c/main: Remove layer renderer integration in renderer

This commit is contained in:
Jakob Bornecrantz 2023-10-12 12:19:05 +01:00
parent 958d62fcab
commit 3293def0cb
3 changed files with 1 additions and 504 deletions

View file

@ -253,100 +253,6 @@ compositor_discard_frame(struct xrt_compositor *xc, int64_t frame_id)
return XRT_SUCCESS;
}
static void
do_graphics_layers(struct comp_compositor *c)
{
// Always zero for now.
uint32_t layer_count = c->base.slot.layer_count;
comp_renderer_destroy_layers(c->r);
if (c->base.slot.one_projection_layer_fast_path) {
return;
}
comp_renderer_allocate_layers(c->r, layer_count);
for (uint32_t i = 0; i < layer_count; i++) {
struct comp_layer *layer = &c->base.slot.layers[i];
struct xrt_layer_data *data = &layer->data;
COMP_SPEW(c, "LAYER_COMMIT (%d) predicted display time: %8.3fms", i, ns_to_ms(data->timestamp));
switch (data->type) {
case XRT_LAYER_QUAD: {
struct xrt_layer_quad_data *quad = &layer->data.quad;
struct comp_swapchain_image *image;
image = &layer->sc_array[0]->images[quad->sub.image_index];
comp_renderer_set_quad_layer(c->r, i, image, data);
} break;
case XRT_LAYER_STEREO_PROJECTION: {
struct xrt_layer_stereo_projection_data *stereo = &data->stereo;
struct comp_swapchain_image *right;
struct comp_swapchain_image *left;
left = &layer->sc_array[0]->images[stereo->l.sub.image_index];
right = &layer->sc_array[1]->images[stereo->r.sub.image_index];
comp_renderer_set_projection_layer(c->r, i, left, right, data);
} break;
case XRT_LAYER_STEREO_PROJECTION_DEPTH: {
struct xrt_layer_stereo_projection_depth_data *stereo = &data->stereo_depth;
struct comp_swapchain_image *right;
struct comp_swapchain_image *left;
left = &layer->sc_array[0]->images[stereo->l.sub.image_index];
right = &layer->sc_array[1]->images[stereo->r.sub.image_index];
//! @todo: Make use of stereo->l_d and stereo->r_d
comp_renderer_set_projection_layer(c->r, i, left, right, data);
} break;
case XRT_LAYER_CYLINDER: {
struct xrt_layer_cylinder_data *cyl = &layer->data.cylinder;
struct comp_swapchain_image *image;
image = &layer->sc_array[0]->images[cyl->sub.image_index];
comp_renderer_set_cylinder_layer(c->r, i, image, data);
} break;
#ifdef XRT_FEATURE_OPENXR_LAYER_EQUIRECT1
case XRT_LAYER_EQUIRECT1: {
struct xrt_layer_equirect1_data *eq = &layer->data.equirect1;
struct comp_swapchain_image *image;
image = &layer->sc_array[0]->images[eq->sub.image_index];
comp_renderer_set_equirect1_layer(c->r, i, image, data);
} break;
#endif
#ifdef XRT_FEATURE_OPENXR_LAYER_EQUIRECT2
case XRT_LAYER_EQUIRECT2: {
struct xrt_layer_equirect2_data *eq = &layer->data.equirect2;
struct comp_swapchain_image *image;
image = &layer->sc_array[0]->images[eq->sub.image_index];
comp_renderer_set_equirect2_layer(c->r, i, image, data);
} break;
#endif
#ifdef XRT_FEATURE_OPENXR_LAYER_CUBE
case XRT_LAYER_CUBE: {
struct xrt_layer_cube_data *cu = &layer->data.cube;
struct comp_swapchain_image *image;
image = &layer->sc_array[0]->images[cu->sub.image_index];
comp_renderer_set_cube_layer(c->r, i, image, data);
} break;
#endif
#ifndef XRT_FEATURE_OPENXR_LAYER_EQUIRECT1
case XRT_LAYER_EQUIRECT1:
#endif
#ifndef XRT_FEATURE_OPENXR_LAYER_EQUIRECT2
case XRT_LAYER_EQUIRECT2:
#endif
#ifndef XRT_FEATURE_OPENXR_LAYER_CUBE
case XRT_LAYER_CUBE:
#endif
default:
// Should never end up here.
assert(false);
}
}
}
/*!
* We have a fast path for single projection layer that goes directly
* to the distortion shader, so no need to use the layer renderer.
@ -389,10 +295,7 @@ compositor_layer_commit(struct xrt_compositor *xc, xrt_graphics_sync_handle_t sy
u_graphics_sync_unref(&sync_handle);
if (!c->settings.use_compute) {
do_graphics_layers(c);
}
// Do the drawing
comp_renderer_draw(c->r);
u_frame_times_widget_push_sample(&c->compositor_frame_times, os_monotonic_get_ns());

View file

@ -130,12 +130,6 @@ struct comp_renderer
*/
uint32_t buffer_count;
/*!
* @brief The layer renderer, which actually knows how to composite layers.
*
* Depends on the target extents.
*/
struct comp_layer_renderer *lr;
//! @}
};
@ -406,30 +400,6 @@ renderer_close_renderings_and_fences(struct comp_renderer *r)
r->fenced_buffer = -1;
}
//! @pre comp_target_check_ready(r->c->target)
static void
renderer_create_layer_renderer(struct comp_renderer *r)
{
struct vk_bundle *vk = &r->c->base.vk;
assert(comp_target_check_ready(r->c->target));
uint32_t layer_count = 0;
if (r->lr != NULL) {
// if we already had one, re-populate it after recreation.
layer_count = r->lr->layer_count;
comp_layer_renderer_destroy(&r->lr);
}
r->lr = comp_layer_renderer_create( //
vk, //
&r->c->shaders, //
&r->scratch_render_pass); //
if (layer_count != 0) {
comp_layer_renderer_allocate_layers(r->lr, layer_count);
}
}
/*!
* @brief Ensure that target images and renderings are created, if possible.
*
@ -503,7 +473,6 @@ renderer_ensure_images_and_renderings(struct comp_renderer *r, bool force_recrea
r->buffer_count = r->c->target->image_count;
renderer_create_layer_renderer(r);
renderer_create_renderings_and_fences(r);
assert(r->buffer_count != 0);
@ -764,9 +733,6 @@ renderer_fini(struct comp_renderer *r)
// Do before layer render just in case it holds any references.
comp_mirror_fini(&r->mirror_to_debug_gui, vk);
// Do this after the mirror struct.
comp_layer_renderer_destroy(&(r->lr));
// Do this after the layer renderer.
for (uint32_t i = 0; i < ARRAY_SIZE(r->scratch_targets); i++) {
render_gfx_target_resources_close(&r->scratch_targets[i]);
@ -779,16 +745,6 @@ renderer_fini(struct comp_renderer *r)
render_scratch_images_close(&r->c->nr, &r->scratch);
}
static VkImageView
get_image_view(const struct comp_swapchain_image *image, enum xrt_layer_composition_flags flags, uint32_t array_index)
{
if (flags & XRT_LAYER_COMPOSITION_BLEND_TEXTURE_SOURCE_ALPHA_BIT) {
return image->views.alpha[array_index];
}
return image->views.no_alpha[array_index];
}
/*
*
@ -932,267 +888,6 @@ dispatch_compute(struct comp_renderer *r, struct render_compute *crc)
*
*/
void
comp_renderer_set_quad_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data)
{
struct comp_render_layer *l = r->lr->layers[layer];
l->transformation_ubo_binding = r->lr->transformation_ubo_binding;
l->texture_binding = r->lr->texture_binding;
VkSampler clamp_to_edge = r->c->nr.samplers.clamp_to_edge;
VkImageView image_view = get_image_view( //
image, //
data->flags, //
data->quad.sub.array_index); //
comp_layer_update_descriptors( //
l, //
clamp_to_edge, //
image_view); //
struct xrt_vec3 s = {data->quad.size.x, data->quad.size.y, 1.0f};
struct xrt_matrix_4x4 model_matrix;
math_matrix_4x4_model(&data->quad.pose, &s, &model_matrix);
comp_layer_set_model_matrix(r->lr->layers[layer], &model_matrix);
comp_layer_set_flip_y(r->lr->layers[layer], data->flip_y);
l->type = XRT_LAYER_QUAD;
l->visibility = data->quad.visibility;
l->flags = data->flags;
l->view_space = (data->flags & XRT_LAYER_COMPOSITION_VIEW_SPACE_BIT) != 0;
for (uint32_t i = 0; i < 2; i++) {
l->transformation[i].offset = data->quad.sub.rect.offset;
l->transformation[i].extent = data->quad.sub.rect.extent;
}
}
void
comp_renderer_set_cylinder_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data)
{
struct comp_render_layer *l = r->lr->layers[layer];
l->transformation_ubo_binding = r->lr->transformation_ubo_binding;
l->texture_binding = r->lr->texture_binding;
l->type = XRT_LAYER_CYLINDER;
l->visibility = data->cylinder.visibility;
l->flags = data->flags;
l->view_space = (data->flags & XRT_LAYER_COMPOSITION_VIEW_SPACE_BIT) != 0;
// skip "infinite cylinder"
if (data->cylinder.radius == 0.f || data->cylinder.aspect_ratio == INFINITY) {
/* skipping the descriptor set update means the renderer must
* entirely skip rendering of invisible layer */
l->visibility = XRT_LAYER_EYE_VISIBILITY_NONE;
return;
}
VkSampler clamp_to_edge = r->c->nr.samplers.clamp_to_edge;
VkImageView image_view = get_image_view( //
image, //
data->flags, //
data->cylinder.sub.array_index); //
comp_layer_update_descriptors( //
r->lr->layers[layer], //
clamp_to_edge, //
image_view); //
float height = (data->cylinder.radius * data->cylinder.central_angle) / data->cylinder.aspect_ratio;
// scale unit cylinder to diameter
float diameter = data->cylinder.radius * 2;
struct xrt_vec3 scale = {diameter, height, diameter};
struct xrt_matrix_4x4 model_matrix;
math_matrix_4x4_model(&data->cylinder.pose, &scale, &model_matrix);
comp_layer_set_model_matrix(r->lr->layers[layer], &model_matrix);
comp_layer_set_flip_y(r->lr->layers[layer], data->flip_y);
for (uint32_t i = 0; i < 2; i++) {
l->transformation[i].offset = data->cylinder.sub.rect.offset;
l->transformation[i].extent = data->cylinder.sub.rect.extent;
}
comp_layer_update_cylinder_vertex_buffer(l, data->cylinder.central_angle);
}
void
comp_renderer_set_projection_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *left_image,
struct comp_swapchain_image *right_image,
struct xrt_layer_data *data)
{
uint32_t left_array_index = data->stereo.l.sub.array_index;
uint32_t right_array_index = data->stereo.r.sub.array_index;
struct comp_render_layer *l = r->lr->layers[layer];
l->transformation_ubo_binding = r->lr->transformation_ubo_binding;
l->texture_binding = r->lr->texture_binding;
VkSampler clamp_to_border_black = r->c->nr.samplers.clamp_to_border_black;
VkImageView left_image_view = get_image_view( //
left_image, //
data->flags, //
left_array_index); //
VkImageView right_image_view = get_image_view( //
right_image, //
data->flags, //
right_array_index); //
comp_layer_update_stereo_descriptors( //
l, //
clamp_to_border_black, //
clamp_to_border_black, //
left_image_view, //
right_image_view); //
comp_layer_set_flip_y(l, data->flip_y);
l->type = XRT_LAYER_STEREO_PROJECTION;
l->flags = data->flags;
l->view_space = (data->flags & XRT_LAYER_COMPOSITION_VIEW_SPACE_BIT) != 0;
l->transformation[0].offset = data->stereo.l.sub.rect.offset;
l->transformation[0].extent = data->stereo.l.sub.rect.extent;
l->transformation[1].offset = data->stereo.r.sub.rect.offset;
l->transformation[1].extent = data->stereo.r.sub.rect.extent;
}
#ifdef XRT_FEATURE_OPENXR_LAYER_EQUIRECT1
void
comp_renderer_set_equirect1_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data)
{
struct xrt_vec3 s = {1.0f, 1.0f, 1.0f};
struct xrt_matrix_4x4 model_matrix;
math_matrix_4x4_model(&data->equirect1.pose, &s, &model_matrix);
comp_layer_set_flip_y(r->lr->layers[layer], data->flip_y);
struct comp_render_layer *l = r->lr->layers[layer];
l->type = XRT_LAYER_EQUIRECT1;
l->visibility = data->equirect1.visibility;
l->flags = data->flags;
l->view_space = (data->flags & XRT_LAYER_COMPOSITION_VIEW_SPACE_BIT) != 0;
l->transformation_ubo_binding = r->lr->transformation_ubo_binding;
l->texture_binding = r->lr->texture_binding;
VkSampler repeat = r->c->nr.samplers.repeat;
VkImageView image_view = get_image_view( //
image, //
data->flags, //
data->equirect1.sub.array_index); //
comp_layer_update_descriptors( //
l, //
repeat, //
image_view); //
comp_layer_update_equirect1_descriptor(l, &data->equirect1);
for (uint32_t i = 0; i < 2; i++) {
l->transformation[i].offset = data->equirect1.sub.rect.offset;
l->transformation[i].extent = data->equirect1.sub.rect.extent;
}
}
#endif
#ifdef XRT_FEATURE_OPENXR_LAYER_EQUIRECT2
void
comp_renderer_set_equirect2_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data)
{
struct xrt_vec3 s = {1.0f, 1.0f, 1.0f};
struct xrt_matrix_4x4 model_matrix;
math_matrix_4x4_model(&data->equirect2.pose, &s, &model_matrix);
comp_layer_set_flip_y(r->lr->layers[layer], data->flip_y);
struct comp_render_layer *l = r->lr->layers[layer];
l->type = XRT_LAYER_EQUIRECT2;
l->visibility = data->equirect2.visibility;
l->flags = data->flags;
l->view_space = (data->flags & XRT_LAYER_COMPOSITION_VIEW_SPACE_BIT) != 0;
l->transformation_ubo_binding = r->lr->transformation_ubo_binding;
l->texture_binding = r->lr->texture_binding;
VkSampler repeat = r->c->nr.samplers.repeat;
VkImageView image_view = get_image_view( //
image, //
data->flags, //
data->equirect2.sub.array_index); //
comp_layer_update_descriptors( //
l, //
repeat, //
image_view); //
comp_layer_update_equirect2_descriptor(l, &data->equirect2);
for (uint32_t i = 0; i < 2; i++) {
l->transformation[i].offset = data->equirect2.sub.rect.offset;
l->transformation[i].extent = data->equirect2.sub.rect.extent;
}
}
#endif
#ifdef XRT_FEATURE_OPENXR_LAYER_CUBE
void
comp_renderer_set_cube_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data)
{
struct xrt_vec3 s = {1.0f, 1.0f, 1.0f};
struct xrt_matrix_4x4 model_matrix;
math_matrix_4x4_model(&data->cube.pose, &s, &model_matrix);
comp_layer_set_flip_y(r->lr->layers[layer], data->flip_y);
struct comp_render_layer *l = r->lr->layers[layer];
l->type = XRT_LAYER_CUBE;
l->visibility = data->cube.visibility;
l->flags = data->flags;
l->view_space = (data->flags & XRT_LAYER_COMPOSITION_VIEW_SPACE_BIT) != 0;
l->transformation_ubo_binding = r->lr->transformation_ubo_binding;
l->texture_binding = r->lr->texture_binding;
VkSampler repeat = r->c->nr.samplers.repeat;
VkImageView image_view = get_image_view( //
image, //
data->flags, //
data->cube.sub.array_index); //
comp_layer_update_descriptors( //
l, //
repeat, //
image_view); //
}
#endif
void
comp_renderer_draw(struct comp_renderer *r)
{
@ -1366,22 +1061,6 @@ comp_renderer_draw(struct comp_renderer *r)
comp_target_update_timings(ct);
}
void
comp_renderer_allocate_layers(struct comp_renderer *self, uint32_t layer_count)
{
COMP_TRACE_MARKER();
comp_layer_renderer_allocate_layers(self->lr, layer_count);
}
void
comp_renderer_destroy_layers(struct comp_renderer *self)
{
COMP_TRACE_MARKER();
comp_layer_renderer_destroy_layers(self->lr);
}
struct comp_renderer *
comp_renderer_create(struct comp_compositor *c, VkExtent2D scratch_extent)
{

View file

@ -60,91 +60,6 @@ comp_renderer_destroy(struct comp_renderer **ptr_r);
void
comp_renderer_draw(struct comp_renderer *r);
/*!
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_set_projection_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *left_image,
struct comp_swapchain_image *right_image,
struct xrt_layer_data *data);
/*!
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_set_quad_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data);
/*!
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_set_cylinder_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data);
#ifdef XRT_FEATURE_OPENXR_LAYER_EQUIRECT1
/*!
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_set_equirect1_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data);
#endif
#ifdef XRT_FEATURE_OPENXR_LAYER_EQUIRECT2
/*!
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_set_equirect2_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data);
#endif
#ifdef XRT_FEATURE_OPENXR_LAYER_CUBE
/*!
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_set_cube_layer(struct comp_renderer *r,
uint32_t layer,
struct comp_swapchain_image *image,
struct xrt_layer_data *data);
#endif
/*!
* Allocate an internal array of per-layer data with the given number of elements.
*
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_allocate_layers(struct comp_renderer *self, uint32_t layer_count);
/*!
* De-initialize and free internal array of per-layer data.
*
* @public @memberof comp_renderer
* @ingroup comp_main
*/
void
comp_renderer_destroy_layers(struct comp_renderer *self);
void
comp_renderer_add_debug_vars(struct comp_renderer *self);