std::vector y_values; + std::vector z_values; + for (uint32_t i = 0; i < temp_points.size(); i++) { + x_values.push_back(temp_points[i].p.x); + y_values.push_back(temp_points[i].p.y); + z_values.push_back(temp_points[i].p.z); + } + + std::nth_element(x_values.begin(), + x_values.begin() + x_values.size() / 2, + x_values.end()); + float median_x = x_values[x_values.size() / 2]; + std::nth_element(y_values.begin(), + y_values.begin() + y_values.size() / 2, + y_values.end()); + float median_y = y_values[y_values.size() / 2]; + std::nth_element(z_values.begin(), + z_values.begin() + z_values.size() / 2, + z_values.end()); + float median_z = z_values[z_values.size() / 2]; + + for (uint32_t i = 0; i < temp_points.size(); i++) { + float error_x = temp_points[i].p.x - median_x; + float error_y = temp_points[i].p.y - median_y; + float error_z = temp_points[i].p.z - median_z; + + float rms_error = + sqrt((error_x * error_x) + (error_y * error_y) + + (error_z * error_z)); + + // printf("ERROR: %f %f %f %f %f %f\n", temp_points[i].p.x, + // temp_points[i].p.y, temp_points[i].p.z, error_x, + // error_y, error_z); + if (rms_error < outlier_thresh) { + pruned_points->push_back(temp_points[i]); + } + } +} + +struct close_pair +{ + int index_a; + int index_b; + float dist; }; static void -procces(TrackerPSVR &t, struct xrt_frame *xf) +merge_close_points(std::vector *orig_points, + std::vector *merged_points, + float merge_thresh) { - // Only IMU data + // if a pair of points in the supplied lists are closer than the + // threshold, discard one of them. + + //@todo - merge the 2d blob extents when we merge a pair of points + + std::vector pairs; + for (uint32_t i = 0; i < orig_points->size(); i++) { + for (uint32_t j = 0; j < orig_points->size(); j++) { + if (i != j) { + float d = dist_3d_cv(orig_points->at(i).p, + orig_points->at(j).p); + if (d < merge_thresh) { + struct close_pair p; + p.index_a = i; + p.index_b = j; + p.dist = d; + + pairs.push_back(p); + } + } + } + } + std::vector indices_to_remove; + for (uint32_t i = 0; i < pairs.size(); i++) { + if (pairs[i].index_a < pairs[i].index_b) { + indices_to_remove.push_back(pairs[i].index_a); + } else { + indices_to_remove.push_back(pairs[i].index_b); + } + } + + for (int i = 0; i < (int)orig_points->size(); i++) { + bool remove_index = false; + for (int j = 0; j < (int)indices_to_remove.size(); j++) { + if (i == indices_to_remove[j]) { + remove_index = true; + } + } + if (!remove_index) { + merged_points->push_back(orig_points->at(i)); + } + } +} + +static void +match_triangles(Eigen::Matrix4f *t1_mat, + Eigen::Matrix4f *t1_to_t2_mat, + Eigen::Vector4f t1_a, + Eigen::Vector4f t1_b, + Eigen::Vector4f t1_c, + Eigen::Vector4f t2_a, + Eigen::Vector4f t2_b, + Eigen::Vector4f t2_c) +{ + // given 3 vertices in 'model space', and a corresponding 3 vertices + // in 'world space', compute the transformation matrix to map one + // to the other + + *t1_mat = Eigen::Matrix4f().Identity(); + Eigen::Matrix4f t2_mat = Eigen::Matrix4f().Identity(); + + Eigen::Vector3f t1_x_vec = (t1_b - t1_a).head<3>().normalized(); + Eigen::Vector3f t1_z_vec = + (t1_c - t1_a).head<3>().cross((t1_b - t1_a).head<3>()).normalized(); + Eigen::Vector3f t1_y_vec = t1_x_vec.cross(t1_z_vec).normalized(); + + Eigen::Vector3f t2_x_vec = (t2_b - t2_a).head<3>().normalized(); + Eigen::Vector3f t2_z_vec = + (t2_c - t2_a).head<3>().cross((t2_b - t2_a).head<3>()).normalized(); + Eigen::Vector3f t2_y_vec = t2_x_vec.cross(t2_z_vec).normalized(); + + t1_mat->col(0) << t1_x_vec[0], t1_x_vec[1], t1_x_vec[2], 0.0f; + t1_mat->col(1) << t1_y_vec[0], t1_y_vec[1], t1_y_vec[2], 0.0f; + t1_mat->col(2) << t1_z_vec[0], t1_z_vec[1], t1_z_vec[2], 0.0f; + t1_mat->col(3) << t1_a[0], t1_a[1], t1_a[2], 1.0f; + + t2_mat.col(0) << t2_x_vec[0], t2_x_vec[1], t2_x_vec[2], 0.0f; + t2_mat.col(1) << t2_y_vec[0], t2_y_vec[1], t2_y_vec[2], 0.0f; + t2_mat.col(2) << t2_z_vec[0], t2_z_vec[1], t2_z_vec[2], 0.0f; + t2_mat.col(3) << t2_a[0], t2_a[1], t2_a[2], 1.0f; + + *t1_to_t2_mat = t1_mat->inverse() * t2_mat; +} + +static Eigen::Matrix4f +solve_for_measurement(TrackerPSVR *t, + std::vector *measurement, + std::vector *solved) +{ + // use the vertex positions (at least 3) in the measurement to + // construct a pair of triangles which are used to calculate the + // pose of the tracked HMD, + // based on the corresponding model vertices + + // @todo: compute all possible unique triangles, and average the result + + Eigen::Matrix4f tri_basis; + Eigen::Matrix4f model_to_measurement; + + Eigen::Vector4f meas_ref_a = measurement->at(0).position; + Eigen::Vector4f meas_ref_b = measurement->at(1).position; + int meas_index_a = measurement->at(0).vertex_index; + int meas_index_b = measurement->at(1).vertex_index; + + Eigen::Vector4f model_ref_a = t->model_vertices[meas_index_a].position; + Eigen::Vector4f model_ref_b = t->model_vertices[meas_index_b].position; + + float highest_length = 0.0f; + int best_model_index = 0; + int most_distant_index = 0; + + for (uint32_t i = 0; i < measurement->size(); i++) { + int model_tag_index = measurement->at(i).vertex_index; + Eigen::Vector4f model_vert = + t->model_vertices[model_tag_index].position; + if (most_distant_index > 1 && + dist_3d(model_vert, model_ref_a) > highest_length) { + best_model_index = most_distant_index; + } + most_distant_index++; + } + + Eigen::Vector4f meas_ref_c = measurement->at(best_model_index).position; + int meas_index_c = measurement->at(best_model_index).vertex_index; + + Eigen::Vector4f model_ref_c = t->model_vertices[meas_index_c].position; + + match_triangles(&tri_basis, &model_to_measurement, model_ref_a, + model_ref_b, model_ref_c, meas_ref_a, meas_ref_b, + meas_ref_c); + Eigen::Matrix4f model_center_transform_f = + tri_basis * model_to_measurement * tri_basis.inverse(); + + // now reverse the order of our verts to contribute to a more accurate + // estimate. + + meas_ref_a = measurement->at(measurement->size() - 1).position; + meas_ref_b = measurement->at(measurement->size() - 2).position; + meas_index_a = measurement->at(measurement->size() - 1).vertex_index; + meas_index_b = measurement->at(measurement->size() - 2).vertex_index; + + model_ref_a = t->model_vertices[meas_index_a].position; + model_ref_b = t->model_vertices[meas_index_b].position; + + highest_length = 0.0f; + best_model_index = 0; + most_distant_index = 0; + + for (uint32_t i = 0; i < measurement->size(); i++) { + int model_tag_index = measurement->at(i).vertex_index; + Eigen::Vector4f model_vert = + t->model_vertices[model_tag_index].position; + if (most_distant_index < (int)measurement->size() - 2 && + dist_3d(model_vert, model_ref_a) > highest_length) { + best_model_index = most_distant_index; + } + most_distant_index++; + } + + meas_ref_c = measurement->at(best_model_index).position; + meas_index_c = measurement->at(best_model_index).vertex_index; + + model_ref_c = t->model_vertices[meas_index_c].position; + + match_triangles(&tri_basis, &model_to_measurement, model_ref_a, + model_ref_b, model_ref_c, meas_ref_a, meas_ref_b, + meas_ref_c); + Eigen::Matrix4f model_center_transform_r = + tri_basis * model_to_measurement * tri_basis.inverse(); + + // decompose our transforms and slerp between them to get the avg of the + // rotation determined from the first 2 + most distant , and last 2 + + // most distant verts + + Eigen::Matrix3f r = model_center_transform_f.block(0, 0, 3, 3); + Eigen::Quaternionf f_rot_part = Eigen::Quaternionf(r); + Eigen::Vector4f f_trans_part = model_center_transform_f.col(3); + + r = model_center_transform_r.block(0, 0, 3, 3); + Eigen::Quaternionf r_rot_part = Eigen::Quaternionf(r); + Eigen::Vector4f r_trans_part = model_center_transform_r.col(3); + + Eigen::Matrix4f pose = Eigen::Matrix4f().Identity(); + pose.block(0, 0, 3, 3) = + f_rot_part.slerp(0.5, r_rot_part).toRotationMatrix(); + pose.col(3) = (f_trans_part + r_trans_part) / 2.0f; + + solved->clear(); + for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { + match_data_t md; + md.vertex_index = i; + md.position = pose * t->model_vertices[i].position; + solved->push_back(md); + } + + return pose; +} + +typedef struct proximity_data +{ + Eigen::Vector4f position; + float lowest_distance; + int vertex_index; +} proximity_data_t; + +static Eigen::Matrix4f +solve_with_imu(TrackerPSVR &t, + std::vector *measurements, + std::vector *match_measurements, + std::vector *solved, + float search_radius) +{ + + // use the hungarian algorithm to find the closest set of points to the + // match measurement + + // a 7x7 matrix of costs e.g distances between our points and the match + // measurements we will initialise to zero because we will not have + // distances for points we don't have + + std::vector > costMatrix = { + {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, + {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, + {0, 0, 0, 0, 0, 0, 0}, + }; + + HungarianAlgorithm HungAlgo; + vector assignment; + + // lets fill in our cost matrix with distances + // @todo: could use squared distance to save a handful of sqrts. + + // @todo: artificially boost cost where distance from last exceeds + // search threshold + // @todo: artificially boost cost where blob type differs from match + // measurement + + for (uint32_t i = 0; i < measurements->size(); i++) { + for (uint32_t j = 0; j < match_measurements->size(); j++) { + costMatrix[i][j] = + dist_3d(measurements->at(i).position, + match_measurements->at(j).position); + if (measurements->at(i).src_blob.btype == + BLOB_TYPE_SIDE && + match_measurements->at(j).src_blob.btype == + BLOB_TYPE_FRONT) { + costMatrix[i][j] += 10.0f; + } + if (measurements->at(i).src_blob.btype == + BLOB_TYPE_FRONT && + match_measurements->at(j).src_blob.btype == + BLOB_TYPE_SIDE) { + costMatrix[i][j] += 10.0f; + } + } + } + + double cost = HungAlgo.Solve(costMatrix, assignment); + (void)cost; + + for (uint32_t i = 0; i < measurements->size(); i++) { + measurements->at(i).vertex_index = assignment[i]; + } + + std::vector proximity_data; + for (uint32_t i = 0; i < measurements->size(); i++) { + float lowest_distance = 65535.0; + int closest_index = 0; + (void)lowest_distance; + (void)closest_index; + + proximity_data_t p; + match_data_t measurement = measurements->at(i); + + p.position = measurement.position; + p.vertex_index = measurement.vertex_index; + p.lowest_distance = 0.0f; + proximity_data.push_back(p); + } + + if (proximity_data.size() > 0) { + + // use the IMU rotation and the measured points in + // world space to compute a transform from model to world space. + // use each measured led individually and average the resulting + // positions + + std::vector temp_measurement_list; + for (uint32_t i = 0; i < proximity_data.size(); i++) { + proximity_data_t p = proximity_data[i]; + Eigen::Vector4f model_vertex = + t.model_vertices[p.vertex_index].position; + Eigen::Vector4f measurement_vertex = p.position; + Eigen::Vector4f measurement_offset = + t.corrected_imu_rotation * model_vertex; + Eigen::Affine3f translation(Eigen::Translation3f( + (measurement_vertex - measurement_offset) + .head<3>())); + Eigen::Matrix4f model_to_measurement = + translation.matrix() * t.corrected_imu_rotation; + match_model_t temp_measurement; + for (uint32_t j = 0; j < PSVR_NUM_LEDS; j++) { + match_data_t md; + md.position = model_to_measurement * + t.model_vertices[j].position; + md.vertex_index = j; + temp_measurement.measurements.push_back(md); + } + temp_measurement_list.push_back(temp_measurement); + } + + for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { + match_data_t avg_data; + avg_data.position = + Eigen::Vector4f(0.0f, 0.0f, 0.0f, 1.0f); + for (uint32_t j = 0; j < temp_measurement_list.size(); + j++) { + avg_data.position += temp_measurement_list[j] + .measurements[i] + .position; + } + avg_data.position /= + float(temp_measurement_list.size()); + avg_data.vertex_index = i; + solved->push_back(avg_data); + } + + std::vector _solved; + Eigen::Matrix4f pose = + solve_for_measurement(&t, solved, &_solved) * + t.corrected_imu_rotation; + t.last_pose = pose; + return pose; + } + PSVR_INFO("LOST TRACKING - RETURNING LAST POSE"); + t.max_correction = PSVR_SLOW_CORRECTION; + return t.last_pose; +} + + +static Eigen::Matrix4f +disambiguate(TrackerPSVR &t, + std::vector *measured_points, + std::vector *last_measurement, + std::vector *solved, + uint32_t frame_no) +{ + + // main disambiguation routine - if we have enough points, use + // optical matching, otherwise solve with imu. + + // do our imu-based solve up front - we can use this to compute a more + // likely match (currently disabled) + + Eigen::Matrix4f imu_solved_pose = solve_with_imu( + t, measured_points, last_measurement, solved, PSVR_SEARCH_RADIUS); + + if (measured_points->size() < PSVR_OPTICAL_SOLVE_THRESH && + last_measurement->size() > 0) { + return imu_solved_pose; + } + + if (measured_points->size() < 3) { + return imu_solved_pose; + } + + + // optical matching. + + float lowest_error = 65535.0f; + int32_t best_model = -1; + uint32_t matched_vertex_indices[PSVR_NUM_LEDS]; + + // we can early-out if we are 'close enough' to our last match model. + // if we just hold the previous led configuration, this increases + // performance and should cut down on jitter. + if (t.last_optical_model > 0 && t.done_correction) { + + match_model_t m = t.matches[t.last_optical_model]; + for (uint32_t i = 0; i < measured_points->size(); i++) { + measured_points->at(i).vertex_index = + m.measurements.at(i).vertex_index; + } + Eigen::Matrix4f res = + solve_for_measurement(&t, measured_points, solved); + float diff = last_diff(t, solved, &t.last_vertices); + if (diff < PSVR_HOLD_THRESH) { + // printf("diff from last: %f\n", diff); + + return res; + } + } + + + + for (uint32_t i = 0; i < t.matches.size(); i++) { + match_model_t m = t.matches[i]; + float error_sum = 0.0f; + float sign_diff = 0.0f; + (void)sign_diff; + + // we have 2 measurements per vertex (distance and + // angle) and we are comparing only the 'non-basis + // vector' elements + + // fill in our 'proposed' vertex indices from the model + // data (this will be overwritten once our best model is + // selected + for (uint32_t j = 0; j < measured_points->size(); j++) { + measured_points->at(j).vertex_index = + m.measurements.at(j).vertex_index; + } + + bool ignore = false; + + // use the information we gathered on blob shapes to + // reject matches that would not fit + + //@todo: use tags instead of numeric vertex indices + + for (uint32_t j = 0; j < measured_points->size(); j++) { + + if (measured_points->at(j).src_blob.btype == + BLOB_TYPE_FRONT && + measured_points->at(j).vertex_index > 4) { + error_sum += 50.0f; + } + + if (measured_points->at(j).src_blob.btype == + BLOB_TYPE_SIDE && + measured_points->at(j).vertex_index < 5) { + error_sum += 50.0f; + } + + // if the distance is between a measured point + // and its last-known position is significantly + // different, discard this + float dist = fabs(measured_points->at(j).distance - + m.measurements.at(j).distance); + if (dist > PSVR_DISAMBIG_REJECT_DIST) { + error_sum += 50.0f; + } else { + error_sum += + fabs(measured_points->at(j).distance - + m.measurements.at(j).distance); + } + + // if the angle is significantly different, + // discard this + float angdiff = fabs(measured_points->at(j).angle - + m.measurements.at(j).angle); + if (angdiff > PSVR_DISAMBIG_REJECT_ANG) { + error_sum += 50.0f; + } else { + + error_sum += fabs(measured_points->at(j).angle - + m.measurements.at(j).angle); + } + } + + float avg_error = (error_sum / measured_points->size()); + if (error_sum < 50) { + std::vector meas_solved; + solve_for_measurement(&t, measured_points, + &meas_solved); + float prev_diff = + last_diff(t, &meas_solved, &t.last_vertices); + float imu_diff = last_diff(t, &meas_solved, solved); + + Eigen::Vector4f tl_pos, tr_pos, bl_pos, br_pos; + bool has_bl = false; + bool has_br = false; + bool has_tl = false; + bool has_tr = false; + + for (uint32_t j = 0; j < meas_solved.size(); j++) { + match_data_t *md = &meas_solved.at(j); + if (md->vertex_index == TAG_BL) { + bl_pos = md->position; + has_bl = true; + } + if (md->vertex_index == TAG_BR) { + br_pos = md->position; + has_br = true; + } + if (md->vertex_index == TAG_TL) { + tl_pos = md->position; + has_tl = true; + } + if (md->vertex_index == TAG_TR) { + tr_pos = md->position; + has_tr = true; + } + } + + // reject any configuration where 'top' is below + // 'bottom + + if (has_bl && has_tl && bl_pos.y() > tl_pos.y()) { + // printf("IGNORING BL > TL %f %f\n", + // bl_pos.y(), + // br_pos.y()); + // ignore = true; + } + if (has_br && has_tr && br_pos.y() > tr_pos.y()) { + // printf("IGNORING TL > TR %f %f\n", + // tl_pos.y(), + // tr_pos.y()); + // ignore = true; + } + + // once we have a lock, bias the detected + // configuration using the imu-solved result, + // and the solve from the previous frame + + if (t.done_correction) { + avg_error += prev_diff; + avg_error += imu_diff; + } + + // useful for debugging + // printf( + // "match %d dist to last: %f dist to imu: %f " + // "rmsError: %f squaredSum:%f %d\n", + // i, prev_diff, imu_diff, avg_error, error_sum, + // ignore); + } + if (avg_error <= lowest_error && !ignore) { + lowest_error = avg_error; + best_model = i; + for (uint32_t i = 0; i < measured_points->size(); i++) { + matched_vertex_indices[i] = + measured_points->at(i).vertex_index; + } + } + } + + // printf("lowest_error %f\n", lowest_error); + if (best_model == -1) { + PSVR_INFO("COULD NOT MATCH MODEL!"); + return Eigen::Matrix4f().Identity(); + } + + t.last_optical_model = best_model; + for (uint32_t i = 0; i < measured_points->size(); i++) { + measured_points->at(i).vertex_index = matched_vertex_indices[i]; + cv::putText( + t.debug.rgb[0], + cv::format("%d %d", measured_points->at(i).vertex_index, + measured_points->at(i).src_blob.btype), + measured_points->at(i).src_blob.lkp.pt, + cv::FONT_HERSHEY_SIMPLEX, 1.0f, cv::Scalar(0, 255, 0)); + } + + t.last_pose = solve_for_measurement(&t, measured_points, solved); + + return t.last_pose; +} + +static void +create_model(TrackerPSVR &t) +{ + // this is the model we use to match our measurements against. + // these vertices came out of the blender prototype. + + // NOTE: this is not an accurate measurement of the PSVRs + // physical dimensions, rather an approximate model that serves + // to minimize the incidence of incorrect led matches. + + t.model_vertices[0] = { + 0, + Eigen::Vector4f(-0.06502f, 0.04335f, 0.01861f, 1.0f), + TAG_BL, + true, + }; + t.model_vertices[1] = { + 1, + Eigen::Vector4f(0.06502f, 0.04335f, 0.01861f, 1.0f), + TAG_BR, + true, + }; + t.model_vertices[2] = { + 2, + Eigen::Vector4f(0.0f, 0.0f, 0.04533f, 1.0f), + TAG_C, + true, + }; + t.model_vertices[3] = { + 3, + Eigen::Vector4f(-0.06502f, -0.04335f, 0.01861f, 1.0f), + TAG_TL, + true, + }; + t.model_vertices[4] = { + 4, + Eigen::Vector4f(0.06502f, -0.04335f, 0.01861f, 1.0f), + TAG_TR, + true, + }; + t.model_vertices[5] = { + 5, + Eigen::Vector4f(-0.07802f, 0.0f, -0.02671f, 1.0f), + TAG_SL, + true, + }; + t.model_vertices[6] = { + 6, + Eigen::Vector4f(0.07802f, 0.0f, -0.02671f, 1.0f), + TAG_SR, + true, + }; +} + +struct Helper +{ +public: + m_permutator mp = {}; + model_vertex_t vec[PSVR_NUM_LEDS] = {}; + uint32_t indices[PSVR_NUM_LEDS]; + + +public: + ~Helper() + { + m_permutator_reset(&mp); + } + + bool + step(TrackerPSVR &t) + { + bool ret = m_permutator_step(&mp, &indices[0], PSVR_NUM_LEDS); + if (!ret) { + return false; + } + + for (size_t i = 0; i < PSVR_NUM_LEDS; i++) { + vec[i] = t.model_vertices[indices[i]]; + } + + return true; + } +}; + +static void +create_match_list(TrackerPSVR &t) +{ + // create our permutation list for matching + // compute the distance and angles between a reference + // vector, constructed from the first two vertices in + // the permutation. + + Helper mp = {}; + while (mp.step(t)) { + match_model_t m; + + model_vertex_t ref_pt_a = mp.vec[0]; + model_vertex_t ref_pt_b = mp.vec[1]; + Eigen::Vector3f ref_vec3 = + (ref_pt_b.position - ref_pt_a.position).head<3>(); + + float normScale = dist_3d(ref_pt_a.position, ref_pt_b.position); + + match_data_t md; + for (auto &&i : mp.vec) { + Eigen::Vector3f point_vec3 = + (i.position - ref_pt_a.position).head<3>(); + md.vertex_index = i.vertex_index; + md.distance = + dist_3d(i.position, ref_pt_a.position) / normScale; + if (i.position.head<3>().dot( + Eigen::Vector3f(0.0, 0.0, 1.0f)) < 0) { + md.distance *= -1; + } + + Eigen::Vector3f plane_norm = + ref_vec3.cross(point_vec3).normalized(); + if (ref_pt_a.position != i.position) { + + if (plane_norm.normalized().z() > 0) { + md.angle = + -1 * + acos( + (point_vec3) + .normalized() + .dot( + ref_vec3.normalized())); + } else { + md.angle = + acos(point_vec3.normalized().dot( + ref_vec3.normalized())); + } + } else { + md.angle = 0.0f; + } + // fix up any NaNs + if (md.angle != md.angle) { + md.angle = 0.0f; + } + if (md.distance != md.distance) { + md.distance = 0.0f; + } + + m.measurements.push_back(md); + } + + if (match_possible(&m)) { + t.matches.push_back(m); + } + } +} + +static void +do_view(TrackerPSVR &t, View &view, cv::Mat &grey, cv::Mat &rgb) +{ + // Undistort and rectify the whole image. + cv::remap(grey, // src + view.frame_undist_rectified, // dst + view.undistort_rectify_map_x, // map1 + view.undistort_rectify_map_y, // map2 + cv::INTER_NEAREST, // interpolation - LINEAR seems + // very slow on my setup + cv::BORDER_CONSTANT, // borderMode + cv::Scalar(0, 0, 0)); // borderValue + + cv::threshold(view.frame_undist_rectified, // src + view.frame_undist_rectified, // dst + 32.0, // thresh + 255.0, // maxval + 0); + t.sbd->detect(view.frame_undist_rectified, // image + view.keypoints, // keypoints + cv::noArray()); // mask + + // Debug is wanted, draw the keypoints. + if (rgb.cols > 0) { + cv::drawKeypoints( + view.frame_undist_rectified, // image + view.keypoints, // keypoints + rgb, // outImage + cv::Scalar(255, 0, 0), // color + cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); // flags + } +} + +typedef struct blob_data +{ + int tc_to_bc; // top center to bottom center + int lc_to_rc; // left center to right center + int tl_to_br; // top left to bottom right + int bl_to_tr; // bottom left to top right + int diff_a; + int diff_b; + bool ignore; +} blob_data_t; + + +static void +sample_line(cv::Mat &src, + cv::Point2i start, + cv::Point2i end, + int *inside_length) +{ + // use bresenhams algorithm to sample the + // pixels between two points in an image + + *inside_length = 0; + int curr_x = start.x; + int curr_y = start.y; + + int slope_x = start.x < end.x ? 1 : -1; + int slope_y = start.y < end.y ? 1 : -1; + + int dx = end.x - start.x; + int dy = -1 * abs(end.y - start.y); + int e_xy = dx + dy; /* error value e_xy */ + + while (1) { + // sample our pixel and see if it is in the interior + if (curr_x > 0 && curr_y > 0) { + // cv is row, column + uint8_t *val = src.ptr(curr_y, curr_x); + + // @todo: we are just counting pixels rather + // than measuring length - bresenhams may introduce some + // inaccuracy here. + if (*val > 128) { + (*inside_length) += 1; + } + } + if (curr_x == end.x && curr_y == end.y) { + break; + } + int err2 = 2 * e_xy; + if (err2 >= dy) { + e_xy += dy; + curr_x += slope_x; + } + if (err2 <= dx) { + e_xy += dx; + curr_y += slope_y; + } + } +} + +static void +blob_intersections(cv::Mat &src, cv::KeyPoint *kp, struct blob_data *bd) +{ + // compute the intersections in 4 'directions' between the + // extents of the 'square' region we get from the opencv blob + // detector + + // compute the difference between the 'axis pairs' - the + // relative magnitude and signs of these diffs can differentiate + // between front and side blobs, as we can only ever see one + // 'side' blob at a time, and its orientation will be opposite + // to the others + + int radius = kp->size / 2; + cv::Rect2i sq_b(kp->pt.x - radius, kp->pt.y - radius, kp->size, + kp->size); + + sample_line(src, cv::Point2i(sq_b.x, sq_b.y), + cv::Point2i(sq_b.x + sq_b.width, sq_b.y + sq_b.height), + &bd->tl_to_br); + sample_line(src, cv::Point2i(sq_b.x, sq_b.y + sq_b.height), + cv::Point2i(sq_b.x + sq_b.width, sq_b.y), &bd->bl_to_tr); + + sample_line(src, cv::Point2i(sq_b.x, sq_b.y + sq_b.height / 2), + cv::Point2i(sq_b.x + sq_b.width, sq_b.y + sq_b.height / 2), + &bd->tc_to_bc); + + sample_line(src, cv::Point2i(sq_b.x + sq_b.width / 2, sq_b.y), + cv::Point2i(sq_b.x + sq_b.width / 2, sq_b.y + sq_b.height), + &bd->lc_to_rc); + + bd->diff_a = bd->tl_to_br - bd->bl_to_tr; + bd->diff_b = bd->tc_to_bc - bd->lc_to_rc; + bd->ignore = false; +} + +static void +tag_points(TrackerPSVR &t, std::vector *blob_datas) +{ + // determine the 'channel' horiz/vert or 45 deg offset - with + // the highest signal - and calculate the lower bound below + // which we will ignore the blob, as it is not sufficiently + // 'long' to identify + int channel_a_total = 0; + int channel_b_total = 0; + int channel_a_min = INT_MAX; + int channel_b_min = INT_MAX; + int channel_a_max = INT_MIN; + int channel_b_max = INT_MIN; + int channel_a_pos = 0; + int channel_a_neg = 0; + int channel_b_pos = 0; + int channel_b_neg = 0; + + + for (uint32_t i = 0; i < blob_datas->size(); i++) { + blob_data_t b = blob_datas->at(i); + channel_a_total += abs(b.diff_a); + if (abs(b.diff_a) < channel_a_min) { + channel_a_min = b.diff_a; + } + if (abs(b.diff_a) > channel_a_max) { + channel_a_min = b.diff_a; + } + + if (b.diff_a < 0) { + channel_a_neg++; + } else { + channel_a_pos++; + } + + if (b.diff_b < 0) { + channel_b_neg++; + } else { + channel_b_pos++; + } + + channel_b_total += abs(b.diff_b); + if (abs(b.diff_b) < channel_b_min) { + channel_b_min = b.diff_b; + } + if (abs(b.diff_b) > channel_b_max) { + channel_b_min = b.diff_b; + } + } + + int side_count = 0; + if (channel_a_total > channel_b_total) { + // use channel a + float channel_dev = + (channel_a_total / float(blob_datas->size())) / 2.0f; + int usable_count = 0; + + for (uint32_t i = 0; i < blob_datas->size(); i++) { + if (abs(blob_datas->at(i).diff_a) > channel_dev) { + usable_count++; + } else { + if (blob_datas->at(i).diff_a < 0) { + channel_a_neg--; + blob_datas->at(i).ignore = true; + } else { + channel_a_pos--; + blob_datas->at(i).ignore = true; + } + } + } + + + if (usable_count > 2) { + // we can now check the signs, and identify the + // 'odd one out' as the side LED - if we have a + // consensus of directions, we can identify them + // all as 'front' LEDs. + for (uint32_t i = 0; i < blob_datas->size(); i++) { + if (!blob_datas->at(i).ignore) { + if (channel_a_pos > channel_a_neg) { + // we can tag all the + // positive ones with + // FRONT and all the + // negative ones with + // SIDE + if (blob_datas->at(i).diff_a >= + 0) { + t.world_points[i] + .btype = + BLOB_TYPE_FRONT; + } else { + t.world_points[i] + .btype = + BLOB_TYPE_SIDE; + side_count++; + } + + } else { + if (blob_datas->at(i).diff_a < + 0) { + t.world_points[i] + .btype = + BLOB_TYPE_FRONT; + } else { + t.world_points[i] + .btype = + BLOB_TYPE_SIDE; + side_count++; + } + } + } + } + } + } else { + // use channel b + float channel_dev = + (channel_b_total / float(blob_datas->size())) / 2.0f; + int usable_count = 0; + for (uint32_t i = 0; i < blob_datas->size(); i++) { + if (abs(blob_datas->at(i).diff_b) > channel_dev) { + usable_count++; + } else { + if (blob_datas->at(i).diff_b < 0) { + channel_b_neg--; + blob_datas->at(i).ignore = true; + } else { + channel_b_pos--; + blob_datas->at(i).ignore = true; + } + } + } + + if (usable_count > 2) { + // we can now check the signs, and identify the + // 'odd one out' as the side LED - if we have a + // consensus of directions, we can identify them + // all as 'front' LEDs. + for (uint32_t i = 0; i < blob_datas->size(); i++) { + if (blob_datas->at(i).ignore) { + continue; + } + if (channel_b_pos > channel_b_neg) { + // we can tag all the positive ones with + // FRONT and all the egative ones with + // SIDE + if (blob_datas->at(i).diff_b >= 0) { + t.world_points[i].btype = + BLOB_TYPE_FRONT; + } else { + t.world_points[i].btype = + BLOB_TYPE_SIDE; + side_count++; + } + + } else { + if (blob_datas->at(i).diff_b < 0) { + t.world_points[i].btype = + BLOB_TYPE_FRONT; + } else { + t.world_points[i].btype = + BLOB_TYPE_SIDE; + side_count++; + } + } + } + } + } + + if (side_count > 1) { + PSVR_INFO("FOUND MULTIPLE SIDE LEDS. should never happen!"); + for (uint32_t i = 0; i < t.world_points.size(); i++) { + t.world_points.at(i).btype = BLOB_TYPE_UNKNOWN; + } + } +} + + +static void +process(TrackerPSVR &t, struct xrt_frame *xf) +{ + // No frame supplied, early-out. if (xf == NULL) { return; } + t.debug.refresh(xf); + + // compute a dt for our filter(s) + //@todo - use a more precise measurement here + float dt = xf->source_sequence - t.last_frame; + if (dt > 10.0f) { + dt = 1.0f; + } + + std::vector predicted_pose; + filter_predict(&predicted_pose, t.track_filters, dt / 2.0f); + + + model_vertex_t measured_pose[PSVR_NUM_LEDS]; + (void)measured_pose; + + // get our raw measurements + + t.view[0].keypoints.clear(); + t.view[1].keypoints.clear(); + t.l_blobs.clear(); + t.r_blobs.clear(); + t.world_points.clear(); + + int cols = xf->width / 2; + int rows = xf->height; + int stride = xf->stride; + + cv::Mat l_grey(rows, cols, CV_8UC1, xf->data, stride); + cv::Mat r_grey(rows, cols, CV_8UC1, xf->data + cols, stride); + + do_view(t, t.view[0], l_grey, t.debug.rgb[0]); + do_view(t, t.view[1], r_grey, t.debug.rgb[1]); + + // if we wish to confirm our camera input contents, dump frames + // to disk + + // cv::imwrite("/tmp/l_view.png", t.view[0].frame_undist_rectified); + // cv::imwrite("/tmp/r_view.png", t.view[1].frame_undist_rectified); + + // do some basic matching to come up with likely + // disparity-pairs. + + for (uint32_t i = 0; i < t.view[0].keypoints.size(); i++) { + cv::KeyPoint l_blob = t.view[0].keypoints[i]; + int l_index = -1; + int r_index = -1; + + for (uint32_t j = 0; j < t.view[1].keypoints.size(); j++) { + float lowest_dist = 65535.0f; + cv::KeyPoint r_blob = t.view[1].keypoints[j]; + // find closest point on same-ish scanline + float xdiff = r_blob.pt.x - l_blob.pt.x; + float ydiff = r_blob.pt.y - l_blob.pt.y; + if ((ydiff < 3.0f) && (ydiff > -3.0f) && + (abs(xdiff) < lowest_dist)) { + lowest_dist = abs(xdiff); + r_index = j; + l_index = i; + } + } + + if (l_index > -1 && r_index > -1) { + cv::KeyPoint lkp = t.view[0].keypoints.at(l_index); + cv::KeyPoint rkp = t.view[1].keypoints.at(r_index); + t.l_blobs.push_back(lkp); + t.r_blobs.push_back(rkp); + // printf("2D coords: LX %f LY %f RX %f RY %f\n", + // lkp.pt.x, + // lkp.pt.y, rkp.pt.x, rkp.pt.y); + } + } + + // Convert our 2d point + disparities into 3d points. + std::vector blob_datas; + + if (t.l_blobs.size() > 0) { + for (uint32_t i = 0; i < t.l_blobs.size(); i++) { + float disp = t.r_blobs[i].pt.x - t.l_blobs[i].pt.x; + cv::Vec4d xydw(t.l_blobs[i].pt.x, t.l_blobs[i].pt.y, + disp, 1.0f); + // Transform + cv::Vec4d h_world = + (cv::Matx44d)t.disparity_to_depth * xydw; + + // Divide by scale to get 3D vector from + // homogeneous coordinate. we also invert x here + blob_point_t bp; + bp.p = cv::Point3f(-h_world[0] / h_world[3], + h_world[1] / h_world[3], + (h_world[2] / h_world[3])); + bp.lkp = t.l_blobs[i]; + bp.rkp = t.r_blobs[i]; + bp.btype = BLOB_TYPE_UNKNOWN; + t.world_points.push_back(bp); + + // compute the shape data for each blob + + blob_data_t intersections; + blob_intersections(t.view[0].frame_undist_rectified, + &bp.lkp, &intersections); + blob_datas.push_back(intersections); + } + } + + tag_points(t, &blob_datas); + + + + t.pruned_points.clear(); + t.merged_points.clear(); + + // remove outliers from our measurement list + remove_outliers(&t.world_points, &t.pruned_points, PSVR_OUTLIER_THRESH); + + // remove any points that are too close to be + // treated as separate leds + merge_close_points(&t.pruned_points, &t.merged_points, + PSVR_MERGE_THRESH); + + + // uncomment to debug 'overpruning' or other issues + // that may be related to calibration scale + PSVR_INFO("world points: %d pruned points: %d merged points %d", + (uint32_t)t.world_points.size(), + (uint32_t)t.pruned_points.size(), + (uint32_t)t.merged_points.size()); + + + // put our blob positions in a slightly more + // useful data structure + + if (t.merged_points.size() > PSVR_NUM_LEDS) { + PSVR_INFO("Too many blobs to be a PSVR! %d", + (uint32_t)t.merged_points.size()); + } else { + // convert our points to match data, + // this tags our match_vertices with + // everything we need to solve the pose. + + verts_to_measurement(&t.merged_points, &t.match_vertices); + } + +#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS + // raw debug output for Blender algo development + for (size_t i = 0; i < t.merged_points.size(); i++) { + + cv::Point3f unscaled = t.merged_points.at(i).p; + + + fprintf(t.dump_file, "P,%" PRIu64 ",%f,%f,%f\n", + xf->source_sequence, unscaled.x, unscaled.y, + unscaled.z); + } + fprintf(t.dump_file, "\n"); +#endif + + + // our primary solving technique - optical and + // fallback to imu-based is handled in the + // disambiguate function - solved will contain our + // best estimate of the position of the model vertices + // in world space, and model_center_transform will + // contain the pose matrix + std::vector solved; + Eigen::Matrix4f model_center_transform = + disambiguate(t, &t.match_vertices, &predicted_pose, &solved, 0); + + + // derive our optical rotation correction from the + // pose transform + + Eigen::Matrix3f r = model_center_transform.block(0, 0, 3, 3); + Eigen::Quaternionf rot(r); + + // we only do this if we are pretty confident we + // will have a 'good' optical pose i.e. front-5 + // leds. + if (t.merged_points.size() >= PSVR_OPTICAL_SOLVE_THRESH) { + Eigen::Quaternionf correction = + rot * Eigen::Quaternionf(t.fusion.rot.w, t.fusion.rot.x, + t.fusion.rot.y, t.fusion.rot.z) + .inverse(); + + float correction_magnitude = + t.target_optical_rotation_correction.angularDistance( + correction); + + // for corrections subsequent to the + // first, we never want to depart + // massively from the imu rotation, as + // such major adjustments are likely to + // be erroneous. + + // uncomment to debug rotation correction convergence + // issues + + PSVR_TRACE("Q1: %f %f %f %f Q2: %f %f %f %f", + t.target_optical_rotation_correction.x(), + t.target_optical_rotation_correction.y(), + t.target_optical_rotation_correction.z(), + t.target_optical_rotation_correction.w(), + correction.x(), correction.y(), correction.z(), + correction.w()); + PSVR_TRACE("correction mag: %f avg %f", correction_magnitude, + t.avg_optical_correction); + + // keep a running average of the last 10 corrections - + // so we can apply the correction only when we are + // relatively stable + t.avg_optical_correction -= t.avg_optical_correction / 10.0f; + t.avg_optical_correction += correction_magnitude / 10.0f; + + PSVR_DEBUG("optical solve %f", t.avg_optical_correction); + + + // if we have not yet applied a 'converged' correction, + // our best chance of 'locking on' is to apply whatever + // correction we compute. + if (!t.done_correction) { + t.target_optical_rotation_correction = correction; + PSVR_INFO("RECORRECTING"); + } + + // only correct when we are stable + if (t.avg_optical_correction < PSVR_CORRECTION_THRESH) { + t.target_optical_rotation_correction = correction; + t.done_correction = true; + PSVR_INFO("LOCKED"); + t.max_correction = PSVR_FAST_CORRECTION; + t.bad_correction_count = 0; + } + if (t.avg_optical_correction > PSVR_BAD_CORRECTION_THRESH) { + t.bad_correction_count++; + } + + if (t.bad_correction_count > PSVR_MAX_BAD_CORR) { + t.max_correction = PSVR_SLOW_CORRECTION; + t.target_optical_rotation_correction = + t.target_optical_rotation_correction.slerp( + t.max_correction, correction); + t.bad_correction_count = 0; + PSVR_INFO("TOO MANY BAD CORRECTIONS. DRIFTED?"); + } + + std::vector resolved; + for (uint32_t i = 0; i < solved.size(); i++) { + resolved.push_back(solved[i]); + } + solved.clear(); + model_center_transform = solve_with_imu( + t, &resolved, &predicted_pose, &solved, PSVR_SEARCH_RADIUS); + } + + // move our applied correction towards the + // target correction, rather than applying it + // immediately to smooth things out. + + t.optical_rotation_correction = t.optical_rotation_correction.slerp( + t.max_correction, t.target_optical_rotation_correction); + +#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS + fprintf(t.dump_file, "\n"); + for (uint32_t i = 0; i < solved.size(); i++) { + fprintf(t.dump_file, "S,%" PRIu64 ",%f,%f,%f\n", + xf->source_sequence, solved[i].position.x(), + solved[i].position.y(), solved[i].position.z()); + } + fprintf(t.dump_file, "\n"); + + /*std::vector alt_solved; + Eigen::Matrix4f f_pose = solve_with_imu( + t, &t.match_vertices, &t.last_vertices, &alt_solved, 10.0f); + + for (uint32_t i = 0; i < alt_solved.size(); i++) { + fprintf(t.dump_file, "A,%" PRIu64 ",%f,%f,%f\n", + xf->source_sequence, alt_solved[i].position.x(), + alt_solved[i].position.y(), + alt_solved[i].position.z()); + } + fprintf(t.dump_file, "\n");*/ + +#endif + + // store our last vertices for continuity + // matching + t.last_vertices.clear(); + for (uint32_t i = 0; i < solved.size(); i++) { + t.last_vertices.push_back(solved[i]); + } + + if (t.last_vertices.size() > 0) { + filter_update(&t.last_vertices, t.track_filters, dt / 1000.0f); + } + + + Eigen::Vector4f position = model_center_transform.col(3); + pose_filter_update(&position, &t.pose_filter, dt); + + + + // NOTE: we will apply our rotation when we get imu + // data - applying our calculated optical + // correction at this time. We can update our + // position now. + Eigen::Vector4f filtered_pose; + pose_filter_predict(&filtered_pose, &t.pose_filter, dt / 1000.0f); + + + t.optical.pos.x = filtered_pose.x(); + t.optical.pos.y = filtered_pose.y(); + t.optical.pos.z = filtered_pose.z(); + + t.last_frame = xf->source_sequence; + + t.debug.submit(); + xrt_frame_reference(&xf, NULL); } @@ -79,17 +1968,15 @@ run(TrackerPSVR &t) break; } - // Take a reference on the current frame, this keeps it alive - // if it is replaced during the consumer processing it, but - // we no longer need to hold onto the frame on the queue we - // just move the pointer. + // Take a reference on the current frame + frame = t.frame; t.frame = NULL; // Unlock the mutex when we do the work. os_thread_helper_unlock(&t.oth); - procces(t, frame); + process(t, frame); // Have to lock it again. os_thread_helper_lock(&t.oth); @@ -111,10 +1998,11 @@ get_pose(TrackerPSVR &t, return; } - out_relation->pose.position = t.fusion.pos; - out_relation->pose.orientation = t.fusion.rot; + out_relation->pose.position = t.optical.pos; + out_relation->pose.orientation = t.optical.rot; - //! @todo assuming that orientation is actually currently tracked. + //! @todo assuming that orientation is actually + //! currently tracked. out_relation->relation_flags = (enum xrt_space_relation_flags)( XRT_SPACE_RELATION_POSITION_VALID_BIT | XRT_SPACE_RELATION_POSITION_TRACKED_BIT | @@ -143,8 +2031,41 @@ imu_data(TrackerPSVR &t, math_quat_integrate_velocity( &t.fusion.rot, &sample->gyro_rad_secs, dt, &t.fusion.rot); } + + // apply our optical correction to imu rotation + // data + + Eigen::Quaternionf corrected_rot_q = + t.optical_rotation_correction * + Eigen::Quaternionf(t.fusion.rot.w, t.fusion.rot.x, t.fusion.rot.y, + t.fusion.rot.z); + + Eigen::Matrix4f corrected_rot = Eigen::Matrix4f::Identity(); + corrected_rot.block(0, 0, 3, 3) = corrected_rot_q.toRotationMatrix(); + + t.corrected_imu_rotation = corrected_rot; + + if (t.done_correction) { + corrected_rot_q = t.axis_align_rot * corrected_rot_q; + } + + t.optical.rot.x = corrected_rot_q.x(); + t.optical.rot.y = corrected_rot_q.y(); + t.optical.rot.z = corrected_rot_q.z(); + t.optical.rot.w = corrected_rot_q.w(); + t.last_imu = timestamp_ns; +#ifdef PSVR_DUMP_IMU_FOR_OFFLINE_ANALYSIS + fprintf(t.dump_file, "I,%" PRIu64 ", %f,%f,%f,%f\n\n", timestamp_ns, + t.fusion.rot.x, t.fusion.rot.y, t.fusion.rot.z, t.fusion.rot.w); + + fprintf(t.dump_file, "C,%" PRIu64 ", %f,%f,%f,%f\n\n", timestamp_ns, + corrected_rot_q.x(), corrected_rot_q.y(), corrected_rot_q.z(), + corrected_rot_q.w()); +#endif + + os_thread_helper_unlock(&t.oth); } @@ -251,6 +2172,7 @@ t_psvr_start(struct xrt_tracked_psvr *xtvr) auto &t = *container_of(xtvr, TrackerPSVR, base); int ret; + ret = os_thread_helper_start(&t.oth, t_psvr_run, &t); if (ret != 0) { return ret; @@ -265,11 +2187,73 @@ t_psvr_create(struct xrt_frame_context *xfctx, struct xrt_tracked_psvr **out_xtvr, struct xrt_frame_sink **out_sink) { - fprintf(stderr, "%s\n", __func__); - auto &t = *(new TrackerPSVR()); + t.ll = debug_get_log_option_psvr_log(); + + PSVR_INFO("%s", __func__); int ret; + for (uint32_t i = 0; i < PSVR_NUM_LEDS; i++) { + init_filter(t.track_filters[i], PSVR_BLOB_PROCESS_NOISE, + PSVR_BLOB_MEASUREMENT_NOISE, 1.0f); + } + + init_filter(t.pose_filter, PSVR_POSE_PROCESS_NOISE, + PSVR_POSE_MEASUREMENT_NOISE, 1.0f); + + StereoRectificationMaps rectify(data); + t.view[0].populate_from_calib(data->view[0], rectify.view[0].rectify); + t.view[1].populate_from_calib(data->view[1], rectify.view[1].rectify); + t.disparity_to_depth = rectify.disparity_to_depth_mat; + StereoCameraCalibrationWrapper wrapped(data); + t.r_cam_rotation = wrapped.camera_rotation_mat; + t.r_cam_translation = wrapped.camera_translation_mat; + t.calibrated = true; + + + + // clang-format off + cv::SimpleBlobDetector::Params blob_params; + blob_params.filterByArea = false; + blob_params.filterByConvexity = false; + blob_params.filterByInertia = false; + blob_params.filterByColor = true; + blob_params.blobColor = 255; // 0 or 255 - color comes from binarized image? + blob_params.minArea = 0; + blob_params.maxArea = 1000; + blob_params.maxThreshold = 51; // using a wide threshold span slows things down bigtime + blob_params.minThreshold = 50; + blob_params.thresholdStep = 1; + blob_params.minDistBetweenBlobs = 5; + blob_params.minRepeatability = 1; // need this to avoid error? + // clang-format on + + t.sbd = cv::SimpleBlobDetector::create(blob_params); + + t.target_optical_rotation_correction = + Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f); + t.optical_rotation_correction = + Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f); + t.axis_align_rot = Eigen::Quaternionf(1.0f, 0.0f, 0.0f, 0.0f); + t.corrected_imu_rotation = Eigen::Matrix4f().Identity(); + t.avg_optical_correction = 10.0f; // initialise to a high value, so we + // can converge to a low one. + t.max_correction = PSVR_FAST_CORRECTION; + t.bad_correction_count = 0; + + Eigen::Quaternionf align(Eigen::AngleAxis( + -M_PI / 2, Eigen::Vector3f(0.0f, 0.0f, 1.0f))); + Eigen::Quaternionf align2( + Eigen::AngleAxis(M_PI, Eigen::Vector3f(0.0f, 1.0f, 0.0f))); + + t.axis_align_rot = align2; // * align; + + t.last_optical_model = 0; + + // offset our models center of rotation + create_model(t); + create_match_list(t); + t.base.get_tracked_pose = t_psvr_get_tracked_pose; t.base.push_imu = t_psvr_push_imu; t.base.destroy = t_psvr_fake_destroy; @@ -284,20 +2268,28 @@ t_psvr_create(struct xrt_frame_context *xfctx, return ret; } - // HACK, to counter the tracking origin offset. t.fusion.pos.x = 0.0f; - t.fusion.pos.y = 0.6f; - t.fusion.pos.z = -2.0f; + t.fusion.pos.y = 0.0f; + t.fusion.pos.z = 0.0f; t.fusion.rot.x = 0.0f; - t.fusion.rot.y = 1.0f; + t.fusion.rot.y = 0.0f; t.fusion.rot.z = 0.0f; - t.fusion.rot.w = 0.0f; + t.fusion.rot.w = 1.0f; xrt_frame_context_add(xfctx, &t.node); + // Everything is safe, now setup the variable tracking. + u_var_add_root(&t, "PSVR Tracker", true); + u_var_add_log_level(&t, &t.ll, "Log level"); + u_var_add_sink(&t, &t.debug.sink, "Debug"); + *out_sink = &t.sink; *out_xtvr = &t.base; +#ifdef PSVR_DUMP_FOR_OFFLINE_ANALYSIS + t.dump_file = fopen("/tmp/psvr_dump.txt", "w"); +#endif + return 0; }