mirror of
https://gitlab.freedesktop.org/monado/monado.git
synced 2025-01-01 12:46:12 +00:00
h/mercury: Split lm_rotations into two files to make copyright ownership clear
This commit is contained in:
parent
7485afbeaa
commit
4ccc133ac5
|
@ -1,39 +1,12 @@
|
|||
// Copyright 2022, Google, Inc.
|
||||
// Copyright 2022, Collabora, Ltd.
|
||||
// SPDX-License-Identifier: BSD-3-Clause
|
||||
// SPDX-License-Identifier: BSL-1.0
|
||||
/*!
|
||||
* @file
|
||||
* @brief Autodiff-safe rotations for Levenberg-Marquardt kinematic optimizer.
|
||||
* Copied out of Ceres's `rotation.h` with some modifications.
|
||||
* @author Kier Mierle <kier@google.com>
|
||||
* @author Sameer Agarwal <sameeragarwal@google.com>
|
||||
* @author Moses Turner <moses@collabora.com>
|
||||
* @ingroup tracking
|
||||
*/
|
||||
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||||
// used to endorse or promote products derived from this software without
|
||||
// specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
// POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#pragma once
|
||||
#include <algorithm>
|
||||
|
@ -68,102 +41,7 @@ namespace xrt::tracking::hand::mercury::lm {
|
|||
#define assert_quat_length_1(q)
|
||||
#endif
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
QuaternionProduct(const Quat<T> &z, const Quat<T> &w, Quat<T> &zw)
|
||||
{
|
||||
// Inplace product is not supported
|
||||
assert(&z != &zw);
|
||||
assert(&w != &zw);
|
||||
|
||||
assert_quat_length_1(z);
|
||||
assert_quat_length_1(w);
|
||||
|
||||
|
||||
// clang-format off
|
||||
zw.w = z.w * w.w - z.x * w.x - z.y * w.y - z.z * w.z;
|
||||
zw.x = z.w * w.x + z.x * w.w + z.y * w.z - z.z * w.y;
|
||||
zw.y = z.w * w.y - z.x * w.z + z.y * w.w + z.z * w.x;
|
||||
zw.z = z.w * w.z + z.x * w.y - z.y * w.x + z.z * w.w;
|
||||
// clang-format on
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
UnitQuaternionRotatePoint(const Quat<T> &q, const Vec3<T> &pt, Vec3<T> &result)
|
||||
{
|
||||
// clang-format off
|
||||
T uv0 = q.y * pt.z - q.z * pt.y;
|
||||
T uv1 = q.z * pt.x - q.x * pt.z;
|
||||
T uv2 = q.x * pt.y - q.y * pt.x;
|
||||
uv0 += uv0;
|
||||
uv1 += uv1;
|
||||
uv2 += uv2;
|
||||
result.x = pt.x + q.w * uv0;
|
||||
result.y = pt.y + q.w * uv1;
|
||||
result.z = pt.z + q.w * uv2;
|
||||
result.x += q.y * uv2 - q.z * uv1;
|
||||
result.y += q.z * uv0 - q.x * uv2;
|
||||
result.z += q.x * uv1 - q.y * uv0;
|
||||
// clang-format on
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
UnitQuaternionRotateAndScalePoint(const Quat<T> &q, const Vec3<T> &pt, const T scale, Vec3<T> &result)
|
||||
{
|
||||
T uv0 = q.y * pt.z - q.z * pt.y;
|
||||
T uv1 = q.z * pt.x - q.x * pt.z;
|
||||
T uv2 = q.x * pt.y - q.y * pt.x;
|
||||
uv0 += uv0;
|
||||
uv1 += uv1;
|
||||
uv2 += uv2;
|
||||
result.x = pt.x + q.w * uv0;
|
||||
result.y = pt.y + q.w * uv1;
|
||||
result.z = pt.z + q.w * uv2;
|
||||
result.x += q.y * uv2 - q.z * uv1;
|
||||
result.y += q.z * uv0 - q.x * uv2;
|
||||
result.z += q.x * uv1 - q.y * uv0;
|
||||
|
||||
result.x *= scale;
|
||||
result.y *= scale;
|
||||
result.z *= scale;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
AngleAxisToQuaternion(const Vec3<T> angle_axis, Quat<T> &result)
|
||||
{
|
||||
const T &a0 = angle_axis.x;
|
||||
const T &a1 = angle_axis.y;
|
||||
const T &a2 = angle_axis.z;
|
||||
const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
|
||||
|
||||
// For points not at the origin, the full conversion is numerically stable.
|
||||
if (likely(theta_squared > T(0.0))) {
|
||||
const T theta = sqrt(theta_squared);
|
||||
const T half_theta = theta * T(0.5);
|
||||
const T k = sin(half_theta) / theta;
|
||||
result.w = cos(half_theta);
|
||||
result.x = a0 * k;
|
||||
result.y = a1 * k;
|
||||
result.z = a2 * k;
|
||||
} else {
|
||||
// At the origin, sqrt() will produce NaN in the derivative since
|
||||
// the argument is zero. By approximating with a Taylor series,
|
||||
// and truncating at one term, the value and first derivatives will be
|
||||
// computed correctly when Jets are used.
|
||||
const T k(0.5);
|
||||
result.w = T(1.0);
|
||||
result.x = a0 * k;
|
||||
result.y = a1 * k;
|
||||
result.z = a2 * k;
|
||||
}
|
||||
}
|
||||
|
||||
#include "lm_rotations_ceres.inl"
|
||||
|
||||
|
||||
template <typename T>
|
||||
|
|
133
src/xrt/tracking/hand/mercury/kine_lm/lm_rotations_ceres.inl
Normal file
133
src/xrt/tracking/hand/mercury/kine_lm/lm_rotations_ceres.inl
Normal file
|
@ -0,0 +1,133 @@
|
|||
// Copyright 2022, Google, Inc.
|
||||
// Copyright 2022, Collabora, Ltd.
|
||||
// SPDX-License-Identifier: BSD-3-Clause
|
||||
/*!
|
||||
* @file
|
||||
* @brief Autodiff-safe rotations for Levenberg-Marquardt kinematic optimizer.
|
||||
* Copied out of Ceres's `rotation.h` with some modifications.
|
||||
* @author Kier Mierle <kier@google.com>
|
||||
* @author Sameer Agarwal <sameeragarwal@google.com>
|
||||
* @author Moses Turner <moses@collabora.com>
|
||||
* @ingroup tracking
|
||||
*/
|
||||
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||||
// used to endorse or promote products derived from this software without
|
||||
// specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
// POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
QuaternionProduct(const Quat<T> &z, const Quat<T> &w, Quat<T> &zw)
|
||||
{
|
||||
// Inplace product is not supported
|
||||
assert(&z != &zw);
|
||||
assert(&w != &zw);
|
||||
|
||||
assert_quat_length_1(z);
|
||||
assert_quat_length_1(w);
|
||||
|
||||
|
||||
// clang-format off
|
||||
zw.w = z.w * w.w - z.x * w.x - z.y * w.y - z.z * w.z;
|
||||
zw.x = z.w * w.x + z.x * w.w + z.y * w.z - z.z * w.y;
|
||||
zw.y = z.w * w.y - z.x * w.z + z.y * w.w + z.z * w.x;
|
||||
zw.z = z.w * w.z + z.x * w.y - z.y * w.x + z.z * w.w;
|
||||
// clang-format on
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
UnitQuaternionRotatePoint(const Quat<T> &q, const Vec3<T> &pt, Vec3<T> &result)
|
||||
{
|
||||
// clang-format off
|
||||
T uv0 = q.y * pt.z - q.z * pt.y;
|
||||
T uv1 = q.z * pt.x - q.x * pt.z;
|
||||
T uv2 = q.x * pt.y - q.y * pt.x;
|
||||
uv0 += uv0;
|
||||
uv1 += uv1;
|
||||
uv2 += uv2;
|
||||
result.x = pt.x + q.w * uv0;
|
||||
result.y = pt.y + q.w * uv1;
|
||||
result.z = pt.z + q.w * uv2;
|
||||
result.x += q.y * uv2 - q.z * uv1;
|
||||
result.y += q.z * uv0 - q.x * uv2;
|
||||
result.z += q.x * uv1 - q.y * uv0;
|
||||
// clang-format on
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
UnitQuaternionRotateAndScalePoint(const Quat<T> &q, const Vec3<T> &pt, const T scale, Vec3<T> &result)
|
||||
{
|
||||
T uv0 = q.y * pt.z - q.z * pt.y;
|
||||
T uv1 = q.z * pt.x - q.x * pt.z;
|
||||
T uv2 = q.x * pt.y - q.y * pt.x;
|
||||
uv0 += uv0;
|
||||
uv1 += uv1;
|
||||
uv2 += uv2;
|
||||
result.x = pt.x + q.w * uv0;
|
||||
result.y = pt.y + q.w * uv1;
|
||||
result.z = pt.z + q.w * uv2;
|
||||
result.x += q.y * uv2 - q.z * uv1;
|
||||
result.y += q.z * uv0 - q.x * uv2;
|
||||
result.z += q.x * uv1 - q.y * uv0;
|
||||
|
||||
result.x *= scale;
|
||||
result.y *= scale;
|
||||
result.z *= scale;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline void
|
||||
AngleAxisToQuaternion(const Vec3<T> angle_axis, Quat<T> &result)
|
||||
{
|
||||
const T &a0 = angle_axis.x;
|
||||
const T &a1 = angle_axis.y;
|
||||
const T &a2 = angle_axis.z;
|
||||
const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
|
||||
|
||||
// For points not at the origin, the full conversion is numerically stable.
|
||||
if (likely(theta_squared > T(0.0))) {
|
||||
const T theta = sqrt(theta_squared);
|
||||
const T half_theta = theta * T(0.5);
|
||||
const T k = sin(half_theta) / theta;
|
||||
result.w = cos(half_theta);
|
||||
result.x = a0 * k;
|
||||
result.y = a1 * k;
|
||||
result.z = a2 * k;
|
||||
} else {
|
||||
// At the origin, sqrt() will produce NaN in the derivative since
|
||||
// the argument is zero. By approximating with a Taylor series,
|
||||
// and truncating at one term, the value and first derivatives will be
|
||||
// computed correctly when Jets are used.
|
||||
const T k(0.5);
|
||||
result.w = T(1.0);
|
||||
result.x = a0 * k;
|
||||
result.y = a1 * k;
|
||||
result.z = a2 * k;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in a new issue