aux/tracking: Port calibration to new gui/node setup

This commit is contained in:
pblack 2019-09-25 12:49:21 +12:00 committed by Jakob Bornecrantz
parent 24260bb042
commit 3d7ec1546b
3 changed files with 539 additions and 11 deletions

View file

@ -18,6 +18,7 @@ set(OS_SOURCE_FILES
) )
set(TRACKING_SOURCE_FILES set(TRACKING_SOURCE_FILES
tracking/t_calibration_opencv.h
tracking/t_calibration.cpp tracking/t_calibration.cpp
tracking/t_convert.cpp tracking/t_convert.cpp
tracking/t_debug_hsv_filter.cpp tracking/t_debug_hsv_filter.cpp

View file

@ -15,11 +15,66 @@
#include "tracking/t_tracking.h" #include "tracking/t_tracking.h"
#include <opencv2/opencv.hpp> #include <opencv2/opencv.hpp>
#include "tracking/t_calibration_opencv.h"
#include <sys/stat.h>
DEBUG_GET_ONCE_BOOL_OPTION(hsv_filter, "T_DEBUG_HSV_FILTER", false) DEBUG_GET_ONCE_BOOL_OPTION(hsv_filter, "T_DEBUG_HSV_FILTER", false)
DEBUG_GET_ONCE_BOOL_OPTION(hsv_picker, "T_DEBUG_HSV_PICKER", false) DEBUG_GET_ONCE_BOOL_OPTION(hsv_picker, "T_DEBUG_HSV_PICKER", false)
DEBUG_GET_ONCE_BOOL_OPTION(hsv_viewer, "T_DEBUG_HSV_VIEWER", false) DEBUG_GET_ONCE_BOOL_OPTION(hsv_viewer, "T_DEBUG_HSV_VIEWER", false)
// calibration chessboard size - 7x9 'blocks' - the count
// of rows and cols refer to 'internal intersections'
#define CHESSBOARD_ROWS 6
#define CHESSBOARD_COLS 8
// we will use a number of samples spread across the frame
// to ensure a good calibration. must be > 9
#define CALIBRATION_SAMPLES 15
// set up our calibration rectangles, we will collect 9 chessboard samples
// that 'fill' these rectangular regions to get good coverage
#define COVERAGE_X 0.8f
#define COVERAGE_Y 0.8f
static cv::Rect2f calibration_rect[] = {
cv::Rect2f(
(1.0f - COVERAGE_X) / 2.0f, (1.0f - COVERAGE_Y) / 2.0f, 0.3f, 0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f,
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f,
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
0.3f,
0.3f),
cv::Rect2f((1.0f - COVERAGE_X) / 2.0f + 2 * COVERAGE_X / 3.0f,
(1.0f - COVERAGE_Y) / 2.0f + 2 * COVERAGE_Y / 3.0f,
0.3f,
0.3f),
};
/* /*
* *
@ -27,6 +82,16 @@ DEBUG_GET_ONCE_BOOL_OPTION(hsv_viewer, "T_DEBUG_HSV_VIEWER", false)
* *
*/ */
struct ViewState
{
std::vector<std::vector<cv::Point2f>> measured = {};
cv::Mat current = {};
cv::Rect brect;
cv::Rect pre_rect;
cv::Rect post_rect;
};
class Calibration class Calibration
{ {
public: public:
@ -39,6 +104,22 @@ public:
struct xrt_frame_sink *sink = {}; struct xrt_frame_sink *sink = {};
} gui; } gui;
std::vector<cv::Point3f> chessboard_model;
cv::Size chessboard_size;
struct
{
ViewState view[2] = {};
std::vector<std::vector<cv::Point3f>> chessboards_model;
uint32_t calibration_count;
bool calibrated;
} state;
bool clear_frame = false;
cv::Mat grey; cv::Mat grey;
char text[512]; char text[512];
@ -63,6 +144,7 @@ public:
* *
*/ */
static void static void
refresh_gui_frame(class Calibration &c, int rows, int cols) refresh_gui_frame(class Calibration &c, int rows, int cols)
{ {
@ -124,23 +206,260 @@ make_gui_str(class Calibration &c)
send_rgb_frame(c); send_rgb_frame(c);
} }
static void
draw_rect(cv::Mat &rgb, cv::Rect rect, cv::Scalar colour)
{
cv::rectangle(rgb, rect.tl(), rect.br(), colour);
}
static bool
do_view(class Calibration &c,
struct ViewState &view,
cv::Mat &grey,
cv::Mat &rgb)
{
bool found =
cv::findChessboardCorners(grey, c.chessboard_size, view.current);
// compute our 'pre sample' coverage for this frame, and
// display it
std::vector<cv::Point2f> coverage;
for (uint32_t i = 0; i < view.measured.size(); i++) {
cv::Rect brect = cv::boundingRect(view.measured[i]);
draw_rect(rgb, brect, cv::Scalar(0, 64, 32));
coverage.push_back(cv::Point2f(brect.tl()));
coverage.push_back(cv::Point2f(brect.br()));
}
// What area of the camera have we calibrated.
view.pre_rect = cv::boundingRect(coverage);
draw_rect(rgb, view.pre_rect, cv::Scalar(0, 255, 0));
if (found) {
view.brect = cv::boundingRect(view.current);
coverage.push_back(cv::Point2f(view.brect.tl()));
coverage.push_back(cv::Point2f(view.brect.br()));
view.post_rect = cv::boundingRect(coverage);
draw_rect(rgb, view.post_rect, cv::Scalar(0, 255, 0));
}
cv::drawChessboardCorners(rgb, c.chessboard_size, view.current, found);
return found;
}
/*
*
* Stereo calibration
*
*/
#define P(...) snprintf(c.text, sizeof(c.text), __VA_ARGS__)
static void
process_stereo_samples(class Calibration &c, int cols, int rows)
{
c.state.calibrated = true;
cv::Size image_size(cols, rows);
// we don't serialise these
cv::Mat camera_rotation;
cv::Mat camera_translation;
cv::Mat camera_essential;
cv::Mat camera_fundamental;
struct opencv_calibration_params cp;
cv::Mat zero_distortion = cv::Mat(5, 1, CV_32F, cv::Scalar(0.0f));
// TODO: handle both fisheye and normal cameras -right
// now I only have the normal, for the PS4 camera
#if 0
float rp_error = cv::fisheye::stereoCalibrate(
internal->chessboards_model, internal->l_measured,
internal->r_measured, l_intrinsics,
l_distortion_fisheye, r_intrinsics, r_distortion_fisheye,
image_size, camera_rotation, camera_translation,
cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC);
#endif
// non-fisheye version
float rp_error = cv::stereoCalibrate(
c.state.chessboards_model, c.state.view[0].measured,
c.state.view[1].measured, cp.l_intrinsics, cp.l_distortion,
cp.r_intrinsics, cp.r_distortion, image_size, camera_rotation,
camera_translation, camera_essential, camera_fundamental, 0);
std::cout << "calibration rp_error: " << rp_error << "\n";
std::cout << "calibration camera_translation:\n"
<< camera_translation << "\n";
cv::stereoRectify(cp.l_intrinsics, zero_distortion, cp.r_intrinsics,
zero_distortion, image_size, camera_rotation,
camera_translation, cp.l_rotation, cp.r_rotation,
cp.l_projection, cp.r_projection,
cp.disparity_to_depth, cv::CALIB_ZERO_DISPARITY);
P("CALIBRATION DONE RP ERROR %f", rp_error);
char path_string[PATH_MAX];
char file_string[PATH_MAX];
// TODO: centralise this - use multiple env vars?
char *config_path = secure_getenv("HOME");
snprintf(path_string, PATH_MAX, "%s/.config/monado", config_path);
snprintf(file_string, PATH_MAX, "%s/.config/monado/%s.calibration",
config_path, "PS4_EYE");
FILE *calib_file = fopen(file_string, "wb");
if (!calib_file) {
// try creating it
mkpath(path_string);
}
calib_file = fopen(file_string, "wb");
if (!calib_file) {
printf(
"ERROR. could not create calibration file "
"%s\n",
file_string);
return;
}
write_cv_mat(calib_file, &cp.l_intrinsics);
write_cv_mat(calib_file, &cp.r_intrinsics);
write_cv_mat(calib_file, &cp.l_distortion);
write_cv_mat(calib_file, &cp.r_distortion);
write_cv_mat(calib_file, &cp.l_distortion_fisheye);
write_cv_mat(calib_file, &cp.r_distortion_fisheye);
write_cv_mat(calib_file, &cp.l_rotation);
write_cv_mat(calib_file, &cp.r_rotation);
write_cv_mat(calib_file, &cp.l_translation);
write_cv_mat(calib_file, &cp.r_translation);
write_cv_mat(calib_file, &cp.l_projection);
write_cv_mat(calib_file, &cp.r_projection);
write_cv_mat(calib_file, &cp.disparity_to_depth);
cv::Mat mat_image_size;
mat_image_size.create(1, 2, CV_32F);
mat_image_size.at<float>(0, 0) = image_size.width;
mat_image_size.at<float>(0, 1) = image_size.height;
write_cv_mat(calib_file, &mat_image_size);
fclose(calib_file);
}
static void static void
make_calibration_frame(class Calibration &c) make_calibration_frame(class Calibration &c)
{ {
auto &rgb = c.gui.rgb; auto &rgb = c.gui.rgb;
auto &grey = c.grey;
// This should not happen
if (rgb.rows == 0 || rgb.cols == 0) { if (rgb.rows == 0 || rgb.cols == 0) {
ensure_buffers_are_allocated(c, 480, 640); return;
cv::rectangle(c.gui.rgb, cv::Point2f(0, 0), }
// Don't do anything if we are done.
if (c.state.calibrated) {
print_txt(rgb, c.text, 1.5);
send_rgb_frame(c);
return;
}
// Clear our gui frame
if (c.clear_frame) {
cv::rectangle(rgb, cv::Point2f(0, 0),
cv::Point2f(rgb.cols, rgb.rows), cv::Point2f(rgb.cols, rgb.rows),
cv::Scalar(0, 0, 0), -1, 0); cv::Scalar(0, 0, 0), -1, 0);
} }
int cols = rgb.cols / 2;
int rows = rgb.rows;
// Split left and right eyes, don't make any copies.
cv::Mat l_grey(rows, cols, CV_8UC1, grey.data, grey.cols);
cv::Mat r_grey(rows, cols, CV_8UC1, grey.data + cols, grey.cols);
cv::Mat l_rgb(rows, cols, CV_8UC3, c.gui.frame->data,
c.gui.frame->stride);
cv::Mat r_rgb(rows, cols, CV_8UC3, c.gui.frame->data + 3 * cols,
c.gui.frame->stride);
bool found_left = do_view(c, c.state.view[0], l_grey, l_rgb);
bool found_right = do_view(c, c.state.view[1], r_grey, r_rgb);
// draw our current calibration guide box
cv::Point2f bound_tl = calibration_rect[c.state.calibration_count].tl();
bound_tl.x *= cols;
bound_tl.y *= rows;
cv::Point2f bound_br = calibration_rect[c.state.calibration_count].br();
bound_br.x *= cols;
bound_br.y *= rows;
// Draw the target rect last so it is the most visible.
cv::rectangle(c.gui.rgb, bound_tl, bound_br, cv::Scalar(255, 0, 0));
// if we have a valid sample (left and right), display it
if (found_left && found_right) {
cv::Rect brect = c.state.view[0].brect;
cv::Rect pre_rect = c.state.view[0].pre_rect;
cv::Rect post_rect = c.state.view[0].post_rect;
// determine if we should add this sample to our list.
// either we are still taking the first 9 samples and
// the chessboard is in the box, or we have exceeded 9
// samples and now want to 'push out the edges'
bool add_sample = false;
int coverage_threshold = cols * 0.3f * rows * 0.3f;
if (c.state.calibration_count < 9 &&
brect.tl().x >= bound_tl.x && brect.tl().y >= bound_tl.y &&
brect.br().x <= bound_br.x && brect.br().y <= bound_br.y) {
add_sample = true;
}
if (c.state.calibration_count >= 9 &&
brect.area() > coverage_threshold &&
post_rect.area() >
pre_rect.area() + coverage_threshold / 5) {
add_sample = true;
}
if (add_sample) {
c.state.chessboards_model.push_back(c.chessboard_model);
c.state.view[0].measured.push_back(
c.state.view[0].current);
c.state.view[1].measured.push_back(
c.state.view[1].current);
c.state.calibration_count++;
printf("SAMPLE: %ld\n",
c.state.view[0].measured.size());
}
}
if (c.state.calibration_count < 9) {
P("POSITION CHESSBOARD IN BOX");
} else {
P("TRY TO 'PUSH OUT EDGES' WITH LARGE BOARD IMAGES");
}
if (c.state.view[0].measured.size() == CALIBRATION_SAMPLES) {
process_stereo_samples(c, cols, rows);
}
/* /*
* Draw text * Draw text
*/ */
print_txt(rgb, "CALIBRATION MODE", 1.5); print_txt(rgb, c.text, 1.5);
send_rgb_frame(c); send_rgb_frame(c);
} }
@ -161,6 +480,7 @@ process_frame_yuv(class Calibration &c, struct xrt_frame *xf)
cv::Mat data(h, w, CV_8UC3, xf->data, xf->stride); cv::Mat data(h, w, CV_8UC3, xf->data, xf->stride);
ensure_buffers_are_allocated(c, data.rows, data.cols); ensure_buffers_are_allocated(c, data.rows, data.cols);
c.gui.frame->source_sequence = xf->source_sequence;
cv::cvtColor(data, c.gui.rgb, cv::COLOR_YUV2RGB); cv::cvtColor(data, c.gui.rgb, cv::COLOR_YUV2RGB);
cv::cvtColor(c.gui.rgb, c.grey, cv::COLOR_RGB2GRAY); cv::cvtColor(c.gui.rgb, c.grey, cv::COLOR_RGB2GRAY);
@ -182,6 +502,7 @@ process_frame_yuyv(class Calibration &c, struct xrt_frame *xf)
f.data_half = cv::Mat(h, half_w, CV_8UC4, xf->data, xf->stride); f.data_half = cv::Mat(h, half_w, CV_8UC4, xf->data, xf->stride);
f.data_full = cv::Mat(h, w, CV_8UC2, xf->data, xf->stride); f.data_full = cv::Mat(h, w, CV_8UC2, xf->data, xf->stride);
ensure_buffers_are_allocated(c, f.data_full.rows, f.data_full.cols); ensure_buffers_are_allocated(c, f.data_full.rows, f.data_full.cols);
c.gui.frame->source_sequence = xf->source_sequence;
cv::cvtColor(f.data_full, c.gui.rgb, cv::COLOR_YUV2RGB_YUYV); cv::cvtColor(f.data_full, c.gui.rgb, cv::COLOR_YUV2RGB_YUYV);
cv::cvtColor(f.data_full, c.grey, cv::COLOR_YUV2GRAY_YUYV); cv::cvtColor(f.data_full, c.grey, cv::COLOR_YUV2GRAY_YUYV);
@ -199,22 +520,19 @@ t_calibration_frame(struct xrt_frame_sink *xsink, struct xrt_frame *xf)
{ {
auto &c = *(class Calibration *)xsink; auto &c = *(class Calibration *)xsink;
#if 0 //! @todo Add single view support.
if (xf->stereo_format != XRT_FS_STEREO_SBS) { if (xf->stereo_format != XRT_STEREO_FORMAT_SBS) {
snprintf(c.text, sizeof(c.text), P("ERROR: Not side by side stereo!");
"ERROR: Not side by side stereo!");
make_gui_str(c); make_gui_str(c);
return; return;
} }
#endif
// Fill both c.gui.rgb and c.grey with the data we got. // Fill both c.gui.rgb and c.grey with the data we got.
switch (xf->format) { switch (xf->format) {
case XRT_FORMAT_YUV888: process_frame_yuv(c, xf); break; case XRT_FORMAT_YUV888: process_frame_yuv(c, xf); break;
case XRT_FORMAT_YUV422: process_frame_yuyv(c, xf); break; case XRT_FORMAT_YUV422: process_frame_yuyv(c, xf); break;
default: default:
snprintf(c.text, sizeof(c.text), "ERROR: Bad format '%s'", P("ERROR: Bad format '%s'", u_format_str(xf->format));
u_format_str(xf->format));
make_gui_str(c); make_gui_str(c);
return; return;
} }
@ -243,7 +561,7 @@ t_calibration_create(struct xrt_frame_context *xfctx,
*out_sink = &c.base; *out_sink = &c.base;
snprintf(c.text, sizeof(c.text), "Waiting for camera"); P("Waiting for camera");
make_gui_str(c); make_gui_str(c);
int ret = 0; int ret = 0;
@ -262,5 +580,13 @@ t_calibration_create(struct xrt_frame_context *xfctx,
// Ensure we only get yuv or yuyv frames. // Ensure we only get yuv or yuyv frames.
u_sink_create_to_yuv_or_yuyv(xfctx, *out_sink, out_sink); u_sink_create_to_yuv_or_yuyv(xfctx, *out_sink, out_sink);
c.chessboard_size = cv::Size(CHESSBOARD_COLS, CHESSBOARD_ROWS);
for (int i = 0; i < c.chessboard_size.width * c.chessboard_size.height;
i++) {
cv::Point3f p(i / c.chessboard_size.width,
i % c.chessboard_size.width, 0.0f);
c.chessboard_model.push_back(p);
}
return ret; return ret;
} }

View file

@ -0,0 +1,201 @@
// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief OpenCV calibration helpers.
* @author Pete Black <pblack@collabora.com>
*/
#pragma once
#include <opencv2/opencv.hpp>
#include <sys/stat.h>
#ifdef __cplusplus
extern "C" {
#endif
struct opencv_calibration_params
{
cv::Mat l_intrinsics;
cv::Mat l_distortion;
cv::Mat l_distortion_fisheye;
cv::Mat l_translation;
cv::Mat l_rotation;
cv::Mat l_projection;
cv::Mat r_intrinsics;
cv::Mat r_distortion;
cv::Mat r_distortion_fisheye;
cv::Mat r_translation;
cv::Mat r_rotation;
cv::Mat r_projection;
cv::Mat disparity_to_depth;
cv::Mat mat_image_size;
};
static bool
write_cv_mat(FILE* f, cv::Mat* m)
{
uint32_t header[3];
header[0] = static_cast<uint32_t>(m->elemSize());
header[1] = static_cast<uint32_t>(m->rows);
header[2] = static_cast<uint32_t>(m->cols);
fwrite(static_cast<void*>(header), sizeof(uint32_t), 3, f);
fwrite(static_cast<void*>(m->data), header[0], header[1] * header[2],
f);
return true;
}
static bool
read_cv_mat(FILE* f, cv::Mat* m)
{
uint32_t header[3];
fread(static_cast<void*>(header), sizeof(uint32_t), 3, f);
//! @todo We may have written things other than CV_32F and CV_64F.
if (header[0] == 4) {
m->create(static_cast<int>(header[1]),
static_cast<int>(header[2]), CV_32F);
} else {
m->create(static_cast<int>(header[1]),
static_cast<int>(header[2]), CV_64F);
}
fread(static_cast<void*>(m->data), header[0], header[1] * header[2], f);
return true;
}
XRT_MAYBE_UNUSED static bool
calibration_get_stereo(char* configuration_filename,
uint32_t frame_w,
uint32_t frame_h,
bool use_fisheye,
cv::Mat* l_undistort_map_x,
cv::Mat* l_undistort_map_y,
cv::Mat* l_rectify_map_x,
cv::Mat* l_rectify_map_y,
cv::Mat* r_undistort_map_x,
cv::Mat* r_undistort_map_y,
cv::Mat* r_rectify_map_x,
cv::Mat* r_rectify_map_y,
cv::Mat* disparity_to_depth)
{
struct opencv_calibration_params cp;
cv::Mat zero_distortion = cv::Mat(5, 1, CV_32F, cv::Scalar(0.0f));
char path_string[256]; //! @todo 256 maybe not enough
//! @todo Use multiple env vars?
char* config_path = secure_getenv("HOME");
snprintf(path_string, 256, "%s/.config/monado/%s.calibration",
config_path, configuration_filename); //! @todo Hardcoded 256
FILE* calib_file = fopen(path_string, "rb");
if (calib_file == NULL) {
return false;
}
// Read our calibration from this file
read_cv_mat(calib_file, &cp.l_intrinsics);
read_cv_mat(calib_file, &cp.r_intrinsics);
read_cv_mat(calib_file, &cp.l_distortion);
read_cv_mat(calib_file, &cp.r_distortion);
read_cv_mat(calib_file, &cp.l_distortion_fisheye);
read_cv_mat(calib_file, &cp.r_distortion_fisheye);
read_cv_mat(calib_file, &cp.l_rotation);
read_cv_mat(calib_file, &cp.r_rotation);
read_cv_mat(calib_file, &cp.l_translation);
read_cv_mat(calib_file, &cp.r_translation);
read_cv_mat(calib_file, &cp.l_projection);
read_cv_mat(calib_file, &cp.r_projection);
read_cv_mat(calib_file, disparity_to_depth); // provided by caller
read_cv_mat(calib_file, &cp.mat_image_size);
//! @todo Scale Our intrinsics if the frame size we request
// calibration for does not match what was saved
cv::Size image_size(int(cp.mat_image_size.at<float>(0, 0)),
int(cp.mat_image_size.at<float>(0, 1)));
// Generate undistortion maps - handle fisheye or rectilinear sources
if (use_fisheye) {
cv::fisheye::initUndistortRectifyMap(
cp.l_intrinsics, cp.l_distortion_fisheye, cv::noArray(),
cp.l_intrinsics, image_size, CV_32FC1, *l_undistort_map_x,
*l_undistort_map_y);
cv::fisheye::initUndistortRectifyMap(
cp.r_intrinsics, cp.r_distortion_fisheye, cv::noArray(),
cp.r_intrinsics, image_size, CV_32FC1, *r_undistort_map_x,
*r_undistort_map_y);
} else {
cv::initUndistortRectifyMap(
cp.l_intrinsics, cp.l_distortion, cv::noArray(),
cp.l_intrinsics, image_size, CV_32FC1, *l_undistort_map_x,
*l_undistort_map_y);
cv::initUndistortRectifyMap(
cp.r_intrinsics, cp.r_distortion, cv::noArray(),
cp.r_intrinsics, image_size, CV_32FC1, *r_undistort_map_x,
*r_undistort_map_y);
}
// Generate our rectification maps
cv::initUndistortRectifyMap(
cp.l_intrinsics, zero_distortion, cp.l_rotation, cp.l_projection,
image_size, CV_32FC1, *l_rectify_map_x, *l_rectify_map_y);
cv::initUndistortRectifyMap(
cp.r_intrinsics, zero_distortion, cp.r_rotation, cp.r_projection,
image_size, CV_32FC1, *r_rectify_map_x, *r_rectify_map_y);
return true;
}
//! @todo Move this as it is a generic helper
static int
mkpath(char* path)
{
char tmp[PATH_MAX]; //!< @todo PATH_MAX probably not strictly correct
char* p = nullptr;
size_t len;
snprintf(tmp, sizeof(tmp), "%s", path);
len = strlen(tmp) - 1;
if (tmp[len] == '/') {
tmp[len] = 0;
}
for (p = tmp + 1; *p; p++) {
if (*p == '/') {
*p = 0;
if (mkdir(tmp, S_IRWXU) < 0 && errno != EEXIST)
return -1;
*p = '/';
}
}
if (mkdir(tmp, S_IRWXU) < 0 && errno != EEXIST) {
return -1;
}
return 0;
}
//! @todo Templatise?
XRT_MAYBE_UNUSED static float
cv_dist3d_point(cv::Point3f& p, cv::Point3f& q)
{
cv::Point3f d = p - q;
return cv::sqrt(d.x * d.x + d.y * d.y + d.z * d.z);
}
//! @todo Templatise?
XRT_MAYBE_UNUSED static float
cv_dist3d_vec(cv::Vec3f& p, cv::Vec3f& q)
{
cv::Point3f d = p - q;
return cv::sqrt(d.x * d.x + d.y * d.y + d.z * d.z);
}
#ifdef __cplusplus
}
#endif