d/ht: split ht_hand_math into source and header

This commit is contained in:
Simon Zeni 2021-11-04 19:01:34 -04:00 committed by Moses Turner
parent f10951b5ac
commit 44b46a28bf
4 changed files with 460 additions and 414 deletions

View file

@ -216,7 +216,7 @@ if(XRT_BUILD_DRIVER_HANDTRACKING)
ht/ht_driver.hpp
ht/ht_interface.h
ht/ht_models.hpp
ht/ht_hand_math.hpp
ht/ht_hand_math.cpp
ht/ht_image_math.hpp
ht/ht_nms.hpp
ht/templates/NaivePermutationSort.hpp)

View file

@ -0,0 +1,428 @@
// Copyright 2021, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Helper math to do things with 3D hands for the camera-based hand tracker
* @author Moses Turner <moses@collabora.com>
* @author Nick Klingensmith <programmerpichu@gmail.com>
* @ingroup drv_ht
*/
#include "math/m_api.h"
#include "math/m_vec3.h"
#include "ht_driver.hpp"
#include "ht_hand_math.hpp"
#include "util/u_time.h"
#include "xrt/xrt_defines.h"
static const int num_real_joints = 21;
float
sumOfHandJointDistances(Hand3D *one, Hand3D *two)
{
float dist = 0.0f;
for (int i = 0; i < num_real_joints; i++) {
dist += m_vec3_len(one->kps[i] - two->kps[i]);
}
return dist;
}
float
errHandHistory(HandHistory3D *history_hand, Hand3D *present_hand)
{
// Remember we never have to deal with an empty hand. Can always access the last element.
return sumOfHandJointDistances(history_hand->last_hands_unfiltered[0], present_hand);
}
float
errHandDisparity(Hand2D *left_rays, Hand2D *right_rays)
{
float error_y_diff = 0.0f;
for (int i = 0; i < 21; i++) {
float diff_y = fabsf(left_rays->kps[i].y - right_rays->kps[i].y);
// Big question about what's the best loss function. Gut feeling was "I should be using sum of squared
// errors" but I don't really know. Using just sum of errors for now. Ideally it'd also be not very
// sensitive to one or two really bad outliers.
error_y_diff += diff_y;
}
// U_LOG_E("stereo camera err is %f, y_disparity is %f", err_stereo_camera, error_y_diff);
return error_y_diff;
}
void
applyJointWidths(struct xrt_hand_joint_set *set)
{
// Thanks to Nick Klingensmith for this idea
struct xrt_hand_joint_value *gr = set->values.hand_joint_set_default;
static const float finger_joint_size[5] = {0.022f, 0.021f, 0.022f, 0.021f, 0.02f};
static const float hand_finger_size[5] = {1.0f, 1.0f, 0.83f, 0.75f};
static const float thumb_size[4] = {0.016f, 0.014f, 0.012f, 0.012f};
static const float mul = 1.0f;
for (int i = XRT_HAND_JOINT_THUMB_METACARPAL; i <= XRT_HAND_JOINT_THUMB_TIP; i++) {
int j = i - XRT_HAND_JOINT_THUMB_METACARPAL;
gr[i].radius = thumb_size[j] * mul;
}
for (int finger = 0; finger < 4; finger++) {
for (int joint = 0; joint < 5; joint++) {
int set_idx = finger * 5 + joint + XRT_HAND_JOINT_INDEX_METACARPAL;
float val = finger_joint_size[joint] * hand_finger_size[finger] * .5 * mul;
gr[set_idx].radius = val;
}
}
// The radius of each joint is the distance from the joint to the skin in meters. -OpenXR spec.
set->values.hand_joint_set_default[XRT_HAND_JOINT_PALM].radius =
.032f * .5f; // Measured my palm thickness with calipers
set->values.hand_joint_set_default[XRT_HAND_JOINT_WRIST].radius =
.040f * .5f; // Measured my wrist thickness with calipers
}
void
applyThumbIndexDrag(Hand3D *hand)
{
// TERRIBLE HACK.
// Puts the thumb and pointer a bit closer together to be better at triggering XR clients' pinch detection.
static const float max_radius = 0.05;
static const float min_radius = 0.00;
// no min drag, min drag always 0.
static const float max_drag = 0.85f;
xrt_vec3 thumb = hand->kps[THMB_TIP];
xrt_vec3 index = hand->kps[INDX_TIP];
xrt_vec3 ttp = index - thumb;
float length = m_vec3_len(ttp);
if ((length > max_radius)) {
return;
}
float amount = math_map_ranges(length, min_radius, max_radius, max_drag, 0.0f);
hand->kps[THMB_TIP] = m_vec3_lerp(thumb, index, amount * 0.5f);
hand->kps[INDX_TIP] = m_vec3_lerp(index, thumb, amount * 0.5f);
}
void
applyJointOrientations(struct xrt_hand_joint_set *set, bool is_right)
{
// The real rule to follow is that each joint's "X" axis is along the axis along which it can bend.
// The nature of our estimation makes this a bit difficult, but these should work okay-ish under perfect
// conditions
if (set->is_active == false) {
return;
}
#define gl(jt) set->values.hand_joint_set_default[jt].relation.pose.position
xrt_vec3 pinky_prox = gl(XRT_HAND_JOINT_LITTLE_PROXIMAL);
xrt_vec3 index_prox = gl(XRT_HAND_JOINT_INDEX_PROXIMAL);
xrt_vec3 pinky_to_index_prox = m_vec3_normalize(index_prox - pinky_prox);
if (is_right) {
pinky_to_index_prox = m_vec3_mul_scalar(pinky_to_index_prox, -1.0f);
}
static const std::vector<std::vector<enum xrt_hand_joint>> fingers_with_joints_in_them = {
{XRT_HAND_JOINT_INDEX_METACARPAL, XRT_HAND_JOINT_INDEX_PROXIMAL, XRT_HAND_JOINT_INDEX_INTERMEDIATE,
XRT_HAND_JOINT_INDEX_DISTAL, XRT_HAND_JOINT_INDEX_TIP},
{XRT_HAND_JOINT_MIDDLE_METACARPAL, XRT_HAND_JOINT_MIDDLE_PROXIMAL, XRT_HAND_JOINT_MIDDLE_INTERMEDIATE,
XRT_HAND_JOINT_MIDDLE_DISTAL, XRT_HAND_JOINT_MIDDLE_TIP},
{XRT_HAND_JOINT_RING_METACARPAL, XRT_HAND_JOINT_RING_PROXIMAL, XRT_HAND_JOINT_RING_INTERMEDIATE,
XRT_HAND_JOINT_RING_DISTAL, XRT_HAND_JOINT_RING_TIP},
{XRT_HAND_JOINT_LITTLE_METACARPAL, XRT_HAND_JOINT_LITTLE_PROXIMAL, XRT_HAND_JOINT_LITTLE_INTERMEDIATE,
XRT_HAND_JOINT_LITTLE_DISTAL, XRT_HAND_JOINT_LITTLE_TIP},
};
for (std::vector<enum xrt_hand_joint> finger : fingers_with_joints_in_them) {
for (int i = 0; i < 4; i++) {
// Don't do fingertips. (Fingertip would be index 4.)
struct xrt_vec3 forwards = m_vec3_normalize(gl(finger[i + 1]) - gl(finger[i]));
struct xrt_vec3 backwards = m_vec3_mul_scalar(forwards, -1.0f);
struct xrt_vec3 left = m_vec3_orthonormalize(forwards, pinky_to_index_prox);
// float dot = m_vec3_dot(backwards, left);
// assert((m_vec3_dot(backwards,left) == 0.0f));
math_quat_from_plus_x_z(
&left, &backwards,
&set->values.hand_joint_set_default[finger[i]].relation.pose.orientation);
}
// Do fingertip! Per XR_EXT_hand_tracking, just copy the distal joint's orientation. Doing anything else
// is wrong.
set->values.hand_joint_set_default[finger[4]].relation.pose.orientation =
set->values.hand_joint_set_default[finger[3]].relation.pose.orientation;
}
// wrist!
// Not the best but acceptable. Eventually, probably, do triangle of wrist pinky prox and index prox.
set->values.hand_joint_set_default[XRT_HAND_JOINT_WRIST].relation.pose.orientation =
set->values.hand_joint_set_default[XRT_HAND_JOINT_MIDDLE_METACARPAL].relation.pose.orientation;
// palm!
set->values.hand_joint_set_default[XRT_HAND_JOINT_PALM].relation.pose.orientation =
set->values.hand_joint_set_default[XRT_HAND_JOINT_MIDDLE_METACARPAL].relation.pose.orientation;
// thumb!
// When I look at Ultraleap tracking, there's like, a "plane" made by the tip, distal and proximal (and kinda
// MCP, but least squares fitting a plane is too hard for my baby brain) Normal to this plane is the +X, and
// obviously forwards to the next joint is the -Z.
xrt_vec3 thumb_prox_to_dist = gl(XRT_HAND_JOINT_THUMB_DISTAL) - gl(XRT_HAND_JOINT_THUMB_PROXIMAL);
xrt_vec3 thumb_dist_to_tip = gl(XRT_HAND_JOINT_THUMB_TIP) - gl(XRT_HAND_JOINT_THUMB_DISTAL);
xrt_vec3 plane_normal;
if (!is_right) {
math_vec3_cross(&thumb_prox_to_dist, &thumb_dist_to_tip, &plane_normal);
} else {
math_vec3_cross(&thumb_dist_to_tip, &thumb_prox_to_dist, &plane_normal);
}
std::vector<enum xrt_hand_joint> thumbs = {XRT_HAND_JOINT_THUMB_METACARPAL, XRT_HAND_JOINT_THUMB_PROXIMAL,
XRT_HAND_JOINT_THUMB_DISTAL, XRT_HAND_JOINT_THUMB_TIP};
for (int i = 0; i < 3; i++) {
struct xrt_vec3 backwards =
m_vec3_mul_scalar(m_vec3_normalize(gl(thumbs[i + 1]) - gl(thumbs[i])), -1.0f);
struct xrt_vec3 left = m_vec3_orthonormalize(backwards, plane_normal);
math_quat_from_plus_x_z(&left, &backwards,
&set->values.hand_joint_set_default[thumbs[i]].relation.pose.orientation);
}
struct xrt_quat *tip = &set->values.hand_joint_set_default[XRT_HAND_JOINT_THUMB_TIP].relation.pose.orientation;
struct xrt_quat *distal =
&set->values.hand_joint_set_default[XRT_HAND_JOINT_THUMB_DISTAL].relation.pose.orientation;
memcpy(tip, distal, sizeof(struct xrt_quat));
}
float
handednessJointSet(Hand3D *set)
{
// Guess if hand is left or right.
// Left is negative, right is positive.
// xrt_vec3 middle_mcp = gl(XRT_HAND_JOINT_MIDDLE_METACARPAL);
xrt_vec3 pinky_prox = set->kps[LITL_PXM]; // gl(XRT_HAND_JOINT_LITTLE_PROXIMAL);
xrt_vec3 index_prox = set->kps[INDX_PXM]; // gl(XRT_HAND_JOINT_INDEX_PROXIMAL);
xrt_vec3 pinky_to_index_prox = m_vec3_normalize(index_prox - pinky_prox);
float handedness = 0.0f;
for (int i : {INDX_PXM, MIDL_PXM, RING_PXM, LITL_PXM}) {
xrt_vec3 prox = set->kps[i];
xrt_vec3 intr = set->kps[i + 1];
xrt_vec3 dist = set->kps[i + 2];
xrt_vec3 tip = set->kps[i + 3];
xrt_vec3 prox_to_int = m_vec3_normalize(intr - prox);
xrt_vec3 int_to_dist = m_vec3_normalize(dist - intr);
xrt_vec3 dist_to_tip = m_vec3_normalize(tip - dist);
xrt_vec3 checks[2];
math_vec3_cross(&prox_to_int, &int_to_dist, &checks[0]);
math_vec3_cross(&int_to_dist, &dist_to_tip, &checks[1]);
handedness += m_vec3_dot(m_vec3_normalize(pinky_to_index_prox), (checks[0]));
handedness += m_vec3_dot(m_vec3_normalize(pinky_to_index_prox), (checks[1]));
}
set->handedness = handedness / (4 * 2);
return set->handedness;
}
void
handednessHandHistory3D(HandHistory3D *history)
{
float inter = handednessJointSet(history->last_hands_unfiltered[0]);
if ((fabsf(inter) > 0.3f) || (fabsf(history->handedness) < 0.3f)) {
history->handedness += inter;
}
static const int max_handedness = 2.0f;
if (history->handedness > max_handedness) {
history->handedness = max_handedness;
} else if (history->handedness < -max_handedness) {
history->handedness = -max_handedness;
}
}
void
handEuroFiltersInit(HandHistory3D *history, double fc_min, double fc_min_d, double beta)
{
for (int i = 0; i < 21; i++) {
m_filter_euro_vec3_init(&history->filters[i], fc_min, beta, fc_min_d);
}
}
static double
calc_smoothing_alpha(double Fc, double dt)
{
/* Calculate alpha = (1 / (1 + tau/dt)) where tau = 1.0 / (2 * pi * Fc),
* this is a straight rearrangement with fewer divisions */
double r = 2.0 * M_PI * Fc * dt;
return r / (r + 1.0);
}
static double
exp_smooth(double alpha, double y, double prev_y)
{
return alpha * y + (1.0 - alpha) * prev_y;
}
void
handEuroFiltersRun(struct ht_device *htd, HandHistory3D *f, Hand3D *out_hand)
{
// Assume present hand is in element 0!
#if 0
// float vals[4] = {0.5, 0.33, 0.1, 0.07};
float vals[4] = {0.9, 0.09, 0.009, 0.001};
int m = f->last_hands_unfiltered.length-1;
double ts_out = (vals[0] * (double)f->last_hands_unfiltered[std::min(m,0)]->timestamp) +
(vals[1] * (double)f->last_hands_unfiltered[std::min(m,1)]->timestamp) +
(vals[2] * (double)f->last_hands_unfiltered[std::min(m,2)]->timestamp) +
(vals[3] * (double)f->last_hands_unfiltered[std::min(m,3)]->timestamp);
out_hand->timestamp = (uint64_t)ts_out;
for (int kp_idx = 0; kp_idx < 21; kp_idx++) {
for (int hist_idx = 0; hist_idx < 4; hist_idx++) {
float *in_y_arr = (float *)&f->last_hands_unfiltered[std::min(m,hist_idx)]->kps[kp_idx];
float *out_y_arr = (float *)&out_hand->kps[kp_idx];
for (int i = 0; i < 3; i++) {
out_y_arr[i] += in_y_arr[i] * vals[hist_idx];
}
}
}
#elif 0
for (int i = 0; i < 21; i++) {
m_filter_euro_vec3_run(&f->filters[i], f->last_hands_unfiltered[0]->timestamp,
&f->last_hands_unfiltered[0]->kps[i], &out_hand->kps[i]);
}
// conspicuously wrong!
out_hand->timestamp = f->last_hands_unfiltered[0]->timestamp;
#else
if (!f->have_prev_hand) {
f->last_hands_filtered.push(*f->last_hands_unfiltered[0]);
uint64_t ts = f->last_hands_unfiltered[0]->timestamp;
f->prev_ts_for_alpha = ts;
f->first_ts = ts;
f->prev_filtered_ts = ts;
f->prev_dy = 0;
f->have_prev_hand = true;
*out_hand = *f->last_hands_unfiltered[0];
}
uint64_t ts = f->last_hands_unfiltered[0]->timestamp;
double dt, alpha_d;
dt = (double)(ts - f->prev_ts_for_alpha) / U_TIME_1S_IN_NS;
double abs_dy =
(sumOfHandJointDistances(f->last_hands_unfiltered[0], f->last_hands_filtered[0]) / 21.0f) * 0.7f;
alpha_d = calc_smoothing_alpha(htd->dynamic_config.hand_fc_min_d.val, dt);
double alpha, fc_cutoff;
f->prev_dy = exp_smooth(alpha_d, abs_dy, f->prev_dy);
fc_cutoff = htd->dynamic_config.hand_fc_min.val + htd->dynamic_config.hand_beta.val * f->prev_dy;
alpha = calc_smoothing_alpha(fc_cutoff, dt);
HT_DEBUG(htd, "dt is %f, abs_dy is %f, alpha is %f", dt, abs_dy, alpha);
for (int i = 0; i < 21; i++) {
out_hand->kps[i].x =
exp_smooth(alpha, f->last_hands_unfiltered[0]->kps[i].x, f->last_hands_filtered[0]->kps[i].x);
out_hand->kps[i].y =
exp_smooth(alpha, f->last_hands_unfiltered[0]->kps[i].y, f->last_hands_filtered[0]->kps[i].y);
out_hand->kps[i].z =
exp_smooth(alpha, f->last_hands_unfiltered[0]->kps[i].z, f->last_hands_filtered[0]->kps[i].z);
}
double prev_ts_offset = (double)(f->prev_filtered_ts - f->first_ts);
double current_ts_offset = (double)(ts - f->first_ts);
double new_filtered_ts_offset = exp_smooth(alpha, current_ts_offset, prev_ts_offset);
uint64_t new_filtered_ts = (uint64_t)(new_filtered_ts_offset) + f->first_ts;
out_hand->timestamp = new_filtered_ts;
f->prev_filtered_ts = out_hand->timestamp;
f->prev_ts_for_alpha = ts; // NOT the filtered timestamp. NO.
#endif
}
bool
rejectTooFar(struct ht_device *htd, Hand3D *hand)
{
static const float max_dist = 1.0f; // this sucks too - make it bigger if you can.
const float max_dist_from_camera_sqrd = max_dist * max_dist;
for (int i = 0; i < 21; i++) {
xrt_vec3 pos = hand->kps[i];
float len = m_vec3_len_sqrd(pos); // Faster.
if (len > max_dist_from_camera_sqrd) {
goto reject;
}
}
return true;
reject:
HT_TRACE(htd, "Rejected too far!");
return false;
}
bool
rejectTooClose(struct ht_device *htd, Hand3D *hand)
{
const float min_dist = 0.12f; // Be a bit aggressive here - it's nice to not let people see our tracking fail
// when the hands are way too close
const float min_dist_from_camera_sqrd = min_dist * min_dist;
for (int i = 0; i < 21; i++) {
xrt_vec3 pos = hand->kps[i];
float len = m_vec3_len_sqrd(pos); // Faster.
if (len < min_dist_from_camera_sqrd) {
goto reject;
}
if (pos.z > min_dist) { // remember negative-Z is forward!
goto reject;
}
}
return true;
reject:
HT_TRACE(htd, "Rejected too close!");
return false;
}
bool
rejectTinyPalm(struct ht_device *htd, Hand3D *hand)
{
// This one sucks, because some people really have tiny hands. If at some point you can stop using it, stop
// using it.
// Weird scoping so that we can still do gotos
{
float len = m_vec3_len(hand->kps[WRIST] - hand->kps[INDX_PXM]);
if ((len < 0.03f || len > 0.25f)) {
goto reject;
}
}
{
float len = m_vec3_len(hand->kps[WRIST] - hand->kps[MIDL_PXM]);
if (len < 0.03f || len > 0.25f) {
goto reject;
}
}
return true;
reject:
HT_TRACE(htd, "Rejected because too big or too small!");
return false;
}

View file

@ -10,422 +10,40 @@
#pragma once
#include "math/m_api.h"
#include "math/m_vec3.h"
struct Hand2D;
struct Hand3D;
struct HandHistory3D;
struct ht_device;
struct xrt_hand_joint_set;
#include "ht_driver.hpp"
#include "util/u_time.h"
#include "xrt/xrt_defines.h"
float
sumOfHandJointDistances(Hand3D *one, Hand3D *two);
const int num_real_joints = 21;
static float
errHandDisparity(Hand2D *left_rays, Hand2D *right_rays)
{
float error_y_diff = 0.0f;
for (int i = 0; i < 21; i++) {
float diff_y = fabsf(left_rays->kps[i].y - right_rays->kps[i].y);
// Big question about what's the best loss function. Gut feeling was "I should be using sum of squared
// errors" but I don't really know. Using just sum of errors for now. Ideally it'd also be not very
// sensitive to one or two really bad outliers.
error_y_diff += diff_y;
}
// U_LOG_E("stereo camera err is %f, y_disparity is %f", err_stereo_camera, error_y_diff);
return error_y_diff;
}
static float
sumOfHandJointDistances(Hand3D *one, Hand3D *two)
{
float dist = 0.0f;
for (int i = 0; i < num_real_joints; i++) {
dist += m_vec3_len(one->kps[i] - two->kps[i]);
}
return dist;
}
static float
errHandHistory(HandHistory3D *history_hand, Hand3D *present_hand)
{
// Remember we never have to deal with an empty hand. Can always access the last element.
return sumOfHandJointDistances(history_hand->last_hands_unfiltered[0], present_hand);
}
static void
applyJointWidths(struct xrt_hand_joint_set *set)
{
// Thanks to Nick Klingensmith for this idea
struct xrt_hand_joint_value *gr = set->values.hand_joint_set_default;
const float finger_joint_size[5] = {0.022f, 0.021f, 0.022f, 0.021f, 0.02f};
const float hand_finger_size[5] = {1.0f, 1.0f, 0.83f, 0.75f};
const float thumb_size[4] = {0.016f, 0.014f, 0.012f, 0.012f};
float mul = 1.0f;
for (int i = XRT_HAND_JOINT_THUMB_METACARPAL; i <= XRT_HAND_JOINT_THUMB_TIP; i++) {
int j = i - XRT_HAND_JOINT_THUMB_METACARPAL;
gr[i].radius = thumb_size[j] * mul;
}
for (int finger = 0; finger < 4; finger++) {
for (int joint = 0; joint < 5; joint++) {
int set_idx = finger * 5 + joint + XRT_HAND_JOINT_INDEX_METACARPAL;
float val = finger_joint_size[joint] * hand_finger_size[finger] * .5 * mul;
gr[set_idx].radius = val;
}
}
// The radius of each joint is the distance from the joint to the skin in meters. -OpenXR spec.
set->values.hand_joint_set_default[XRT_HAND_JOINT_PALM].radius =
.032f * .5f; // Measured my palm thickness with calipers
set->values.hand_joint_set_default[XRT_HAND_JOINT_WRIST].radius =
.040f * .5f; // Measured my wrist thickness with calipers
}
static void
applyThumbIndexDrag(Hand3D *hand)
{
// TERRIBLE HACK.
// Puts the thumb and pointer a bit closer together to be better at triggering XR clients' pinch detection.
const float max_radius = 0.05;
const float min_radius = 0.00;
// no min drag, min drag always 0.
const float max_drag = 0.85f;
xrt_vec3 thumb = hand->kps[THMB_TIP];
xrt_vec3 index = hand->kps[INDX_TIP];
xrt_vec3 ttp = index - thumb;
float length = m_vec3_len(ttp);
if ((length > max_radius)) {
return;
}
float amount = math_map_ranges(length, min_radius, max_radius, max_drag, 0.0f);
hand->kps[THMB_TIP] = m_vec3_lerp(thumb, index, amount * 0.5f);
hand->kps[INDX_TIP] = m_vec3_lerp(index, thumb, amount * 0.5f);
}
static void
applyJointOrientations(struct xrt_hand_joint_set *set, bool is_right)
{
// The real rule to follow is that each joint's "X" axis is along the axis along which it can bend.
// The nature of our estimation makes this a bit difficult, but these should work okay-ish under perfect
// conditions
if (set->is_active == false) {
return;
}
#define gl(jt) set->values.hand_joint_set_default[jt].relation.pose.position
xrt_vec3 pinky_prox = gl(XRT_HAND_JOINT_LITTLE_PROXIMAL);
xrt_vec3 index_prox = gl(XRT_HAND_JOINT_INDEX_PROXIMAL);
xrt_vec3 pinky_to_index_prox = m_vec3_normalize(index_prox - pinky_prox);
if (is_right) {
pinky_to_index_prox = m_vec3_mul_scalar(pinky_to_index_prox, -1.0f);
}
std::vector<std::vector<enum xrt_hand_joint>> fingers_with_joints_in_them = {
{XRT_HAND_JOINT_INDEX_METACARPAL, XRT_HAND_JOINT_INDEX_PROXIMAL, XRT_HAND_JOINT_INDEX_INTERMEDIATE,
XRT_HAND_JOINT_INDEX_DISTAL, XRT_HAND_JOINT_INDEX_TIP},
{XRT_HAND_JOINT_MIDDLE_METACARPAL, XRT_HAND_JOINT_MIDDLE_PROXIMAL, XRT_HAND_JOINT_MIDDLE_INTERMEDIATE,
XRT_HAND_JOINT_MIDDLE_DISTAL, XRT_HAND_JOINT_MIDDLE_TIP},
{XRT_HAND_JOINT_RING_METACARPAL, XRT_HAND_JOINT_RING_PROXIMAL, XRT_HAND_JOINT_RING_INTERMEDIATE,
XRT_HAND_JOINT_RING_DISTAL, XRT_HAND_JOINT_RING_TIP},
{XRT_HAND_JOINT_LITTLE_METACARPAL, XRT_HAND_JOINT_LITTLE_PROXIMAL, XRT_HAND_JOINT_LITTLE_INTERMEDIATE,
XRT_HAND_JOINT_LITTLE_DISTAL, XRT_HAND_JOINT_LITTLE_TIP},
};
for (std::vector<enum xrt_hand_joint> finger : fingers_with_joints_in_them) {
for (int i = 0; i < 4; i++) {
// Don't do fingertips. (Fingertip would be index 4.)
struct xrt_vec3 forwards = m_vec3_normalize(gl(finger[i + 1]) - gl(finger[i]));
struct xrt_vec3 backwards = m_vec3_mul_scalar(forwards, -1.0f);
struct xrt_vec3 left = m_vec3_orthonormalize(forwards, pinky_to_index_prox);
// float dot = m_vec3_dot(backwards, left);
// assert((m_vec3_dot(backwards,left) == 0.0f));
math_quat_from_plus_x_z(
&left, &backwards,
&set->values.hand_joint_set_default[finger[i]].relation.pose.orientation);
}
// Do fingertip! Per XR_EXT_hand_tracking, just copy the distal joint's orientation. Doing anything else
// is wrong.
set->values.hand_joint_set_default[finger[4]].relation.pose.orientation =
set->values.hand_joint_set_default[finger[3]].relation.pose.orientation;
}
// wrist!
// Not the best but acceptable. Eventually, probably, do triangle of wrist pinky prox and index prox.
set->values.hand_joint_set_default[XRT_HAND_JOINT_WRIST].relation.pose.orientation =
set->values.hand_joint_set_default[XRT_HAND_JOINT_MIDDLE_METACARPAL].relation.pose.orientation;
// palm!
set->values.hand_joint_set_default[XRT_HAND_JOINT_PALM].relation.pose.orientation =
set->values.hand_joint_set_default[XRT_HAND_JOINT_MIDDLE_METACARPAL].relation.pose.orientation;
// thumb!
// When I look at Ultraleap tracking, there's like, a "plane" made by the tip, distal and proximal (and kinda
// MCP, but least squares fitting a plane is too hard for my baby brain) Normal to this plane is the +X, and
// obviously forwards to the next joint is the -Z.
xrt_vec3 thumb_prox_to_dist = gl(XRT_HAND_JOINT_THUMB_DISTAL) - gl(XRT_HAND_JOINT_THUMB_PROXIMAL);
xrt_vec3 thumb_dist_to_tip = gl(XRT_HAND_JOINT_THUMB_TIP) - gl(XRT_HAND_JOINT_THUMB_DISTAL);
xrt_vec3 plane_normal;
if (!is_right) {
math_vec3_cross(&thumb_prox_to_dist, &thumb_dist_to_tip, &plane_normal);
} else {
math_vec3_cross(&thumb_dist_to_tip, &thumb_prox_to_dist, &plane_normal);
}
std::vector<enum xrt_hand_joint> thumbs = {XRT_HAND_JOINT_THUMB_METACARPAL, XRT_HAND_JOINT_THUMB_PROXIMAL,
XRT_HAND_JOINT_THUMB_DISTAL, XRT_HAND_JOINT_THUMB_TIP};
for (int i = 0; i < 3; i++) {
struct xrt_vec3 backwards =
m_vec3_mul_scalar(m_vec3_normalize(gl(thumbs[i + 1]) - gl(thumbs[i])), -1.0f);
struct xrt_vec3 left = m_vec3_orthonormalize(backwards, plane_normal);
math_quat_from_plus_x_z(&left, &backwards,
&set->values.hand_joint_set_default[thumbs[i]].relation.pose.orientation);
}
struct xrt_quat *tip = &set->values.hand_joint_set_default[XRT_HAND_JOINT_THUMB_TIP].relation.pose.orientation;
struct xrt_quat *distal =
&set->values.hand_joint_set_default[XRT_HAND_JOINT_THUMB_DISTAL].relation.pose.orientation;
memcpy(tip, distal, sizeof(struct xrt_quat));
}
static float
handednessJointSet(Hand3D *set)
{
// Guess if hand is left or right.
// Left is negative, right is positive.
// xrt_vec3 middle_mcp = gl(XRT_HAND_JOINT_MIDDLE_METACARPAL);
xrt_vec3 pinky_prox = set->kps[LITL_PXM]; // gl(XRT_HAND_JOINT_LITTLE_PROXIMAL);
xrt_vec3 index_prox = set->kps[INDX_PXM]; // gl(XRT_HAND_JOINT_INDEX_PROXIMAL);
xrt_vec3 pinky_to_index_prox = m_vec3_normalize(index_prox - pinky_prox);
float handedness = 0.0f;
for (int i : {INDX_PXM, MIDL_PXM, RING_PXM, LITL_PXM}) {
xrt_vec3 prox = set->kps[i];
xrt_vec3 intr = set->kps[i + 1];
xrt_vec3 dist = set->kps[i + 2];
xrt_vec3 tip = set->kps[i + 3];
xrt_vec3 prox_to_int = m_vec3_normalize(intr - prox);
xrt_vec3 int_to_dist = m_vec3_normalize(dist - intr);
xrt_vec3 dist_to_tip = m_vec3_normalize(tip - dist);
xrt_vec3 checks[2];
math_vec3_cross(&prox_to_int, &int_to_dist, &checks[0]);
math_vec3_cross(&int_to_dist, &dist_to_tip, &checks[1]);
handedness += m_vec3_dot(m_vec3_normalize(pinky_to_index_prox), (checks[0]));
handedness += m_vec3_dot(m_vec3_normalize(pinky_to_index_prox), (checks[1]));
}
set->handedness = handedness / (4 * 2);
return set->handedness;
}
static void
handednessHandHistory3D(HandHistory3D *history)
{
float inter = handednessJointSet(history->last_hands_unfiltered[0]);
if ((fabsf(inter) > 0.3f) || (fabsf(history->handedness) < 0.3f)) {
history->handedness += inter;
}
const int max_handedness = 2.0f;
if (history->handedness > max_handedness) {
history->handedness = max_handedness;
} else if (history->handedness < -max_handedness) {
history->handedness = -max_handedness;
}
}
static void
handEuroFiltersInit(HandHistory3D *history, double fc_min, double fc_min_d, double beta)
{
for (int i = 0; i < 21; i++) {
m_filter_euro_vec3_init(&history->filters[i], fc_min, beta, fc_min_d);
}
}
static double
calc_smoothing_alpha(double Fc, double dt)
{
/* Calculate alpha = (1 / (1 + tau/dt)) where tau = 1.0 / (2 * pi * Fc),
* this is a straight rearrangement with fewer divisions */
double r = 2.0 * M_PI * Fc * dt;
return r / (r + 1.0);
}
static double
exp_smooth(double alpha, double y, double prev_y)
{
return alpha * y + (1.0 - alpha) * prev_y;
}
float
errHandHistory(HandHistory3D *history_hand, Hand3D *present_hand);
float
errHandDisparity(Hand2D *left_rays, Hand2D *right_rays);
void
handEuroFiltersRun(struct ht_device *htd, HandHistory3D *f, Hand3D *out_hand)
{
// Assume present hand is in element 0!
#if 0
// float vals[4] = {0.5, 0.33, 0.1, 0.07};
float vals[4] = {0.9, 0.09, 0.009, 0.001};
int m = f->last_hands_unfiltered.length-1;
double ts_out = (vals[0] * (double)f->last_hands_unfiltered[std::min(m,0)]->timestamp) +
(vals[1] * (double)f->last_hands_unfiltered[std::min(m,1)]->timestamp) +
(vals[2] * (double)f->last_hands_unfiltered[std::min(m,2)]->timestamp) +
(vals[3] * (double)f->last_hands_unfiltered[std::min(m,3)]->timestamp);
out_hand->timestamp = (uint64_t)ts_out;
applyJointWidths(struct xrt_hand_joint_set *set);
void
applyThumbIndexDrag(Hand3D *hand);
void
applyJointOrientations(struct xrt_hand_joint_set *set, bool is_right);
for (int kp_idx = 0; kp_idx < 21; kp_idx++) {
for (int hist_idx = 0; hist_idx < 4; hist_idx++) {
float *in_y_arr = (float *)&f->last_hands_unfiltered[std::min(m,hist_idx)]->kps[kp_idx];
float *out_y_arr = (float *)&out_hand->kps[kp_idx];
for (int i = 0; i < 3; i++) {
out_y_arr[i] += in_y_arr[i] * vals[hist_idx];
}
}
}
#elif 0
for (int i = 0; i < 21; i++) {
m_filter_euro_vec3_run(&f->filters[i], f->last_hands_unfiltered[0]->timestamp,
&f->last_hands_unfiltered[0]->kps[i], &out_hand->kps[i]);
}
// conspicuously wrong!
out_hand->timestamp = f->last_hands_unfiltered[0]->timestamp;
#else
float
handednessJointSet(Hand3D *set);
void
handednessHandHistory3D(HandHistory3D *history);
if (!f->have_prev_hand) {
f->last_hands_filtered.push(*f->last_hands_unfiltered[0]);
uint64_t ts = f->last_hands_unfiltered[0]->timestamp;
f->prev_ts_for_alpha = ts;
f->first_ts = ts;
f->prev_filtered_ts = ts;
f->prev_dy = 0;
f->have_prev_hand = true;
*out_hand = *f->last_hands_unfiltered[0];
}
uint64_t ts = f->last_hands_unfiltered[0]->timestamp;
double dt, alpha_d;
dt = (double)(ts - f->prev_ts_for_alpha) / U_TIME_1S_IN_NS;
void
handEuroFiltersInit(HandHistory3D *history, double fc_min, double fc_min_d, double beta);
void
handEuroFiltersRun(struct ht_device *htd, HandHistory3D *f, Hand3D *out_hand);
double abs_dy =
(sumOfHandJointDistances(f->last_hands_unfiltered[0], f->last_hands_filtered[0]) / 21.0f) * 0.7f;
alpha_d = calc_smoothing_alpha(htd->dynamic_config.hand_fc_min_d.val, dt);
double alpha, fc_cutoff;
f->prev_dy = exp_smooth(alpha_d, abs_dy, f->prev_dy);
fc_cutoff = htd->dynamic_config.hand_fc_min.val + htd->dynamic_config.hand_beta.val * f->prev_dy;
alpha = calc_smoothing_alpha(fc_cutoff, dt);
HT_DEBUG(htd, "dt is %f, abs_dy is %f, alpha is %f", dt, abs_dy, alpha);
for (int i = 0; i < 21; i++) {
out_hand->kps[i].x =
exp_smooth(alpha, f->last_hands_unfiltered[0]->kps[i].x, f->last_hands_filtered[0]->kps[i].x);
out_hand->kps[i].y =
exp_smooth(alpha, f->last_hands_unfiltered[0]->kps[i].y, f->last_hands_filtered[0]->kps[i].y);
out_hand->kps[i].z =
exp_smooth(alpha, f->last_hands_unfiltered[0]->kps[i].z, f->last_hands_filtered[0]->kps[i].z);
}
double prev_ts_offset = (double)(f->prev_filtered_ts - f->first_ts);
double current_ts_offset = (double)(ts - f->first_ts);
double new_filtered_ts_offset = exp_smooth(alpha, current_ts_offset, prev_ts_offset);
uint64_t new_filtered_ts = (uint64_t)(new_filtered_ts_offset) + f->first_ts;
out_hand->timestamp = new_filtered_ts;
f->prev_filtered_ts = out_hand->timestamp;
f->prev_ts_for_alpha = ts; // NOT the filtered timestamp. NO.
#endif
}
static bool
rejectTooFar(struct ht_device *htd, Hand3D *hand)
{
const float max_dist = 1.0f; // this sucks too - make it bigger if you can.
const float max_dist_from_camera_sqrd = max_dist * max_dist;
for (int i = 0; i < 21; i++) {
xrt_vec3 pos = hand->kps[i];
float len = m_vec3_len_sqrd(pos); // Faster.
if (len > max_dist_from_camera_sqrd) {
goto reject;
}
}
return true;
reject:
HT_TRACE(htd, "Rejected too far!");
return false;
}
static bool
rejectTooClose(struct ht_device *htd, Hand3D *hand)
{
const float min_dist = 0.12f; // Be a bit aggressive here - it's nice to not let people see our tracking fail
// when the hands are way too close
const float min_dist_from_camera_sqrd = min_dist * min_dist;
for (int i = 0; i < 21; i++) {
xrt_vec3 pos = hand->kps[i];
float len = m_vec3_len_sqrd(pos); // Faster.
if (len < min_dist_from_camera_sqrd) {
goto reject;
}
if (pos.z > min_dist) { // remember negative-Z is forward!
goto reject;
}
}
return true;
reject:
HT_TRACE(htd, "Rejected too close!");
return false;
}
static bool
rejectTinyPalm(struct ht_device *htd, Hand3D *hand)
{
// This one sucks, because some people really have tiny hands. If at some point you can stop using it, stop
// using it.
// Weird scoping so that we can still do gotos
{
float len = m_vec3_len(hand->kps[WRIST] - hand->kps[INDX_PXM]);
if ((len < 0.03f || len > 0.25f)) {
goto reject;
}
}
{
float len = m_vec3_len(hand->kps[WRIST] - hand->kps[MIDL_PXM]);
if (len < 0.03f || len > 0.25f) {
goto reject;
}
}
return true;
reject:
HT_TRACE(htd, "Rejected because too big or too small!");
return false;
}
bool
rejectTooFar(struct ht_device *htd, Hand3D *hand);
bool
rejectTooClose(struct ht_device *htd, Hand3D *hand);
bool
rejectTinyPalm(struct ht_device *htd, Hand3D *hand);

View file

@ -91,7 +91,7 @@ lib_drv_ht = static_library(
'ht/ht_driver.hpp',
'ht/ht_interface.h',
'ht/ht_models.hpp',
'ht/ht_hand_math.hpp',
'ht/ht_hand_math.cpp',
'ht/ht_image_math.hpp',
'ht/ht_nms.hpp',
'ht/templates/NaivePermutationSort.hpp',