ext/vfd: Add valve file VFD library

Co-authored-by: Jakob Bornecrantz <jakob@collabora.com>
This commit is contained in:
Shawn Wallace 2023-04-14 20:38:48 -04:00 committed by Jakob Bornecrantz
parent c3ae06163d
commit 065a6d6863
4 changed files with 1021 additions and 0 deletions

View file

@ -118,3 +118,8 @@ Files: src/external/tracy/*
Copyright: 2017-2022, Bartosz Taudul
License: BSD-3-Clause
Comment: SPDX-License-Identifier missing.
Files: src/external/valve-file-vdf/*
Copyright: 2016-2023, Matthias Moeller
License: MIT
Comment: SPDX-License-Identifier missing.

View file

@ -165,3 +165,9 @@ if(XRT_HAVE_TRACY)
target_compile_definitions(xrt-external-tracy PRIVATE TRACY_ENABLE)
target_link_libraries(xrt-external-tracy PRIVATE ${CMAKE_DL_LIBS})
endif()
# Valve VDF parser
add_library(xrt-external-vdf INTERFACE)
target_include_directories(
xrt-external-vdf SYSTEM INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}/valve-file-vdf
)

280
src/external/valve-file-vdf/Readme.md vendored Normal file
View file

@ -0,0 +1,280 @@
Upstream source - https://github.com/TinyTinni/ValveFileVDF
# Valve Data Format (.vdf) Reader and Writer in C++
[![CMake](https://github.com/TinyTinni/ValveFileVDF/actions/workflows/cmake.yml/badge.svg)](https://github.com/TinyTinni/ValveFileVDF/actions/workflows/cmake.yml)
Valve uses its own JSON-like data format: [KeyValue, also known as vdf.](https://developer.valvesoftware.com/wiki/KeyValues)
e.g. in game manifest files or as SteamCMD output.
This header-only file provides a parser and writer to load and save the given data.
## Features:
- read and write vdf data in C++
- build-in encodings: `char` and `wchar_t`
- supports custom character sets
- support for C++ (//) and C (/**/) comments
- `#include`/`#base` keyword (note: searches for files in the current working directory)
- platform independent
- header-only
## Requirements
- C++11
## Test Requirements
- C++14 (uses [catch2](https://github.com/catchorg/Catch2))
(works with the C++11 features of vs120/"Visual Studio 2013" and newer)
## How-To Use
First, you have to include the main file `vdf-Parser.h`.
This file provides several functions and data-structures which are
in the namespace `tyti::vdf`.
All functions and data structures supports wide characters.
The wide character data structure is indicated by the commonly known `w`-prefix.
Functions are templates and don't need a prefix.
To read an file, create a stream e.g. `std::ifsteam` or `std::wifstream`
and call the `tyti::vdf::read` function.
```c++
std::ifstream file("PathToMyFile");
auto root = tyti::vdf::read(file);
```
You can also define a sequence of character defined by a range.
```c++
std::string blob;
...
auto root = tyti::vdf::read(std::cbegin(blob), std::cend(blob));
//given .vdf below, following holds
assert(root.name == "name");
const std::shared_ptr<tyti::vdf::object> child = root.childs["child0"];
assert(child->name == "child0");
const std::string& k = root[0].attribs["attrib0"];
assert(k == "value");
```
The `tyti::vdf::object` is a tree like data structure.
It has its name, some attributes as a pair of `key` and `value`
and its object childs. Below you can see a vdf data structure and how it is stored by naming:
```javascript
"name"
{
"attrib0" "value" // saved as a pair, first -> key, second -> value
"#base" "includeFile.vdf" // appends object defined in the file to childs
"child0"
{
...
}
...
}
```
Given such an object, you can also write it into vdf files via:
```c++
tyti::vdf::write(file, object);
```
## Multi-Key and Custom Output Type
It is also possible to customize your output dataformat.
Per default, the parser stores all items in a std::unordered_map, which, per definition,
doesn't allow different entries with the same key.
However, the Valve vdf format supports multiple keys. Therefore, the output data format
has to store all items in e.g. a std::unordered_multimap.
You can change the output format by passing the output type via template argument to
the read function
```c++
namespace tyti;
vdf::object no_multi_key = vdf::read(file);
vdf::multikey_object multi_key = vdf::read<vdf::multikey_object>(file);
```
__Note__: The interface of [std::unordered_map](http://en.cppreference.com/w/cpp/container/unordered_map) and [std::unordered_multimap](http://en.cppreference.com/w/cpp/container/unordered_multimap)
are different when you access the elements.
It is also possible to create your own data structure which is used by the parser.
Your output class needs to define 3 functions with the following signature:
```c++
void add_attribute(std::basic_string<CHAR> key, std::basic_string<CHAR> value);
void add_child(std::unique_ptr< MYCLASS > child);
void set_name(std::basic_string<CHAR> n);
```
where ```MYCLASS``` is the tpe of your class and ```CHAR``` the type of your character set.
Also, the type has to be [default constructible](http://en.cppreference.com/w/cpp/types/is_default_constructible)
and [move constructible](http://en.cppreference.com/w/cpp/types/is_move_constructible).
This also allows you, to inspect the file without storing it in a data structure.
Lets say, for example, you want to count all attributes of a file without storing it.
You can do this by using this class
```c++
struct counter
{
size_t num_attributes = 0;
void add_attribute(std::string key, std::string value)
{
++num_attributes;
}
void add_child(std::unique_ptr< counter > child)
{
num_attributes += child->num_attributes;
}
void set_name(std::string n)
{}
};
```
and then call the read function
```c++
std::vector<counter> num = tyti::vdf::read<counter>(file);
```
## Options (experimental)
You can configure the parser, the non default options are not well tested yet.
```c++
struct Options
{
bool strip_escape_symbols; //default true
bool ignore_all_platform_conditionals; // default false
bool ignore_includes; //default false
};
```
## Reference
```c++
/////////////////////////////////////////////////////////////
// pre-defined output classes
/////////////////////////////////////////////////////////////
// default output object
template<typename T>
basic_object<T>
{
std::basic_string<char_type> name;
std::unordered_map<std::basic_string<char_type>, std::basic_string<char_type> > attribs;
std::unordered_map<std::basic_string<char_type>, std::shared_ptr< basic_object<char_type> > > childs;
};
typedef basic_object<char> object;
typedef basic_object<wchar_t> wobject
// output object with multikey support
template<typename T>
basic_multikey_object<T>
{
std::basic_string<char_type> name;
std::unordered_multimap<std::basic_string<char_type>, std::basic_string<char_type> > attribs;
std::unordered_multimap<std::basic_string<char_type>, std::shared_ptr< basic_object<char_type> > > childs;
};
typedef basic_multikey_object<char> multikey_object;
typedef basic_multikey_object<wchar_t> wmultikey_object
/////////////////////////////////////////////////////////////
// error codes
/////////////////////////////////////////////////////////////
/*
Possible error codes:
std::errc::protocol_error: file is mailformatted
std::errc::not_enough_memory: not enough space
std::errc::invalid_argument: iterators throws e.g. out of range
*/
/////////////////////////////////////////////////////////////
// read from stream
/////////////////////////////////////////////////////////////
/** \brief Loads a stream (e.g. filestream) into the memory and parses the vdf formatted data.
throws "std::bad_alloc" if file buffer could not be allocated
throws "std::runtime_error" if a parsing error occured
*/
template<ytpename OutputT, typename iStreamT>
std::vector<OutputT> read(iStreamT& inStream, const Options &opt = Options{});
template<typename iStreamT>
std::vector<basic_object<typename iStreamT::char_type>> read(iStreamT& inStream, const Options &opt = Options{});
/** \brief Loads a stream (e.g. filestream) into the memory and parses the vdf formatted data.
throws "std::bad_alloc" if file buffer could not be allocated
ok == false, if a parsing error occured
*/
template<typename OutputT, typename iStreamT>
std::vector<OutputT> read(iStreamT& inStream, bool* ok, const Options &opt = Options{});
template<typename iStreamT>
std::vector<basic_object<typename iStreamT::char_type>> read(iStreamT& inStream, bool* ok, const Options &opt = Options{});
/** \brief Loads a stream (e.g. filestream) into the memory and parses the vdf formatted data.
throws "std::bad_alloc" if file buffer could not be allocated
*/
template<typename OutputT, typename iStreamT>
std::vector<OutputT> read(iStreamT& inStream, std::error_code& ec, const Options &opt = Options{});
template<typename iStreamT>
std::vector<basic_object<iStreamT::char_type>> read(iStreamT& inStream, std::error_code& ec, const Options &opt = Options{});
/////////////////////////////////////////////////////////////
// read from memory
/////////////////////////////////////////////////////////////
/** \brief Read VDF formatted sequences defined by the range [first, last).
If the file is mailformatted, parser will try to read it until it can.
@param first begin iterator
@param end end iterator
throws "std::runtime_error" if a parsing error occured
throws "std::bad_alloc" if not enough memory could be allocated
*/
template<typename OutputT, typename IterT>
std::vector<OutputT> read(IterT first, IterT last, const Options &opt = Options{});
template<typename IterT>
std::vector<basic_object<typename std::iterator_traits<IterT>::value_type>> read(IterT first, IterT last, const Options &opt = Options{});
/** \brief Read VDF formatted sequences defined by the range [first, last).
If the file is mailformatted, parser will try to read it until it can.
@param first begin iterator
@param end end iterator
@param ok output bool. true, if parser successed, false, if parser failed
*/
template<typename OutputT, typename IterT>
std::vector<OutputT> read(IterT first, IterT last, bool* ok, const Options &opt = Options{}) noexcept;
template<typename IterT>
std::vector<basic_object<typename std::iterator_traits<IterT>::value_type>> read(IterT first, IterT last, bool* ok, const Options &opt = Options{}) noexcept;
/** \brief Read VDF formatted sequences defined by the range [first, last).
If the file is mailformatted, parser will try to read it until it can.
@param first begin iterator
@param end end iterator
@param ec output bool. 0 if ok, otherwise, holds an system error code
*/
template<typename OutputT, typename IterT>
std::vector<OutputT> read(IterT first, IterT last, std::error_code& ec, const Options &opt = Options{}) noexcept;
template<typename IterT>
std::vector<basic_object<typename std::iterator_traits<IterT>::value_type>> read(IterT first, IterT last, std::error_code& ec, const Options &opt = Options{}) noexcept;
/////////////////////////////////////////////////////////////////////////////
// Writer functions
/// writes given obj into out in vdf style
/// Output is prettyfied, using tabs
template<typename oStreamT, typename T>
void write(oStreamT& out, const T& obj, const Options &opt = Options{});
```
## Remarks for Errors
The current version is a greedy implementation and jumps over unrecognized fields.
Therefore, the error detection is very imprecise an does not give the line, where the error occurs.
## License
[MIT License](./LICENSE) © Matthias Möller. Made with ♥ in Germany.

View file

@ -0,0 +1,730 @@
//MIT License
//
//Copyright(c) 2016 Matthias Moeller
//
//Permission is hereby granted, free of charge, to any person obtaining a copy
//of this software and associated documentation files(the "Software"), to deal
//in the Software without restriction, including without limitation the rights
//to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
//copies of the Software, and to permit persons to whom the Software is
//furnished to do so, subject to the following conditions :
//
//The above copyright notice and this permission notice shall be included in all
//copies or substantial portions of the Software.
//
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//SOFTWARE.
#ifndef __TYTI_STEAM_VDF_PARSER_H__
#define __TYTI_STEAM_VDF_PARSER_H__
#include <map>
#include <vector>
#include <unordered_map>
#include <utility>
#include <fstream>
#include <memory>
#include <unordered_set>
#include <algorithm>
#include <iterator>
#include <functional>
#include <system_error>
#include <exception>
//for wstring support
#include <locale>
#include <string>
// internal
#include <stack>
//VS < 2015 has only partial C++11 support
#if defined(_MSC_VER) && _MSC_VER < 1900
#ifndef CONSTEXPR
#define CONSTEXPR
#endif
#ifndef NOEXCEPT
#define NOEXCEPT
#endif
#else
#ifndef CONSTEXPR
#define CONSTEXPR constexpr
#define TYTI_UNDEF_CONSTEXPR
#endif
#ifndef NOEXCEPT
#define NOEXCEPT noexcept
#define TYTI_UNDEF_NOEXCEPT
#endif
#endif
namespace tyti
{
namespace vdf
{
namespace detail
{
///////////////////////////////////////////////////////////////////////////
// Helper functions selecting the right encoding (char/wchar_T)
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct literal_macro_help
{
static CONSTEXPR const char* result(const char* c, const wchar_t*) NOEXCEPT
{
return c;
}
static CONSTEXPR const char result(const char c, const wchar_t) NOEXCEPT
{
return c;
}
};
template <>
struct literal_macro_help<wchar_t>
{
static CONSTEXPR const wchar_t* result(const char*, const wchar_t* wc) NOEXCEPT
{
return wc;
}
static CONSTEXPR const wchar_t result(const char, const wchar_t wc) NOEXCEPT
{
return wc;
}
};
#define TYTI_L(type, text) vdf::detail::literal_macro_help<type>::result(text, L##text)
inline std::string string_converter(const std::string& w) NOEXCEPT
{
return w;
}
// utility wrapper to adapt locale-bound facets for wstring/wbuffer convert
// from cppreference
template <class Facet>
struct deletable_facet : Facet
{
template <class... Args>
deletable_facet(Args &&... args) : Facet(std::forward<Args>(args)...) {}
~deletable_facet() {}
};
inline std::string string_converter(const std::wstring& w) //todo: use us-locale
{
std::wstring_convert<deletable_facet<std::codecvt<wchar_t, char, std::mbstate_t>>> conv1;
return conv1.to_bytes(w);
}
///////////////////////////////////////////////////////////////////////////
// Writer helper functions
///////////////////////////////////////////////////////////////////////////
template <typename charT>
class tabs
{
const size_t t;
public:
explicit CONSTEXPR tabs(size_t i) NOEXCEPT : t(i) {}
std::basic_string<charT> print() const { return std::basic_string<charT>(t, TYTI_L(charT, '\t')); }
inline CONSTEXPR tabs operator+(size_t i) const NOEXCEPT
{
return tabs(t + i);
}
};
template <typename oStreamT>
oStreamT& operator<<(oStreamT& s, const tabs<typename oStreamT::char_type> t)
{
s << t.print();
return s;
}
} // end namespace detail
///////////////////////////////////////////////////////////////////////////
// Interface
///////////////////////////////////////////////////////////////////////////
/// custom objects and their corresponding write functions
/// basic object node. Every object has a name and can contains attributes saved as key_value pairs or childrens
template <typename CharT>
struct basic_object
{
typedef CharT char_type;
std::basic_string<char_type> name;
std::unordered_map<std::basic_string<char_type>, std::basic_string<char_type>> attribs;
std::unordered_map<std::basic_string<char_type>, std::shared_ptr<basic_object<char_type>>> childs;
void add_attribute(std::basic_string<char_type> key, std::basic_string<char_type> value)
{
attribs.emplace(std::move(key), std::move(value));
}
void add_child(std::unique_ptr<basic_object<char_type>> child)
{
std::shared_ptr<basic_object<char_type>> obj{ child.release() };
childs.emplace(obj->name, obj);
}
void set_name(std::basic_string<char_type> n)
{
name = std::move(n);
}
};
template <typename CharT>
struct basic_multikey_object
{
typedef CharT char_type;
std::basic_string<char_type> name;
std::unordered_multimap<std::basic_string<char_type>, std::basic_string<char_type>> attribs;
std::unordered_multimap<std::basic_string<char_type>, std::shared_ptr<basic_multikey_object<char_type>>> childs;
void add_attribute(std::basic_string<char_type> key, std::basic_string<char_type> value)
{
attribs.emplace(std::move(key), std::move(value));
}
void add_child(std::unique_ptr<basic_multikey_object<char_type>> child)
{
std::shared_ptr<basic_multikey_object<char_type>> obj{ child.release() };
childs.emplace(obj->name, obj);
}
void set_name(std::basic_string<char_type> n)
{
name = std::move(n);
}
};
typedef basic_object<char> object;
typedef basic_object<wchar_t> wobject;
typedef basic_multikey_object<char> multikey_object;
typedef basic_multikey_object<wchar_t> wmultikey_object;
struct Options
{
bool strip_escape_symbols;
bool ignore_all_platform_conditionals;
bool ignore_includes;
Options() : strip_escape_symbols(true), ignore_all_platform_conditionals(false), ignore_includes(false) {}
};
//forward decls
//forward decl
template <typename OutputT, typename iStreamT>
OutputT read(iStreamT& inStream, const Options& opt = Options{});
/** \brief writes given object tree in vdf format to given stream.
Output is prettyfied, using tabs
*/
template <typename oStreamT, typename T>
void write(oStreamT& s, const T& r,
const detail::tabs<typename oStreamT::char_type> tab = detail::tabs<typename oStreamT::char_type>(0))
{
typedef typename oStreamT::char_type charT;
using namespace detail;
s << tab << TYTI_L(charT, '"') << r.name << TYTI_L(charT, "\"\n") << tab << TYTI_L(charT, "{\n");
for (const auto& i : r.attribs)
s << tab + 1 << TYTI_L(charT, '"') << i.first << TYTI_L(charT, "\"\t\t\"") << i.second << TYTI_L(charT, "\"\n");
for (const auto& i : r.childs)
if (i.second)
write(s, *i.second, tab + 1);
s << tab << TYTI_L(charT, "}\n");
}
namespace detail
{
template <typename iStreamT>
std::basic_string<typename iStreamT::char_type> read_file(iStreamT& inStream)
{
// cache the file
typedef typename iStreamT::char_type charT;
std::basic_string<charT> str;
inStream.seekg(0, std::ios::end);
str.resize(static_cast<size_t>(inStream.tellg()));
if (str.empty())
return str;
inStream.seekg(0, std::ios::beg);
inStream.read(&str[0], str.size());
return str;
}
/** \brief Read VDF formatted sequences defined by the range [first, last).
If the file is mailformatted, parser will try to read it until it can.
@param first begin iterator
@param end end iterator
@param exclude_files list of files which cant be included anymore.
prevents circular includes
can thow:
- "std::runtime_error" if a parsing error occured
- "std::bad_alloc" if not enough memory coup be allocated
*/
template <typename OutputT, typename IterT>
std::vector<std::unique_ptr<OutputT>> read_internal(IterT first, const IterT last,
std::unordered_set<std::basic_string<typename std::iterator_traits<IterT>::value_type>>& exclude_files,
const Options& opt)
{
static_assert(std::is_default_constructible<OutputT>::value,
"Output Type must be default constructible (provide constructor without arguments)");
static_assert(std::is_move_constructible<OutputT>::value,
"Output Type must be move constructible");
typedef typename std::iterator_traits<IterT>::value_type charT;
const std::basic_string<charT> comment_end_str = TYTI_L(charT, "*/");
const std::basic_string<charT> whitespaces = TYTI_L(charT, " \n\v\f\r\t");
#ifdef WIN32
std::function<bool(const std::basic_string<charT>&)> is_platform_str = [](const std::basic_string<charT>& in) {
return in == TYTI_L(charT, "$WIN32") || in == TYTI_L(charT, "$WINDOWS");
};
#elif __APPLE__
// WIN32 stands for pc in general
std::function<bool(const std::basic_string<charT>&)> is_platform_str = [](const std::basic_string<charT>& in) {
return in == TYTI_L(charT, "$WIN32") || in == TYTI_L(charT, "$POSIX") || in == TYTI_L(charT, "$OSX");
};
#elif __linux__
// WIN32 stands for pc in general
std::function<bool(const std::basic_string<charT>&)> is_platform_str = [](const std::basic_string<charT>& in) {
return in == TYTI_L(charT, "$WIN32") || in == TYTI_L(charT, "$POSIX") || in == TYTI_L(charT, "$LINUX");
};
#else
std::function<bool(const std::basic_string<charT>&)> is_platform_str = [](const std::basic_string<charT>& in) {
return false;
};
#endif
if (opt.ignore_all_platform_conditionals)
is_platform_str = [](const std::basic_string<charT>&) {
return false;
};
// function for skipping a comment block
// iter: iterator poition to the position after a '/'
auto skip_comments = [&comment_end_str](IterT iter, const IterT& last) -> IterT {
++iter;
if (iter != last)
{
if (*iter == TYTI_L(charT, '/'))
{
// line comment, skip whole line
iter = std::find(iter + 1, last, TYTI_L(charT, '\n'));
}
if (*iter == '*')
{
// block comment, skip until next occurance of "*\"
iter = std::search(iter + 1, last, std::begin(comment_end_str), std::end(comment_end_str));
iter += 2;
}
}
return iter;
};
auto end_quote = [](IterT iter, const IterT& last) -> IterT {
const auto begin = iter;
auto last_esc = iter;
do
{
++iter;
iter = std::find(iter, last, TYTI_L(charT, '\"'));
if (iter == last)
break;
last_esc = std::prev(iter);
while (last_esc != begin && *last_esc == '\\')
--last_esc;
} while (!(std::distance(last_esc, iter) % 2));
if (iter == last)
throw std::runtime_error{ "quote was opened but not closed." };
return iter;
};
auto end_word = [&whitespaces](IterT iter, const IterT& last) -> IterT {
const auto begin = iter;
auto last_esc = iter;
do
{
++iter;
iter = std::find_first_of(iter, last, std::begin(whitespaces), std::end(whitespaces));
if (iter == last)
break;
last_esc = std::prev(iter);
while (last_esc != begin && *last_esc == '\\')
--last_esc;
} while (!(std::distance(last_esc, iter) % 2));
//if (iter == last)
// throw std::runtime_error{ "word wasnt properly ended" };
return iter;
};
auto skip_whitespaces = [&whitespaces](IterT iter, const IterT& last) -> IterT {
iter = std::find_if_not(iter, last, [&whitespaces](charT c) {
// return true if whitespace
return std::any_of(std::begin(whitespaces), std::end(whitespaces), [c](charT pc) { return pc == c; });
});
return iter;
};
std::function<void(std::basic_string<charT>&)> strip_escape_symbols = [](std::basic_string<charT>& s) {
auto quote_searcher = [&s](size_t pos) { return s.find(TYTI_L(charT, "\\\""), pos); };
auto p = quote_searcher(0);
while (p != s.npos)
{
s.replace(p, 2, TYTI_L(charT, "\""));
p = quote_searcher(p);
}
auto searcher = [&s](size_t pos) { return s.find(TYTI_L(charT, "\\\\"), pos); };
p = searcher(0);
while (p != s.npos)
{
s.replace(p, 2, TYTI_L(charT, "\\"));
p = searcher(p);
}
};
if (!opt.strip_escape_symbols)
strip_escape_symbols = [](std::basic_string<charT>&) {};
auto conditional_fullfilled = [&skip_whitespaces, &is_platform_str](IterT& iter, const IterT& last) {
iter = skip_whitespaces(iter, last);
if (*iter == '[')
{
++iter;
const auto end = std::find(iter, last, ']');
const bool negate = *iter == '!';
if (negate)
++iter;
auto conditional = std::basic_string<charT>(iter, end);
const bool is_platform = is_platform_str(conditional);
iter = end + 1;
return static_cast<bool>(is_platform ^ negate);
}
return true;
};
//read header
// first, quoted name
std::unique_ptr<OutputT> curObj = nullptr;
std::vector<std::unique_ptr<OutputT>> roots;
std::stack<std::unique_ptr<OutputT>> lvls;
auto curIter = first;
while (curIter != last && *curIter != '\0')
{
//find first starting attrib/child, or ending
curIter = skip_whitespaces(curIter, last);
if (curIter == last || *curIter == '\0')
break;
if (*curIter == TYTI_L(charT, '/'))
{
curIter = skip_comments(curIter, last);
}
else if (*curIter != TYTI_L(charT, '}'))
{
// get key
const auto keyEnd = (*curIter == TYTI_L(charT, '\"')) ? end_quote(curIter, last) : end_word(curIter, last);
if (*curIter == TYTI_L(charT, '\"'))
++curIter;
std::basic_string<charT> key(curIter, keyEnd);
strip_escape_symbols(key);
curIter = keyEnd + ((*keyEnd == TYTI_L(charT, '\"')) ? 1 : 0);
curIter = skip_whitespaces(curIter, last);
auto conditional = conditional_fullfilled(curIter, last);
if (!conditional)
continue;
while (*curIter == TYTI_L(charT, '/'))
{
curIter = skip_comments(curIter, last);
if (curIter == last || *curIter == '}')
throw std::runtime_error{ "key declared, but no value" };
curIter = skip_whitespaces(curIter, last);
if (curIter == last || *curIter == '}')
throw std::runtime_error{ "key declared, but no value" };
}
// get value
if (*curIter != '{')
{
const auto valueEnd = (*curIter == TYTI_L(charT, '\"')) ? end_quote(curIter, last) : end_word(curIter, last);
if (*curIter == TYTI_L(charT, '\"'))
++curIter;
auto value = std::basic_string<charT>(curIter, valueEnd);
strip_escape_symbols(value);
curIter = valueEnd + ((*valueEnd == TYTI_L(charT, '\"')) ? 1 : 0);
auto conditional = conditional_fullfilled(curIter, last);
if (!conditional)
continue;
// process value
if (key != TYTI_L(charT, "#include") && key != TYTI_L(charT, "#base"))
{
if (curObj)
{
curObj->add_attribute(std::move(key), std::move(value));
}
else
{
throw std::runtime_error{ "unexpected key without object" };
}
}
else
{
if (!opt.ignore_includes && exclude_files.find(value) == exclude_files.end())
{
exclude_files.insert(value);
std::basic_ifstream<charT> i(detail::string_converter(value));
auto str = read_file(i);
auto file_objs = read_internal<OutputT>(str.begin(), str.end(), exclude_files, opt);
for (auto& n : file_objs)
{
if (curObj)
curObj->add_child(std::move(n));
else
roots.push_back(std::move(n));
}
exclude_files.erase(value);
}
}
}
else if (*curIter == '{')
{
if (curObj)
lvls.push(std::move(curObj));
curObj = std::make_unique<OutputT>();
curObj->set_name(std::move(key));
++curIter;
}
}
//end of new object
else if (curObj && *curIter == TYTI_L(charT, '}'))
{
if (!lvls.empty())
{
//get object before
std::unique_ptr<OutputT> prev{ std::move(lvls.top()) };
lvls.pop();
// add finished obj to obj before and release it from processing
prev->add_child(std::move(curObj));
curObj = std::move(prev);
}
else
{
roots.push_back(std::move(curObj));
curObj.reset();
}
++curIter;
}
else
{
throw std::runtime_error{ "unexpected '}'" };
}
}
if (curObj != nullptr || !lvls.empty())
{
throw std::runtime_error{ "object is not closed with '}'" };
}
return roots;
}
} // namespace detail
/** \brief Read VDF formatted sequences defined by the range [first, last).
If the file is mailformatted, parser will try to read it until it can.
@param first begin iterator
@param end end iterator
can thow:
- "std::runtime_error" if a parsing error occured
- "std::bad_alloc" if not enough memory coup be allocated
*/
template <typename OutputT, typename IterT>
OutputT read(IterT first, const IterT last, const Options& opt = Options{})
{
auto exclude_files = std::unordered_set<std::basic_string<typename std::iterator_traits<IterT>::value_type>>{};
auto roots = detail::read_internal<OutputT>(first, last, exclude_files, opt);
OutputT result;
if (roots.size() > 1)
{
for (auto& i : roots)
result.add_child(std::move(i));
}
else if (roots.size() == 1)
result = std::move(*roots[0]);
return result;
}
/** \brief Read VDF formatted sequences defined by the range [first, last).
If the file is mailformatted, parser will try to read it until it can.
@param first begin iterator
@param end end iterator
@param ec output bool. 0 if ok, otherwise, holds an system error code
Possible error codes:
std::errc::protocol_error: file is mailformatted
std::errc::not_enough_memory: not enough space
std::errc::invalid_argument: iterators throws e.g. out of range
*/
template <typename OutputT, typename IterT>
OutputT read(IterT first, IterT last, std::error_code& ec, const Options& opt = Options{}) NOEXCEPT
{
ec.clear();
OutputT r{};
try
{
r = read<OutputT>(first, last, opt);
}
catch (std::runtime_error&)
{
ec = std::make_error_code(std::errc::protocol_error);
}
catch (std::bad_alloc&)
{
ec = std::make_error_code(std::errc::not_enough_memory);
}
catch (...)
{
ec = std::make_error_code(std::errc::invalid_argument);
}
return r;
}
/** \brief Read VDF formatted sequences defined by the range [first, last).
If the file is mailformatted, parser will try to read it until it can.
@param first begin iterator
@param end end iterator
@param ok output bool. true, if parser successed, false, if parser failed
*/
template <typename OutputT, typename IterT>
OutputT read(IterT first, const IterT last, bool* ok, const Options& opt = Options{}) NOEXCEPT
{
std::error_code ec;
auto r = read<OutputT>(first, last, ec, opt);
if (ok)
*ok = !ec;
return r;
}
template <typename IterT>
inline auto read(IterT first, const IterT last, bool* ok, const Options& opt = Options{}) NOEXCEPT -> basic_object<typename std::iterator_traits<IterT>::value_type>
{
return read<basic_object<typename std::iterator_traits<IterT>::value_type>>(first, last, ok, opt);
}
template <typename IterT>
inline auto read(IterT first, IterT last, std::error_code& ec, const Options& opt = Options{}) NOEXCEPT
-> basic_object<typename std::iterator_traits<IterT>::value_type>
{
return read<basic_object<typename std::iterator_traits<IterT>::value_type>>(first, last, ec, opt);
}
template <typename IterT>
inline auto read(IterT first, const IterT last, const Options& opt = Options{})
-> basic_object<typename std::iterator_traits<IterT>::value_type>
{
return read<basic_object<typename std::iterator_traits<IterT>::value_type>>(first, last, opt);
}
/** \brief Loads a stream (e.g. filestream) into the memory and parses the vdf formatted data.
throws "std::bad_alloc" if file buffer could not be allocated
*/
template <typename OutputT, typename iStreamT>
OutputT read(iStreamT& inStream, std::error_code& ec, const Options& opt = Options{})
{
// cache the file
typedef typename iStreamT::char_type charT;
std::basic_string<charT> str = detail::read_file(inStream);
// parse it
return read<OutputT>(str.begin(), str.end(), ec, opt);
}
template <typename iStreamT>
inline basic_object<typename iStreamT::char_type> read(iStreamT& inStream, std::error_code& ec, const Options& opt = Options{})
{
return read<basic_object<typename iStreamT::char_type>>(inStream, ec, opt);
}
/** \brief Loads a stream (e.g. filestream) into the memory and parses the vdf formatted data.
throws "std::bad_alloc" if file buffer could not be allocated
ok == false, if a parsing error occured
*/
template <typename OutputT, typename iStreamT>
OutputT read(iStreamT& inStream, bool* ok, const Options& opt = Options{})
{
std::error_code ec;
const auto r = read<OutputT>(inStream, ec, opt);
if (ok)
*ok = !ec;
return r;
}
template <typename iStreamT>
inline basic_object<typename iStreamT::char_type> read(iStreamT& inStream, bool* ok, const Options& opt = Options{})
{
return read<basic_object<typename iStreamT::char_type>>(inStream, ok, opt);
}
/** \brief Loads a stream (e.g. filestream) into the memory and parses the vdf formatted data.
throws "std::bad_alloc" if file buffer could not be allocated
throws "std::runtime_error" if a parsing error occured
*/
template <typename OutputT, typename iStreamT>
OutputT read(iStreamT& inStream, const Options& opt)
{
// cache the file
typedef typename iStreamT::char_type charT;
std::basic_string<charT> str = detail::read_file(inStream);
// parse it
return read<OutputT>(str.begin(), str.end(), opt);
}
template <typename iStreamT>
inline basic_object<typename iStreamT::char_type> read(iStreamT& inStream, const Options& opt = Options{})
{
return read<basic_object<typename iStreamT::char_type>>(inStream, opt);
}
} // namespace vdf
} // namespace tyti
#ifndef TYTI_NO_L_UNDEF
#undef TYTI_L
#endif
#ifdef TYTI_UNDEF_CONSTEXPR
#undef CONSTEXPR
#undef TYTI_NO_L_UNDEF
#endif
#ifdef TYTI_UNDEF_NOTHROW
#undef NOTHROW
#undef TYTI_UNDEF_NOTHROW
#endif
#endif //__TYTI_STEAM_VDF_PARSER_H__